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Abstract 

This paper presents an intelligent hybrid scheme for short-term electric load forecasting using multilayered 
perceptrons. The hybrid neural network uses the membership values of the linguistic properties of the past load 
and weather parameters and the output of the network is defined as the fuzzy class membership values of the 
forecasted load. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used 
for training of the feedforward neural network. In the unsupervised learning phase optimal fuzzy membership 
values of input/output variables are obtained along with the optimal fuzzy logic rules. Kalman filter is used for 
the supervised learning phase. Extensive tests have been performed on a two-year utility data for the 
generation of peak and average load profiles in 24 and 168 hours ahead time frame. Results for typical winter 
and summer months are given to confirm the effectiveness of the hybrid scheme in comparison to standard 
ANN approach using backpropagation algorithm. 

Key words:Hybrid learning scheme, fuzzy logic, ANN-based architecture. Kalman filters, load forecasting. 

I. Introduction 

Load forecasting plays a central role in the operation, planning and control of electric 
power systems. The forecast lead times range from a few minutes ahead for economic 
Operation and load sharing between power plants to over 40 years for economic planning 

of new generating capacity and transmission networks. 

The short-term load forecast (one to twentyfour hours) is of importance in the daily 
operations of a power utility. It is required for unit commitment, energy-transfer 
scheduling and load-management strategies, and for utility operations. The development 
of an accurate, fast and robust short-term load forecasting methodology is of importance 

to both electric utility and its customers. 

A number of algorithms and techniques have been suggested for the solution of load 
prediction problem. They include statistical techniques, expert system and neural network 
approaches. The time series and regression techniques are the two major classes of 
conventi ona l s t a ti s ti cal algorithms, and have been applied successfully in this field for 

many years". However, this technique does not produce a sufficiently accurate forecast 
and the accuracy deteriorates for larger variations of nonstationary load and weather 
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variables. The expert system-based algorithm uses a symbolic computational approach for 
load forecasting and takes the expert knowledge of the operator which is, however, neither 

easy to elicit nor to articulate. 

Over the past few years, artificial neural networks (ANN) have received a great 
attention and are now being proposed as a powerful computational tool for short-term load 

predictiont 1 ,° . This is because of two key features of the neural networks. First, the 
neural network does not rely on the explicitly expressed relationship between input 
variables and load forecasted. When using neural networks for load forecasting, one needs 
only to consider the selection of variables as the network input variables. The relationship 
between the input variables and predicted load will be formulated by a training process. 
Thus this approach avoids the difficulties in the modelling process. The adaptive 
algorithm is another appealing feature of neural networks. New training cases can be 
selected and system parameters estimated each time a new forecast is needed. Typically 
an ANN-based load forecasting problem uses the backpropagation approach during the 
training phase. The network is presented with a training data set made up of load and 
weather parameters. 

The backpropagation algorithm although yields an accurate load forecast under normal 
circumstances, is susceptible to inaccurate predictions during fast changes in weather 
variables. Also extremely slow training or even training failure occurs in many cases due 
to difficulties in selecting proper structures of the neural network being used, and due to 
the errors in associated parameters such as learning rates, activation functions, etc., which 
are fundamental to any backpropagation neural network. The expert system, on the other 
hand, 11  provides a symbolic approach and emulates human expertise by capturing the 
knowledge of one or more experts in the form of rules and symbols. The heuristic 
approach of an expert system in arriving at decisions and/or solutions of a problem makes 
it unique concerning its performance. An explanation facility can provide the user with 
the line of reasoning followed by the expert system. The fuzzy logic-based expert 
system 12  for load forecasting requires a detailed analysis of data and the fuzzy rule base to 
be developed heuristically for each season. The rules fixed in this way may not always 
yield the best forecast. The shortcomings of the neural network paradigm can somewhat 
be remedied by the recognition of the fact that the learning speed and accuracy of an ANN 
may often be enhanced by integrating a fuzzy expert system into the neural network 
architecture. Expert networks represent one of the emerging hybrid approaches which 
combine the attributes of both the expert system and neural networks. 

This paper presents a new hybrid approach for load forecasting using both supervised 
and upsupervised learning paradigms for integrated fuzzy-neural network (FNN model) 13-  
17. 

 The input to the hybrid model consists of the membership values of linguistic 
properties of past load and weather parameters and the output vector is defined in terms of 
fuzzy class membership values of the load forecasted. The output of the FNN model gives 
the load corrections which when added to the past load provides the load forecasted. The 
supervised learning paradigm for the hybrid model consists of a linear Kalman filter' s  
with a variable forgetting factor. This method is similar to recursive least squares and 
produces a very fast convergence in comparison to the standard beckpropagation 
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algorithm. A few examples of peak ad average load forecasts for a typical utility using a 
24-hour lead time are presented in this paper to validate this hybrid approach. The 
accuracy of this model and its faster convergence with regard to the Neural Network 
model have been highlighted in this paper. 

2. Hybrid neural network for time-series forecasting 

An alternative to the neural network based load forecast is the expert system approach. A 
fuzzy expert system for load forecast consists of a collection of fuzzy 1F—THEN rules 
showing the relation between load and weather variables. One of the difficulties with the 
fuzzy expert system is the rule matching and composition time, apart from the time 
consuming process of adapting the rules. The neural network eliminates the rule matching 
process and stores the knowledge in the link weights. The decision signals can be pumped 
out immediately after the input data are fed in. Figure 1 shows the proposed fuzzy neural 
network (FNN) to model the fuzzy expert system in the form of FNN using the ANN 
architecture. The FNN clusters the differential temperatures and humidities of the ith and 
i+nth day into fuzzy terms sets. The output of the FNN is the final crisp load correction 

("ea.)• Hence the load forecasted on i + nth day (Pf(i + n)) is given by: 

pf  (i + n) = 	e (i) 

where, n is the lead time for the forecast. 

a.. 
b.. 
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FIG. I. Hybrid neural network for load forecasting. 
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The FNN has a total of five layers. Nodes at layer one are the input linguistic nodes. 
Layer 5 is the output layer and consists of two nodes (one for the actual load correction 
(ew ) and the other for the desired load correction (etc)). Nodes at layer two and four are 
term nodes which act as membership functions to represent the term sets of the respective 
linguistic variable. Each node at layer three represents the preconditions of the rule nodes, 
and layer four links define the consequence of the rules. The functions of each layer is 
described as follows : 

a) Layer I : The nodes in this layer just transmit the input feature x i , i = 1,2 to the next 

layer. 

b) Layer 2 : Each input feature xi , i = 1,2 is expressed in terms of membership values 

pix (ad bii ), where i corresponds to the input feature and j corresponds to the number of 

term sets for the linguistic variable x i. The membership function 	uses the Gaussian 

membership function given (Fig. 2). 

(a.b)= extol-4x  — 
a) 2  

P 
r 	b 	J 	 (2) 

where a and b are the centre and width of the Gaussian function. 

c) Layer 3 : The links in this layer are used to perform precondition matching of fuzzy 
logic rules. Hence the rule nodes perform the product operation (or AND operation). 

PR = HP 	 (3) 

Where Rp  = 1,2,..., n. RI, corresponds to the rule node and n is the maximum number of 
rule nodes. However, if the fuzzy AND operation is used 

PR = mintu ir (4) 

d) Layer 4 : The nodes in this layer have two operations, i.e., forward and backward 
transmission. In forward transmission mode, the nodes perform the fuzzy OR operation to 
integrate the fired rules which have the same consequence : 

4 V` 4 
P 	011 	 (5) 

ere! 

where p corresponds to the links terminating at the node. In the backward transmission 
mode, the links function is exactly the same as the layer 2 nodes. 

e) Layer 5 : There are two nodes in this layer for obtaining the actual and desired output 
load correction, respectively. The desired output load correction (etc ) is fed into the 
hybrid model during learning whereas the actual load correction (e a.) is obtained by 
using the centroid defuzzification method's. 
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2.1 . Hybrid learning algorithm for fuzzy neural network 

The hybrid learning scheme consists of unsupervised and supervised learning phases. 
In the unsupervised phase, the initial membership functions of the input and output 
linguistic variables are fixed and an initial form of the network is construtted. Then 
during the learning process, some nodes and links of this' initial network are deleted or 
combined to form the final structure of the network. In the supervised learning phase, the 
input and output membership functions are optimally adjusted to obtain the desired 
outputs. 

2.1.1. Unsupervised learning phase 

Given the training input data, x i(t), i = 1, 2, the desired output load correction (ettc(0) and 

the fuzzy partitions lit zi  I, we want to locate the membership function (i.e., au  and bu) and 

find the fuzzy logic rules. 

The Kohonen's feature map algorithm ! 3  is used to find the values for au  and b u. 

	

ilx(t) ai.dosest 	= min Illx] 	 (6) 

ai,closest (t + 1)i,closest = 	(0 4-  n(t)[-va 0) —  aistosest  (01 	 (7) a 

t..( +1)= a..(t) fora- * a. , 	 (8) au 	 tsiosest 

where i(t) is the monotonically decreasing learning rate and t, the number of term set for 
the linguistic variable x i . 

The width, bah  is determined heuristically at this stage 13 as follows : 

i Ia. 1, • —a. 	I ./ 	x °sat 

	

= 	  baj 	 (9) 

where r is an overlap parameter. After the 
been found, the weights in layer 4 are 
algorithm6  as follows : 

parameters of the membership functions have 
obtained by using the competitive learning 

wii  = LEIN; - 	 (1 0) 

where LI, serves as the win-loss index of the rule node at layer three and L1;, as the win- 
loss index of the jth term node at layer four, respectively. 

After competitive learning through the whole training data set, the link weights at 
layer four represent the strength of the existence of the corresponding rule consequence. If 
a link weight between rule node and the term node of the output linguistic node is very 
small, then all the corresponding links are deleted, meaning that this rule node has little or 
no relation to the output. 
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After the con1/2equences of rule nodes are determined, the oak 
,-Nombination is performed to reduce the number of rules in the following manner. 	anerion for the choice of rule nodes in : 

(i) they have the Milne consequences 

(ii) some preconditions are common to all the rule nodes in this set 

(iii) the union ol other preconditions of these rule nodes composed let whale term set of 
some input linguistic variables. 

The rule nodes which satisfy these criteria are replaced by a an ilk node with 
common preconditions. 

2.1.2. Supervised learning phase 

Once the fuzzy logic rules have been found, supervised learnint t■ and to find the 
optimum weights and the input and output membership functions. 

Referring to Fig. 1, the tuning of Gaussian membership function a law two and four 
(au, hid is similar to the weight update equations at layer three. rat supen-ised learning 
phase of the FNN model uses the linear Kalman filter equations tot %cruising the weights 
and the membership function. Unlike the backpropagation teciassque, this algorithm 
assumes that the estimated weight matrix is non-stationary and laze will allow the 
tracking of a time varying data like that of load forecasting. Tine hybrid learning 
procedure is summarised in Fig. 3. 

This algorithm defines locally at each node a gradient based Q. prettan and past data. 
and updates the weights of each node using the linear Kalman lies ;equations so as to 
bring this gradient identically to zero whenever an update is made. litntionaing the update 
thus and defining the gradient in this manner ensures that mans use is made of 

available information. 

The gradient for the linear combiner at each node is defined as 

G = RIV C 

Here k is the auto correlation matrix for each layer and is calculated ss 

NP 

X R = 	m 	. A rre 

Apt I 

and C is the cross-correlation matrix and is given by : 
NP 

C = 
fiNP-med sr 

ar se 
*pal 

(12) 

(13) 

where NP denotes the total number of patterns, and 
if the forges** itaaar. 4 and .v,„, are 

the sumnitttioin 
output and the output of the nonlinearity (Gaussian membership function) 

Tor the float's,  of layers two and five, respecthely. At layer four 
-tuNdes contain no non- 

linearity terms therefore d,= Atop. 
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The weight vector which makes G = RW - C zero is the solution to the equations. 

The weight update equations for the hybrid model using the linear Kalman filter 
equations are : 

a) The weight update equations for layer four are: 

[-dE] No) = woo + qIC J O) a-1-47 
u 

(14) 

where, —
dE is given below and KM) is the Kalman gain. 

The error function E is given by 

E = -
2

{eLc (0 —  etc(Or • 

Since 

(15) 

and using centroid defuzzification method 15  we get 

where Wu  = 

Therefore, 

1 for t = I 

dE 	dE d Lc  311 7 
digs' d ' LC 	 C7Wij .  

(16) 

From 16, we obtain 

dE 
49Wif 

l a, br bi .pl-Eau bdp?)bu  .1 	1  
= [e LC( 1 ) -- 47  LC(01 "

E 
 

(Ehu p7)
2 

The Kalman gain is given by 

R7 1  (0A- 1 (t) 
K i (t) 	  

+ X 	(Ox 1 (t) 

where, xi(t) corresponds to the previous layer. 

The forgetting factorf;  and the inverse convariance matrix R7' (t) are updated using 

(17) 
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f(1 +0= kii(t)+(1- fo) 
	

(18) 

R7 1 0 + 1)= [R7 1 (0– Kj (oXIT (ORI I (opfi 	 (19) 

b) The update equations for au  and by  at layer five are: 

(20) 

dE 	. 
where — is given by 

du d  
vi -002  

dE =  HTI— )12(x,  – ad )1 
 0 - e  

dad  

-dE 
NU + 1) = b 3 (r)+11 2 K j (t)[ — 

d al  u  

dE 
where — is given by 

dby  

dE 	dl?  = 	 and can be computed using etin (15) 
ab. ai LC aid 

c) The update equations for au  and 	at layer two are : 

[
-dE 

ad ° +1) = a d (0+ q3 K J O) -77- . 
°Tau 

Similarly, 
—(v, h—a0 2  1 axi  ai  

bij (t+i)= bii(0-714Ki(t)3?-et 	" 	) 	j)  

(21) 

(22) 

(23) 

where 45 is given by 

(24) 

and 

a d bu(hdp7)-(Ea Apnbd  

05:1  =[€ x0) -  e LC(01 	  
(Ibii fin

2 
(25) 



116 
	

P. K. DASH 

where a • 	hu  correspond to the output term set. 

5. Implementation results 

In order to evaluate the performance of the hybrid models, the load forecasting is 
performed on a typical utility data. The hybrid model along with the ANN-based model 
are tested on a two-year utility data for generating peak and average load profiles and 
some of the results are given in the subsequent subsections. The training sets are formed 
separately for each of the seven-day types (i.e., Tuesdays through Thursdays, Mondays, 
Fridays, Saturdays, Sundays, holidays). The selection of training patterns is given in 
Rahman et 611. 9 . 

5.1. Peak load forecasting 

For peak load forecasting, the following training data are used for the model : 

Input pattern : Pmax  (i), 	0.(i), Hmax (0 ' 	 °Max WI Hinax ( 1 ) 

Output pattern : Pmax (i+n) and ,u(Pmax (i+ n)) for ANN and FNN, respectively. 

where P. 0, H stand for load, temperature and humidity, respectively. Superscript f 
denotes the forecasted values for 0 and H; ti is the lead time for the forecast (n = 24 for 
24-hours ahead forecast, n = 168 for 168-hour ahead forecast). 

For the hybrid FNN model, the training patterns used are : 

Input pattern :AO max  (i,i + n) and AH(i,i +1); 

Output pattern : ea-, the desired load correction. 

Here again the weather variables used for (i + n)th day are the forecasted values. 

Table I gives the learned membership function using FNN model for 24-hour ahead 
peak load forecasting in winter. For example, rule 0 is interpreted as : 

RO = IF AO n,„„ is term 0 and AN. is 3 THEN (?a-) is term 7. 

Figure 4 gives the learned membership functions for the FNN model after the first 
phase (unsupervised learning phase) and the second phase (supervised learning phase). 
Figure 5 gives the plot of mean absolute percentage errors (MAPEs) versus the number of 
iterations for the ANN and the hybrid FNN models, respectively. The results in Figs 4 and 
5 were obtained 24-hours ahead of peak load forecasting in winter. 

From Fig. 5 we see that the hybrid FNN model gives an extremely fast rate of 
convergence followed in comparison to the ANN model. The linear Kalman filter 
equations and the variable forgetting factor used for the training of the FNN model are 
instrumental in driving the MAPE low during the first few hundred iterations until bias, 
caused by initial parameters arbitrarily chosen is eliminated. 

Figure 6 gives the peak load forecasting results, for both ANN and the hybrid FNN 
model in the month of June (summer) using 24-hour ahead fdrecast. The number of 
iterations and MAPE for ANN and the hybrid models are : 



II? 
AN INTELLIGENT HYBRID SCHEME FOR TIME-SERIES FORECASTING OF ELECTRIC LOAD 

Table 1 
The learned fuzz) logic rules for 24- hours ahead peak 
load forecasting using FNN 2  in winter 

Rule 	 Term  sets 

Prei.onditions 	 Consequence 

le., (1. a + n ati,„„ u. a + 1) ?Leg) 

0 0 3 7 
I 0 4 7 
1 I (1 8 
3 1 1 7 
4 1 / 7 
5 1 3 6 
6 1 4 6 
7 2 0 8 
8 1 1 7 
9 2 1 7 
I() 2 3 6 
II 2 4 7 
12 3 1 1 
13 3 1 4 
14 3 3 6 
15 4 2 5 
16 4 3 6 
17 4 4 1 
18 5 0 3 
19 5 1 1 

10 5 1 I 
21 5 3 1 
2/ 5 4 0 
23 . 	6 o 1 
24 6 I I 
1 5 6 2 0 

ANN: 
Number of iterations = 970 
MAPE = 2.45 
Hybrid model: 
Number of iterations = 440 
MAPE = 1.0 

From the figure we observe that the FNN gives a very accurate prediction followed by 

the neural network. 

5.2. Average load forecasting 

For average load forecasting, the following training data are used for ANN model 

Input pattern: 

Par WI Oma). U), Omen (i) ,  Hma x 0)9  Hnsin 	°L (1+10' 19 1;iin 0 4.  11), 	÷10* 
Output pattern : Pg„.(i + n) and p(Pi„.(i + it)) for ANN and FNN, respectively. 

where a is the lead time for the forecast as given in Section 5.1. 
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FIG. 4. Learning membership functions for peak load forecasting in winter using the hybrid model. 
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‘ttiV OW !ZVI) 1500 2000 2400 
Number of iterations 

—•ANN 	• FNN 

FIG. 5. Mean absolute percentage error for 24-hour 
ahead peak load forecasting in winter. 

For the hybrid model, the training patterns used are : 

Input pattern : 	(i,i + n). ae(i,i+ 10, alln,„„(i,i+ n), Abl inin (i,i+n)u 
Output pattern : etc(i), the desired load correction. 

The P „,.(i + I) for FNN model is obtained using eqn ( I). 

For the average load forecast also, the forecasted temperature and humidity values are 
used for the day of the forecast. 

Figure 7 presents the average load forecasting results, for both the ANN and the hybrid 
model, for the month of January (winter) using 24-hour ahead predictions. From these 
results we note the improved performance of the hybrid model in terms of faster 
convergence and improved overall accuracy followed by ANN model. 

6. Discussion 

The proposed hybrid fuzzy neural network model is found to be very powerful in 
providing an accurate load forecast. Although the results for two seasons of the year are 
presented in this paper for validating the effectiveness of this approach, extensive tests 
have been conducted for other seasons, Sundays, holidays and special days of the year. 
From the results presented in this paper, it can be observed that significant accuracy can 
be achieved in the case of 24-hour ahead hourly load forecasts and the PEs can be less 
than 1. However, the PEs increase in the case of peak load forecasts and will remain 
within 2. If the lead time increases to one weak, the Kalman filter-based hybrid model 
yields a PE around 2 for average load forecast and around 3 for peak load forecast. 
Further the results presented in the paper also reveal the superiority of the Kalman filter 
based hybrid forecasting model over the ordinary neural network model in terms of speed 
of convergence, MAPE and maximum percentage error. 

The accuracy of the hybrid models can be further enhanced by choosing more number 
of fuzzy overlapping sets for fuzzification,olinput variables instead of the three used for 
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this application. Also the choice of membership function is flexible to take into account 
different seasonal load and weather variables. This increases the number of rules and 
consequently the rule nodes in the hybrid model. The database used for this study 
comprises a 14-day period prior to the day of forecast and thus by using a larger database 
(say 4 weeks) and increased number of load and weather parameters as input variables, a 
more accurate and robust forecast for one-day to one-week ahead forecast can be 

obtained. 

We have also performed extremely short-term predictions from 1- to 6-hour ahead 
forecasts. The main features and advantages of the hybrid model are : (i) it provides a 
general method to combine available numerical and human linguistic information into a 
common framework ; (ii) requires much less construction time than a comparable neural 
network, and (iii) significant accuracy in predicting chaotic time series models. 

7. Conclusions 

This paper presents three fuzzy neural network (FNN) models for time series forecasting 
of electric load. The proposed hybrid model introduces the low-level learning power of 
artificial neural network into a fuzzy expert system and provides a high-level human- 
understandable meaning to the normal neural network. A hybrid learning scheme 
consisting of self-organized learning phase and supervised learning phase is used for 
training the network. Also the Kalman filter update equations in the supervised learning 
phase of FNN give better convergence and accuracy over the gradient-descent 
backpropagation algorithm in the supervised learning phase of the hybrid model. 
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