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Abstract 

In this paper we define points of kth absolute continuity of a real function and study their properties including 
those induced by higher order (approximate) Riem - nn* derivatives. Also we investigate the structure of the 
class of all continuous functions having at least (..ie point of kth absolute continuity on an interval Ia,b1. 

Key words: AC functions, BV k  functions, ACk  points, (k) singular functions, (approximate) kth Riemann• 
derivative. 

I. Introduction 

Russell' introduced the concept of functions of bounded kth variation (BY',, functions) 
and, as a natural consequence, the definition of absolutely kth continuous functions 
(AC ), functions) was introduced by Das and Lahiri 2 . Extension of these notions on a 
linear set was made by De Sarkar and Das 3 . In the generalisations of many results oF 
classical bounded variation and absolute continuity the concept of kth Riemann* 
derivative is seen to be essentially important. An approximate generalisation of this 
derivative is the outcome of the introduction of the definition of approximate kth 
Riemann* derivative by De Sarkar et al 4 . 

Chakrabarty and Bhakta s  defined points of absolute continuity and studied their 
properties. Salat 6  investigated the structure of the metric space C(a, b) of all continuous 
functions on [a, bl (with sup-metric) from the view point of points of absolute continuity 
and generalised some results of Chakrabarty and Bhakta s  using the notions of 
approximate derivative, locally (strongly locally) Helderian and locally (strongly locally) 
Lipschitzian functions (at a point). 

The present authors introduced the definition of points of bounded kth variation in a 
recent communication'. In view of the developments of theories of bounded variation 
and related absolute continuity and the facts discussed above we propose, in this paper, 
to define points of kth absolute continuity of a real function and study some of their 
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rather interesting properties along with those induced by higher order (approximate) 
Riemann* derivatives. Also we show that the class of all continuous functions having at 
least one point of kth absolute continuity on an interval Ea,131 is an F e -set of the first 
Baire category. 

Let f be a real valued function defined on the real line R I . Let a,b be two fixed real 
numbers with act' and let k be a positive integer greater than 1. The ordinary kth 
derivative of f at x, xeR 1 , denoted by Pk) (x):Pin, stands for f. Let C(a, b) denote the 
class of all continuous functions on Ia,b1. 

Definition 1.1 1 : Let xo,x t , 	xk  be (k + I) distinct points, not necessarily in the linear 
order, belonging to R I . Then define the kth divided difference of f as 

A 	 Ac 

Qk 	 Xk) = 	f(ri)I in 	}. 

.101 
For the definitions of functions of bounded kth variation (Bilk  functions) and kth 

absolute continuity (ACk  functions) we refer to De Sarkar and Das 3 . 

Definition 1.2 4 : Let x be any point in [a,b1 and let x 1 , x2,..., xk be any set of k points in 
[a,b1 with the property 0 < 	< 1x2 — xl < -•• < kkexl. If the iterated approximate 
limit 

km 
X*. 

ap 	... 
---•=-- jr 

lirn 	ap k! 
X ram— .sx 

Qk (f;X al, •-•7 Xk) 

exists (possibly infinite), then this limit is called the approximate kth Riemann* 
derivative of fal x and is denoted by A Dkf(x). Replacing the approximate limits by the 
ordinary limits in this definition we get the definition of kth Riemann* derivative off at 
x, as in Russell', and we denote it by Dkf(x). 

Definition 1.38 : A function S which is BVk  on (a, bj is said to be a (k) singular function if S 
is not a polynomial of degree less than k but s(*) vanishes almost everywhere on [a,b]. 

We denote by r (f), P(f), L* (f) and L(f), respectively, the set of all such points 
p e (a,b) at which f is strongly locally Halderian, locally Holderian, strongly locally 
Lipschitzian and locally Lipschitzian. (For definitions of such functions we refer the 
reader to galat6, Beesley et a/ 9  and Belas and galat m.) 

2. AC k  points 

Before going into the definition of AC k  points we prove a theorem from which useful 
inferences can be drawn. 

Theorem 2.1: If ADk-lf is absolutely continuous on [a,b], then f is ACk  on fa,b1. 
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Proof: Consider an elementary system 

(xim ,xiek ); i= 1,2, ..., n in [(l i b]. Then in view of Lemma 4 
of Russell', we have 

rt 

aill = 	1Qk- f ■ 1 „ Xi.11. • • Xi,k) 	Qk-1(f;Xl.01.• • Xi,k-1) I • 
1 

Now by Theorem 8 of De Sarkar et al4 , AD A. ' f possesses the mean value 

	

property on [(Ji b], namely, for any set of k points x i  < x2  < 	< x in [a,13] there exists 
at least one n in (xi ,xk ) such that 

(k-1)! Q 4_ 1 (f;x 1 ,x2 , 	xk) = A D k-if (n). 

Hence it is easy to see that 
rv 

I 	A D k-11(13,) MY -  'Mil i  a  t-P 	(k-1)! .̀ 71  

where (a1 ,03, i= 1,2 .., n is a sequence of non-overlapping intervals in [a,b1. The rest 
of the proof is straightforward. 

Definition 2.1: Let x be a point in Ici,b1. We say that x is a point of kth absolute continuity 
of f if there exists a closed neighbourhood of x on which f is AC k . On the other hand, if 
there exists no closed neighbourhood of x on which f is AC k , then x is said to be a point of 
kth nonabsolute continuity of f. 

For k= 1, Definition 2.1 gives the definition of AC points as in Chakrabarty and 
Bhakta s . 

A point of kth absolute continuity and a point of kth nonabsolute continuity off will be 
called an AG point and a NA C k  point of f respectively. We shall denote by G(f) and 

NW, respectively, the set of all AC,, points and NAC k  points of f. 

It is easy to see that the set G(f) is open in [a,b] and hence N(f) is a closed subset of 
[a,b]. 

In view of Corollary 2.4 of De Sarkar and Das 3 , the preceding Theorem 2.1 and the 
fact that the existence of Dkf implies that of A D k  f we have the following theorem, the 
proof of which is omitted. 

Theorem 2.2: The point x e [a,14 is an AC,, point of f if and only if x is an AC, point of 
AD A- 7, r= 1,2 ..., k-1. 

Theorem 2.3: If the kth divided difference off in [a,b] are bounded then each _X E [a e l)] is 
an AC, point of AD k-lf, r= 1,2 ..., k. 

The proof is omitted. 

Theorem 2.4: If Dk-If is continuous and f is BV k  on [as h], then N(f) is either void or a 

perfect set. 
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Proof The set N(f) is void if f is AC k  on [ad)]. Let f be not AC k  on fa,b}. Then, by 
Theorem 3.1 of Das and Lahiri TM , f can be uniquely expressed in the form f= (t• + S where 
th is AC k  on [a, lib e)  (a) = Pr) (a), r = 0, 1, ... k - 1 and S is a (k) singular function 
or an identically zero function. Then clearly, an AC k  point off is an AC k  point of S and 
conversely. Let G(f)= Uf(ai , OM; i= 1, 2, .... If [a, /31 is any closed subinterval of (ai , 
fu, then S is AC k  on [a, ph. Since St" vanishes almost everywhere on [a,b1, by Theorem 
2 of Das and Lahiri 2 , S is a polynomial of degree (k - 1) at most. Thus it follows that S is a 
polynomial of degree (k - 1) at most on la„ 0, 1. Hence, by Lemma 1 of Russell', 
S(k) (x) = 0 for all x e G(f). The set N(f) is not enumerable, for in that case S becomes a 
polynomial of degree (k-1) at most in 1a,b] which contradicts the fact that S is a (k) 
singular function. Let E(f) he the set of condensation points of NO').  Then the set 
N(f) E(f)= D(f) is at most enumerable. We have ta,b1= A(f) U E(f) where 
A(f)= DU) U G(f) and E(f) fl AO= 0 (null set). Since E(f) is closed, the set AV) is 
open and contains at most an enumerable set of points of NV). We take 
AU) = U (a,,b,)) = 1,2, ..., where the intervals (a1 ,b1 ) are non-overlapping. By 
Theorem 2.3 of De Sarkar and Das 3 , Dk-1 4) is continuous on (a,b) and hence Dk-1 S is 
continuous on (a, b). Also D k S vanishes on tat , hi ] except on enumerable set of points. 
Therefore, by Hobson" (p. 365), D k  -I S is constant on [an  bi ]. So each point of [a,,b,] 
is an AC point of D k-  I S and hence by Theorem 2.1, is an AC k  point of S. Therefore, 
each point of [a,,bi ] is an AC,, point of f. 

Thus A(J) C G(l) and so N(f) = E(f). Hence by Theorem 3 of Natanson 12  (p. 53), 
N(f) is a perfect set. This proves the theorem. 

Theorem 2.5: If DA/ exists on (a,b), then N(f) is a nowhere dense set in [a,b]. 

Proof: Let C and D denote, respectively, the set of all continuity points and discontinuity 
points of DAf. Denjoy" proved that if a Peano derivative of some order exists finitely so 
does the Riemann* derivative of the same order and vice versa. Later Oliver I4  showed 
that the Peano derivative belongs to the first Baire class. Hence Dkf is a function in the 
first Baire class. Thus the set D is a set of first Baire category in [a,b1 (cf. 
Mukhopadhyay 15 , p. 182). 

Let x be any point in C. Then Dkf is bounded in a certain neighbourhood of x. Hence 
by Theorem 3 of Oliver", Pk)  is bounded in some neighbourhood of x. From this we 
easily see that P k-I)  satisfies Lipschitzian condition in an interval containing x. Therefore 
fl 1c-1)  is absolutely continuous and hence (by Theorem 2.1)f is AC,, on a neighbourhood 
of x and so xeG(f). Thus C C G(f) and so N(f) C D U {a} U {b}. 

Since D is a set of first category it thus follows that N(f) is also a set of first category. 
Since N(J) is closed in [a,b1 it must be nowhere dense. This completes the proof. 

Since the existence of the kth Riemann* derivative implies that of approximate kth 
Riemann* derivative we produce a generalisation of the above theorem as follows: 

Theorem 2.6: If AD"f exists on (a,b), then N(f) is a nowhere dense set in [a,b]. 

Proof: Let C and D denote, respectively, the set of all continuity points and discontinuity 
points of A D kf. Since, by Theorem 2.6 of De Sarkar a , A D kf is a function in the first 
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Baire class, the set D is a set of first Baire category in [a,b]. Let xeC. Then there exists 
an interval 1=tx - 8, x+ 81 C [a,ly] such that AD kf is bounded on I. Therefore there 
exists a K>0 such that IADkfer-01 -4,5. K for all tie/. 

Let a,f3 be any two points in I. 	We consider the set of 2k points a < al  
<a2  <.., <ak _ i  < 13k_ i  <... <131  < (3 in I. We relabel the set of points as 

Zo < Z1 < Z2 <••. < 	< Zk < Zk+1 < ••• < Z2k-2< Zik-1 

where zo = a, zu._, =f3, z,= 	= 1,2,..., k-1 and z, = 

i= k,k+1, 	2*-2. Then we have, using Lemma 4 of Russell', 

Z2*-1)1 IQk_1(f;Z0,21, 	Zk_1) -  (2k_1(f;Zk, •,•,  

ak_1(f.,z„.. • . Zi+k-1) 	Qk-1(f;Zi+ 5 
	

Zi+k)I 
1 0 
k-1 

= 	I (Zi -  Zi+k)I 1Qa■ Zi, 	Zi+k)1. 

Hence, by Theorem 8 (Mean value theorem) of De Sarkar et a!4 , we get 

'Qk-1(fxr , cri 	ak-1) Qk-1 (f;Pk-1 - • 01113) 
k-1 

c 	1  (Zs -  Zi+k)I Ap ktelii)1 1 	nie(ZitZi+k), 
i=0 

K la pli(k-o! 

Since the existence of Anil implies that of ADY, 1 E r < k, it is now easy to see that 

IADk a lf(a)- ADk-if(13)1 E K 1a- 1311(k-1)! 

Hence ADA-If is Lipschitzian on I, and so, by Theorem 2.1, C C G(f). For the rest of 
the proof we proceed similarly as in the proof of Theorem 2.5. 

From Theorem 2.6 we can easily deduce the following result. 

Theorem 2.7: If Ankf exists on (a,b), then the set [a,b1- Le(AD k-if) is a nowhere 

dense set in [a,bj. 

Since P*(f) C P(f), L(f) C P(f) and L(f) C P*(f) we have 

Corollary 2.1: If ALtkf exists on (a,b), then each of the sets la,b]l- L(AD k-lf), 

[a,b]- P*(AD k-lf), fa, bj- P(A In) is a nowhere dense set in la,b1. 

We set 

A(a,b)= { f C(a,b)1G(f) is nonvoid} 

and 

B(a ,b) = ff C(a, b)I N (f) = [a, b]) 

Then we have B(a,b)= C(a,b)- A(a,b). 
We now prove the following theorem. 



462 	 T. K. 1)I13 AND S. DU SARKAR 

Theorem 2.8: The class A(a,b) C C(a,b) is an Fas„—set of the first Baire category in 
C(a,h). 

Proof: Let /?() be the set of all rational numbers of the interval (a,b). Let q e 	45 > 0, 
e > 0, i > 0. We denote by A(q,8,e,n) the class of all such functions f€ C(a,b) for 
which the following holds: 

If /(x1 . 1 , 	1isk_ 1 ): (xi .0 ,xiik ); i = 1,2 ..., n is an elementary system in [q —8, q+ 8], 

MI = 	 n, then crI/1 
in I 

We shall show that A(q,45,e,n) is a closed subset of C(a,b). 

Let fm e A(q, 8, E, TO; nl'-= 1, 2,..., let the sequence (f„,} converge to a function f in 
C(a,b). We shall show that feA(q,8,E,n). 

Let 1(x151 , 	xiek _ i ) : (xixo ,xi ,k ); i= 1,2, ..., n be an elementary system in [q-45, q 81 
with m/ il. Since f,„ and fare uniformly continuous in [a,b], by a simple manipulation, 
it can be shown that for each set of k points x0,x 1 , 	Jck_ 1  in ra,b] and an arbitrarily 
chosen v > 0. we have for m sufficiently large 

I Qk- I UM ;XO• X 1 • - • • • Xk- I ) Qk- 1 (f.IXO•xl 	, xke i  ) I < El2vn. 	 (1) 

Now, using Lemma 4 of Russell l , 
n 

aiii = I i Qk-1(txl.11 • • • t 
i = 1 

n 

- Qk-1(tX 0 ,i._ 7 • • • 4 	Xj.k_)) 	I 

.4  •-11Q k-1(f;Xi,i, 	..., 
i - I 

n 

- Qk-1(frn;Xi,1,•.., Xi*) I 

+ 	X I Qk-1(.4n;x1,11 • • 
i - I 

n 

• 1 - Qk-i(fm;x1,01- • • 1 xi,k-1) I 

+ I I Qk-1(fm;XL09 • • 
tall 

• 1 -I) - (2k-1(f; Xi 3O,• • • , Xi.k-1) I 

Hence from (1) and (2) and the fact that f„, e A(q,8,e,n) 

a ill 	E 0+110. 

Since v> 0 is arbitrary, making v —0 co we get a fi 4.5. E. Hence f e A(q,8,E,n) and so 
the set A(q,8,e,n) is closed. Also we see that 

A(q,11a) = Pv 	A(q, 1/a ,1/13, 1/y) 
13-1 ra/ 

and so A(q, llot) is an Fes - set in C(a,b). Again 

A(q) = u A(q,11a) 
a I 
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and is therefore an Fo.8, — set in C(a,b). Since we have 

A(a,b) U A(q) 
r Fr.  

it follows, in view of the countability of Ir , that the set A(a,b) is an Fat, — set in C(a,b). 
Further, if f e A(a,b), then by Corollary 2.4 of De Sarkar and Das 3  and Theorem 2.2, 

A Dic-if is absolutely continuous on a certain interval / C (a,b) and ADkf exists almost 
everywhere on I. Hence in view of Theorem 2.1, it follows that A(a,b) is a subset Hof all 
such functions from C(a,b) which have at least at one point of (a,b) a finite derivative. 
Since H is a set of first Baire category (by Hewitt and Stromberr, p. 260) the theorem 
follows. 

Corollary 2.2: The set B(a,b) C C(a,b) is a G,,,,, — set residual in C(ab). 
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