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Abstract

This paper presents an intelligent hybrid scheme for short-term electric load forecasting using multilayered
perceptrons. The hybrid neural network uses the membership values of the linguistic properties of the past load
and weather parameters and the output of the network is defined as the fuzzy class membership values of the
forecasted load. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used
for training of the feedforward neural network. In the unsupervised learning phase optimal fuzzy membership
values of input/output variables are obtained along with the optimal fuzzy logic rules. Kalman filter is used for
the supervised learning phase. Extensive tests have been performed on a two-year utility data for the
generation of peak and average load profiles in 24 and 168 hours ahead time frame. Results for typical winter
and summer months are given to confirm the effectiveness of the hybrid scheme in comparison to standard

ANN approach using backpropagation algorithm.

Key words:Hybrid learning scheme, fuzzy logic, ANN-based architecture, Kalman filters, load forecasting.

1. Introduction

Load forecasting plays a central role in the operation, planning and control of electr!c
power systems. The forecast lead times range from a few minutes ahead foT economic
operation and load sharing between power plants to over 40 years for economic planning

of new generating capacity and transmission networks.

The short-term load forecast (one to twentyfour hours) is of i_mportance in the da;ly
operations of a power utility. It is required for uni commitment, energy-transfer

; e : [
scheduling and load-management strategies, and for ut}llty operations. The ?ﬁvelzﬁr;::e
of an accurate, fast and robust short-term load forecasting methodology 1s of 1mp

to both electric utility and its customers.
A number of algorithms and techniques have been suggested ;‘or t::dsz:;:;:lnnzfvi{;:

redicti i statistical techniques, expert sysiem ‘

e T oy st es are the two major classes of

approaches. The time series and regression techniqu ' fully in this field for
conventional statistical algorithms, and have been applied su;?e§sntl yaccurate e
many years'™. However, this technique does not produce a suthicie y[oad siidl ‘weather
and the accuracy deteriorates for larger variations o IR e
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variables. The expert system-based algorithm uses a symbolic computational approach for
load forecasting and takes the expert knowledge of the operator which is, however, neither

easy to elicit nor to articulate.

Over the past few years, artificial neural networks (ANN) have received a great
attention and are now being proposed as a powerful computational tool for short-term load
predictions®'. This is because of two key features of the neural networks. First, the
neural network does not rely on the explicitly expressed relationship between input
variables and load forecasted. When using neural networks for load forecasting, one needs
only to consider the selection of variables as the network input variables. The relationship
between the input variables and predicted load will be formulated by a training process.
Thus this approach avoids the difficulties in the modelling process. The adaptive
algorithm is another appealing feature of neural networks. New training cases can be
selected and system parameters estimated each time a new forecast 1s needed. Typically
an ANN-based load forecasting problem uses the backpropagation approach during the
training phase. The network is presented with a training data set made up of load and
weather parameters.

The backpropagation algorithm although yields an accurate load forecast under normal
circumstances, is susceptible to inaccurate predictions during fast changes in weather
variables. Also extremely slow training or even training failure occurs in many cases due
to difficulties in selecting proper structures of the neural network being used, and due to
the errors in associated parameters such as learning rates, activation functions, etc., which
are fundamental to any backpropagation neural network. The expert system, on the other
hand,'' provides a symbolic approach and emulates human expertise by capturing the
knowledge of one or more experts in the form of rules and symbols. The heuristic
approach of an expert system in arriving at decisions and/or solutions of a problem makes
it unique concerning its performance. An explanation facility can provide the user with
the ]me of reasoning followed by the expert system. The fuzzy logic-based expert
system'? for load forecasting requires a detailed analysis of data and the fuzzy rule base to
be developed heuristically for each season. The rules fixed in this way may not always
yield the best forecast. The shortcomings of the neural network paradigm can somewhat
be remedied by the recognition of the fact that the learning speed and accuracy of an ANN
may often be enhanced by integrating a fuzzy expert system into the neural network

architecture. Expert networks represent one of the emerging hybrid approaches which
combine the attributes of both the expert system and neural networks.

This paper presents a new hybrid approach for load forecasting using both supervised
and upsupervised learning paradigms for integrated fuzzy-neural network (FNN model)'*

. The input to the hybrid model consists of the membership values of linguistic
properties of past load and weather parameters and the output vector is defined in terms of
fuzzy class membership values of the load forecasted. The output of the FNN model gives
the load corrections which when added to the past load provides the load forecasted. The
supervised learning paradigm for the hybrid model consists of a linear Kalman filter'®
with a variable forgetting factor. This method is similar to recursive least squares and
produces a very fast convergence in comparison to the standard beckpropagation
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algorithm. A few examples of peak ad average load forecasts for a typical utility using a

24-hour lead t‘ime are presepted in this paper to validate this hybrid approach. The
sccuracy of this model and its faster convergence with regard to the Neural Ne;w k
odel have been highlighted in this paper. o

2. Hybrid neural network for time-series forecasting

An alternative to the neural network based load forecast is the expert system approach. A
fuzzy expert system for load forecast consists of a collection of fuzzy IF-THEN rules
showing the relation between load and weather variables. One of the difficulties with the
fuzzy expert system is the rule matching and composition time, apart from the time
consuming process of adapting the rules. The neural network eliminates the rule matching
process and stores the knowledge in the link weights. The decision signals can be pumped
out immediately after the input data are fed in. Figure 1 shows the proposed fuzzy neural
network (FNN) to model the fuzzy expert system in the form of FNN using the ANN
architecture. The FNN clusters the differential temperatures and humidities of the /th and
i+nth day into fuzzy terms sets. The output of the FNN is the final crisp load correction
(¢;¢)- Hence the load forecasted on i + nth day (PAi + n)) is given by:

where, 7 1s the lead time for the forecast.

{ AH(t))
(S N N |
Layer-1Layer-2 Layer-3

Layer-2 = Input terms

Layer-| = } 138 b
yer-1 = Input linguistic nodes Layer-4 = Output term nodes

Layer-3 = rule nodes,
Layer-5 = Qutput linguistic nodes
A@-Differential temperature, t-lteration no
AH-Differential humidity, W;-Weights, _
(éc) -Actual load correctioin, e c-Desired load correction

FiG. 1. Hybrid neural network for load forecasting.
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b

The FNN has a total of five layers. Nodes at layer one are the input linguistic nodes.
Layer 5 is the output layer and consists of two nodes (one for the actual load correction

(é,c) and the other for the desired load correction (e.c)). Nodes at layer two and four are

term nodes which act as membership functions to represent the term sets of the respective
linguistic variable. Each node at layer three represents the preconditions of the rule nodes,
and layer four links define the consequence of the rules. The functions of each layer is

described as follows :
a) Layer 1 : The nodes in this layer just transmit the input feature X;, i = 1,2 to the next

layer.

b) Layer 2 : Each input feature X;, 1 = 1,2 is expressed in terms of membership values
p,{(a,jbﬁ), where i corresponds to the input feature and j corresponds to the number of
term sets for the linguistic variable x;. The membership function ufﬁ uses the Gaussian

membership function given (Fig. 2).

e s
ui(a.b)=exp{ (xba) } (2)

where g and b are the centre and width of the Gaussian function.

¢) Layer 3 : The links in this layer are used to perform precondition matching of fuzzy
logic rules. Hence the rule nodes perform the product operation (or AND operation).

ue =42 | (3)

Where R, =1,2,..., n. R, corresponds to the rule node and n is the maximum number of
rule nodes. However, if the fuzzy AND operation is used

Hg = min{u{.__} (4)
d) Layer 4 : The nodes in this layer have two operations, i.e., forv.lra-rd and backward

transmission. In forward transmission mode, the nodes perform the fuzzy OR operation to
Integrate the fired rules which have the same consequence :

u =i#? (5)

where p corresponds to the links terminating at the node. In the backward transmission
mode, the links function is exactly the same as the layer 2 nodes.

e) Layer 5 : There are two nodes in this layer for obtaining the actual and destred output
load_correction, respectively. The desired output load correction (e.c) is fed into the
hybrid model during learning whereas the actual load correction (é,¢) is obtained by
using the centroid defuzzification method"’.
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2.1. Hybrid learning algorithm for fuzzy neural network

The hybnd learning scheme consists of unsupervised and supervised learning phases.
In the unsupervised phase, the initial membership functions of the input and output
linguistic variables are fixed and an initial form of the network is construtted. Then
during the learning process, some nodes and links of this initial network are deleted or
combined to form the final structure of the network. In the supervised learning phase, the
input and output membership functions are optimally adjusted to obtain the desired

outputs.

2.1.1. Unsupervised learning phase

Given the training input data, x;(t), i = 1, 2, the desired output load correction (e.c(t)) and
the fuzzy partitions uj:_ , we want to locate the membership function (i.e., a;; and b;;) and

find the fuzzy logic rules.

The Kohonen's feature map algorithm'® is used to find the values for a;; and b;;.

lx(t) = 8 crosess ()] = E}E{ b1 () - a0 (6)
d; closest (t+1)= Q; closest ()+ T](f)[x,— () - 4; closest (l‘)] (7)
a;(t+1)=a;(t) fora; # a; oeeq (8)

where 7(r) i1s the monotonically decreasing learning rate and ¢, the number of term set for
the linguistic variable x;.

The width, by, is determined heuristically at this stage'® as follows :

a; i — 4 closest

bjj = y (9)

where r i1s an overlap parameter. After the parameters of the membership functions have

been found, the weights in layer 4 are obtained by using the competitive learning
algorithm® as follows :

o [ 14113
W, = LI}(LL - W) (10)

. J- . . ' ~ ’
where LI} serves as the win-loss index of the rule node at layer three and LI, as the win-
loss index of the jth term node at layer four, respectively.

After competitive learning through the whole training data set, the link weights at
lay_er four‘ represent the strength of the existence of the corresponding rule consequence. If
a link weight between rule node and the term node of the output linguistic node is very

small, t{len all the corresponding links are deleted, meaning that this rule node has little or
no relation to the output.
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After the consequences of rule nodes are det
performed 1o reduce the number of rules in
choice of rule nodes is :

ermined, the

MWk combination i
the following mannet. - on 1s

W sraerion for the

(i) they have the same consequences
(ii) some preconditions are common to all the rule nodes in this -

(iii) the union of other preconditions of these rule nodes composed ¥ whole term set of
some npul linguistic variables.

The rule nodes which satisfy these criteria are replaced by a mew Tule node with
common preconditions,

2.1.2. Supervised learning phase

Once the fuzzy logic rules have been found. supervised leaming ~ wsed to find the
optimum weights and the input and output membership functions.

Referring to ¥y, 1, the tuning of Gaussian membership functios ax Yaver two and four
(@i, by) 1s sumilar to the weight update equations at layer three. The supervised leaming
phase of the FNN model uses the linear Kalman filter equations fes wndsing the weights
and the membership function. Unlike the backpropagation techmsgue. this algonthm
assumes that the cstimated weight matrix is non-stationary am! nemce will allow the
tracking of a time varying data like that of load forecastng The hvbnd leamning

procedure is sutmarised in Fig. 3.

This algorithm defines locally at each node a gradient based on presem md past daia.
and updates the weights of each node using the linear Kf\lmzm ﬁharequm SO as :2
bring this gradient identically to zero whenever an update is made. mg the :g:ﬂof
thus and defiming the gradient in this manner ensures that maumush use 1S M

available information.

The gradient tor the linear combiner at each node is defined as

, (1)
G = RW - C
: ) g . 2
Here R is the auto correlation matrix for each layer and s calculand
NP (12)
Ne-np . T
R= Zﬂ **‘w*‘w
np=|
and C is the ¢ross-correlation matrix and is given by =
(13)

NP .
\P- -
C= Er.ﬂr Vit
np=1

$9:307. dap aNd Vg ATE
: _ the forgetiamd S :
where NP demates the total number of patierns, % f.ritv (Gaussiagm. nembership function)
the summation wutput and the output of ihig nlLEEC S

< contain no non-
; . alv. At laver four nadies
for the nodex of layers two and five, respectively. )

linearity term, therefore dep = Xap:
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The weight vector which makes G = RW - C zero is the solution to the equations.

The weight update equations for the hybrid model using the linear Kalman filter
equations are :

a) The weight update equations for layer four are:

G
W, (1) = W;;(1)+nK (1) 57 (14)

U_

JE

ij
The error function E is given by

is given below and K(t) is the Kalman gain.

where,

] .
E = E[PLC(!)_ELC(I)]Z'

Since

. Z(arjb;} )Jufj “5)
ic = 5
Z h:jui

and using centroid defuzzification method"” we get

p
JU? =ﬂ4 = 2#?‘%‘
-=

where W;;= 1 forr=1

Therefore,

OE _ OE 3y o] (16)
MW, O dup MW

)

From 16, we obtain

rafjbﬁ (2 blﬂulj) - (Z afjb:jiu?)blj |

=[f’f_c(f)“ég_c(f)]ﬁ —_

(Zb&“?)z

oE
oW,

The Kalman gain is given by

, o ,
K a0 | (1n
S+ X (DR ()X (1)

where, x(t) corresponds to the previous layer.

The forgetting factor f; and the inverse convariance matrix R;’(r) are updated using

»
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[+ )= fof;(n+=fy)
R+ 1) =[R7 (- K,0XT R; 0] f,
b) The update equations for a;; and b;; at layer five are:

i i
a;(t+D)=a;()+n K1) ajE

i

ol o

7/

where — 1s given by
/]

i, 2 y
JE 5 [ b ] 2(x; —a;;)
—_— =0 " : 1y
da; { }

/

~3E |
b (t+1)=b;(1)+1n,K (r)[——--
J] J] ] aa,} j

where — is given by
Ji

JE OE o

= and can be computed using ¢qn (15)

¢) The update equations for 4;; and bf-j at layer two are :

4)
-—aE-
f j J ﬁasf ‘

Similarly,

b, (1 +1) = by (1) - 14K ()8} e b

-(x,=a, )’ 2
[ bu —]{(Ij -a'j)“ }

where 87 is given by

5= 0
5 = 25;‘

j 1
a;h, (z buP?)“(z ar}b&p?)bﬁ
(S punt)

and

o

§5¢ =[e c()=éc(N]3

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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where a; and b;; correspond to the output term set.

5. Implementation results

In order to evaluate the performance of the hybrid models, the load forecasting is
performed on a typical utility data. The hybrid model along with the ANN-based model
are tested on a two-year utility data for generating peak and average load profiles and
some of the results are given in the subsequent subsections. The training sets are formed
separately for each of the seven-day types (i.e., Tuesdays through Thursdays, Mondays,
Fridays, Saturdays, Sundays, holidays). The selection of training patterns is given in
Rahman et al.’.

5.1. Peak load forecasting

For peak load forecasting, the following training data are used for the model :

Input pattern : P, (i), 6, .. (1), H (), 0L, @), HL (i)
Output pattern : P_, (i+n) and u(P,,, (i+n)) for ANN and FNN, respectively.

where P, 6, H stand for load, temperature and humidity, respectively. Superscript f
denotes the forecasted values for @ and H; n is the lead time for the forecast (n = 24 for
24-hours ahead forecast, n = 168 for 168-hour ahead forecast).

For the hybrid FNN model, the training patterns used are :
Input pattern : A8 . (i,i+n) and AH , (i,i +1);
Output pattern : e, the desired load correction.

Here again the weather variables used for (i + n)th day are the forecasted values.

Table I gives the learned membership function using FNN model for 24-hour ahead
peak load forecasting in winter. For example, rule 0 is interpreted as :

RO =1IF A0, isterm 0 and AH ,, is 3 THEN (e,.) is term 7.

Figure 4 gives the learned membership functions for the FNN model after the first
phase (unsupervised learning phase) and the second phase (supervised learning phase).
Figure 5 gives the plot of mean absolute percentage errors (MAPEs) versus the number of
iterations for the ANN and the hybrid FNN models, respectively. The results in Figs 4 and
5 were obtained 24-hours ahead of peak load forecasting in winter.

From Fig. 5 we see that the hybrid FNN model gives an extremely fast rate of
convergence followed in comparison to the ANN model. The linear Kalman filter
equations and the variable forgetting factor used for the training of the FNN model are
instrumental in driving the MAPE low during the first few hundred iterations until bias,
caused by initial parameters arbitrarily chosen is eliminated.

Figure 6 gives the peak load forecasting results, for both ANN and the hybrid FNN
model in the month of June (summer) using 24-hour ahead forecast. The number of
iterations and MAPE for ANN and the hybrid models are :
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Tabie 1
The learned fuzzy logic rules for 24- hours ahead peak
load forecasting using FNN, in winter

Rule Term sety

Preconditions Consequence

8B, i+ 1) AHu (G.i+ 1) epeli)

D N b — O

0 3 7
0 4 7
| 0 8
| i 7
l 2 7
| 3 6
| 4 6
2 0 8
a ., ! 7
2 2 7
10 2 3 6
11 2 4 7
12 3 l 2
13 3 2 4
14 3 3 6
15 4 2 5
16 4 3 6
\7 4 4 |
18 5 0 3
19 5 | 2
20 5 2 ]
21 5 3 i
22 5 4 0
23 " 6 0 1
24 6 | l
25 6 2 0
ANN :
Number of iterations = 970
MAPE = 2.45

Hybrid model:
Number of iterations = 440
MAPE=1.0

From the figure we observe that the FNN gives a very accurate prediction followed by
the neural network.

5.2. Average loud forecasting

For average load forecasting, the following training data are used for ANN model

Input pattern: r o
Pﬂ'(i)" Bm:n.“)' emin(‘:)‘r Humx(”' Hmin(”' e::m.\u"'")‘ Giflinu'*'”)‘ Hlnm“+”)‘ Hmin("l'"]

Output pattern : P,,.(i+n) and y(P, (i+n) for ANN and FNN, respectively.
Sl

where n is the lead time for the forecast as given in Section
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For the hybrid model. the training patterns used are -

Input pattern : A@,,., (i.i+n). A _. (i,i+n), AH i+ n), AH (i +n)u
Output pattern : e;¢(i), the desired load correction.

The P,.(i + 1) for FNN model is obtained using eqn (1).

For the average load forecast also, the forecasted temperature and humidity values are
used for the day of the forecast.

Figure 7 presents the average load forecasting results, for both the ANN and the hybrid
model, for the month of January (winter) using 24-hour ahead predictions. From these
results we note the improved performance of the hybrid model in terms of faster
convergence and improved overall accuracy followed by ANN model.

6. Discussion

The proposed hybrid fuzzy neural network model is found to be vgry p}?werfu] in
providing an accurate load forecast. Although Ihﬁe results for }wo seasons of t e‘.yeal; a:z
presented in this paper for validating the effeclwenef;s of this appn:::ach, exte?s.:fe es
have been conducted for other seasons, Sundays, holidays and SRECI?I' days of the year.
From the results presented in this paper, it can be observed that srgmﬁcanltsaccura];:y lt:a:;
be achieved in the case of 24-hour ahead hourly load forecasts and the 'P ds c:fiir; e le:
than 1. However, the PEs increase in the case of peak load f?recasls d;h x:uldr;n{':z:;
within 2. If the lead time increases to one weak, the Kalman filter—basek [ ydnmmcmt
yields a PE around 2 for average load forecast and arqund .3 fm' ﬂ_e?he ;’tilman ﬁ".ﬂ.l
Further the results presented in the paper alfio reveal the superfrltgd{; b oot gF e
based hybrid forecasting model over the ordinary neural network m (

of convergence, MAPE and maximum percentage error.
e further enhanced by choosing more number

: , can b
The stopreey 0F fis ByDEs RS o2 f.input variables instead of the three used for

of fuzzy overlapping sets for fuzzification.o
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this application. Also the choice of membership fu.nct.ion 1s flexible to take into account
different seasonal load and weather variables. This increases the number of rules and
consequently the rule nodes in the hybrid model. The database ’used for this study
comprises a 14-day period prior to the day of forecast and thus by using a larger database
(say 4 weeks) and increased number of load and weather parameters as input variables, 2
more accurate and robust forecast for one-day to one-week ahead forecast can be

obtained.

We have also performed extremely short-term predictions from 1- to 6-hour ahead
forecasts. The main features and advantages of the hybrid model are : (i) it provides a
general method to combine available numerical and human linguistic information into a
common framework ; (ii) requires much less construction time than a comparable neural
network, and (iii) significant accuracy in predicting chaotic time series models.

7. Conclusions

This paper presents three fuzzy neural network (FNN) models for time series forecasting
of electric load. The proposed hybrid model introduces the low-level learning power of
artificial neural network into a fuzzy expert system and provides a high-level human-
understandable meaning to the normal neural network. A hybrid learning scheme
consisting of self-organized learning phase and supervised learning phase is used for
training the network. Also the Kalman fiiter update equations in the supervised learning
phase of FNN give better convergence and accuracy over the gradient-descent
backpropagation algorithm in the supervised learning phase of the hybrid model.
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