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Abstract

In this_ paper we define points of kth absolute continuity of a real function and study their properties including
those induced by higher order (approximate) Riem-nn* derivatives. Also we investigate the structure of the
class of all conunuous functions having at least .ie point of kth absolute continuity on an intervat [a,b].
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1. Introduction

Russell' introduced the concept of functions of bounded kth variation (BV, functions)
and, as a natural consequence, the definition of absolutely kth continuous functions
(AC, functions) was introduced by Das and Lahiri®2. Extension of these notions on a
linear set was made by De Sarkar and Das®. In the generalisations of many results o7
classical bounded variation and absolute continuity the concept of kth Riemann®
derivative is seen to be essentially important. An approximate generalisation of this
derivative is the outcome of the introduction of the definition of approximate kth
Riemann® derivative by De Sarkar et al*.

Chakrabarty and Bhakta® defined points of absolute continuity and studied their
properties. Sal4t® investigated the structure of the metric space C(a, b) of ail continuous
functions on [a, b] (with sup-metric) from the view point of puints of absolute continuity
and generalised some results of Chakrabarty and Bhakta® using the notions of
approximate derivative, locally (strongly locally) Hélderian and locally (strongly locally)
Lipschitzian functions (at a point).

The present authors introduced the definition of points of bounded kth variation in a
recent communication’. In view of the developments of theories of bounded variation
and related absolute continuity and the facts discussed above we propose, in this paper,
to define points of kth absolute continuity of a real function and study some of their

*Department of Mathematics, Nabadwip Vidyasagar College, Nabadwip, West Bengal, India. 457



458 T. K. DEB AND S. DE SARKAR

rather interesting properties ailong with those induced by higher order (approximate)
Riemann* derivatives. Also we show that the class of all continuous functions having at
least one point of kth absolute continuity on an interval {a,b] is an F,s,-set of the first
Baire category.

Let f be a real valued function defined on the real line R,. Let a,b be two fixed real
numbers with a<b and let k be a positive integer greater than 1. The ordinary kth

derivative of f at x, xeR,, denoted by f%(x): 17, stands for f. Let C(a, b) denote the
class of all continuous functions on [a,b].

Definition 1.1': Let xq.x,, ..., xx be (k+ 1) distinct points, not necessarily in the linear
order, belonging to R;. Then define the kth divided difference of f as

k
Ok (f:X0, X150 Xg) = z { flx,)/ ';T(xi_x,r‘) }-

el J=0

Iy
For the defimtions of functions of bounded kth variation (BV, functions) and kth
absolute continuity (AC, functions) we refer to De Sarkar and Das’.

Definition 1.2*: Let x be any point in [a,b] and let x,, x,,..., X, be any set of k points in
[a,b] with the property 0 <|x;—x| < |x;—x| < ... < |x;~x|. If the iterated approximate
limit

lil‘!‘l ap “wu 'im apk! Qk (f;x,x11 e xk)

Xy ——=— X|——— X

exists (possibly infinite), then this limit 1s called the approximate kth Riemann®
derivative of f at x and is denoted by A D*f(x). Replacing the approximate limits by the
ordinary limits in this definition we get the definition of kth Riemann*® derivative of f at
x, as in Russell’, and we denote it by D*f(x).

Definition 1.3%: A function S which is BV, on [a, b} is said to be a (k) singular function if §
is not a polynomial of degree less than k but S vanishes almost everywhere on [a, b).

We denote by P*(f), P(f), L*(f) and L(f), respectively, the set of all such points
p € (a,b) at which f is strongly locally Holderian, locally Hélderian, strongly locally
Lipschitzian and locally Lipschitzian. (For definitions of such functions we refer the
reader to Salat®, Beesley ef al® and Belas and $alat'®))

2. AC* pOiIltS

Before going into the definition of AC, points we prove a theorem from which useful
inferences can be drawn.

Theorem 2.1: If AD*'f is absolutely continuous on [a,b], then f is AC, on [a,b].
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Proof: Consider an elementary system

I(xiqy ooy Xin—1) @ (Xi0Xix);1=1.2, ..., nin |a,b]. Then in view of Lemma 4
of Russell', we have

alll= 2 |Qu-a(fiXinseeer Xik) = Quat(fiXigseeos Xigr) |-
i1
Now by Theorem 8 of De Sarkar er al*, AD*"'f possesses the mean value
property on {a,b], namely, for any set of k points x|, < x; < ... < x; in [a, b] there exists
at least one 7 in (x;.xx) such that

(k-1)' Quoi(fixx2, ooy X)) = ADX'f (7).

Hence it i1s easy to see that

7 1l=Goiy S [AD*(B) ~ AD*f(a)

" im ]

where (a,.8;), i=1,2 .., n is a sequence of non-overlapping intervals in [a,b]. The rest
of the proof is straightforward.

Definition 2.1: Let x be a point in [a.b]. We say that x is a point of kth absolute continuity
of f if there exists a closed neighbourhood of x on which fis AC,. On the other hand, if
there exists no closed neighbourhood of x on which fis AC,, then x is said to be a point of
kth nonabsolute continuity of f.

For k=1, Definition 2.1 gives the definition of AC points as in Chakrabarty and
Bhakta’.

A point of kth absolute continuity and a point of kth nonabsolute continuity of f will be
called an AC; point and a NAC, point of f respectively. We shall denote by G(f) and
N(f), respectively, the set of all AC, points and NAC, points of f.

It is easy to see that the set G(f) is open in [a,b] and hence N(f) is a closed subset of
[a,b].

In view of Corollary 2.4 of De Sarkar and Das’, the preceding Theorem 2.1 and the
fact that the existence of D*f implies that of AD*f we have the following theorem. the
proof of which is omitted.

Theorem 2.2: The point x € [a,b] is an AC, point of fif and only if x is an AC, point of
AD"f, r=12 ..., k-1.

Theorem 2.3: If the kth divided difference of fin [a,b] are bounded then each x € [a,b] is
an AC, point of AD*'f, r=12 ..., k.
The proof is omitted.

Theorem 2.4: If D*\f is continuous and f is BV, on [a,b], then N(f) is either void or a
perfect set.
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Proof: The set N(f) is void if fis AC, on [a.b]. Let f be not AC, on {a,b]. Then. by
Theorem 3.1 of Das and Lahiri®, f can be uniquely expressed in the form f=¢ + S where
bis AC, on [a. b]. ¢ (@) = [ (a). r=0,1,..., k—1 and S is a (k) singular function
or an identically zero function. Then clearly, an AC;, point of fis an AC, point of § and
conversely. Let G(f) = U{(a,;.B)}: i=1.2..... If [a.B] is any closed subinterval of (a;,
Bi). then Sis AC; on [a, B]. Since $'* vanishes almost everywhere on [a, b], by Theorem
2 of Das and Lahiri?, S is a polynomial of degree (k—1) at most. Thus it follows that Sis a
polynomial of degree (k — 1) at most on [a,, 8,]. Hence, by Lemma 1 of Russell’,
$™)(x) = 0 for all x e G(f). The set N(f) is not enumerable, for in that case S becomes a
polynomial of degree (k—1) at most in [a.b] which contradicts the fact that § is a (k)
singular function. Let E(f) be the set of condensation points of N(f). Then the set
N(f)= E(f) = D(f) is at most enumerable. We have [a,b]=A(f) U E(f) where
A(f)=D(f) U G(f) and E(f) N A(f) =0 (null set). Since E(f) is closed, the set A(f) is
open and contains at most an enumerable set of points of N(f). We take
A(f)=U {(a;.b)}:1=1.2, ..., where the intervals (a;b;) are non-overlapping. By
Theorem 2.3 of De Sarkar and Das®, D*'¢ is continuous on (a,b) and hence D*'S is
continuous on (a.b). Also D*S vanishes on [a;, b;] except on enumerable set of points.
Therefore, by Hobson'' (p. 365), D*~ 'S is constant on [a;, b;]. So each point of [a,, b, ]
is an AC point of D*~'S and hence by Theorem 2.1, is an AC, point of S. Therefore,
each point of [a,.b;] is an AC, point of f.

Thus A(f) C G(f) and so N(f) = E(f). Hence by Theorem 3 of Natanson'? (p. 53),
N(f) is a perfect set. This proves the theorem.

Theorem 2.5: 1f D*f exists on (a,b), then N(f) is a nowhere dense set in [a,b].

Proof:. Let C and D denote, respectively, the set of all continuity points and discontinuity
points of D*f. Denjoy’” proved that if a Peano derivative of some order exists finitely so
does the Riemann* derivative of the same order and vice versa. Later Oliver"* showed
that the Peano derivative belongs to the first Baire class. Hence D*f is a function in the
first Baire class. Thus the set D is a set of first Baire category in [a,b] (cf.
Mukhopadhyay'®, p. 182).

Let x be any point in C. Then D*f is bounded in a certain neighbourhood of x. Hence
by Theorem 3 of Oliver', f*) is bounded in some neighbourhood of x. From this we
easily see that f*~V satisfies Lipschitzian condition in an interval containing x. Therefore
¥V is absolutely continuous and hence (by Theorem 2.1) fis AC, on a neighbourhood
of x and so xeG(f). Thus C C G(f) and so N(f)C DU {(a} U {b}.

Since D is a set of first category it thus follows that N(f) is also a set of first category.
Since N(f) is closed in [a,b] it must be nowhere dense. This completes the proof.

Since the existence of the kth Riemann* derivative implies that of approximate kth
Riemann® derivative we produce a generalisation of the above theorem as follows:

Theorem 2.6: If AD*f exists on (a,b), then N(f) is a nowhere dense set in [a,b].

Pr?of: Let Cand D denote, respectively, the set of all continuity points and discontinuity
points of ADf. Since, by Theorem 2.6 of De Sarkar et al*, A D*f is a function in the first
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Baire class, the set D is a set of first Baire category in [a,b]. Let xeC. Then there exists

an interval /=[x —§, x+ 8] C [a,b] such that AD*f is bounded on I. Therefore there
exists a K>0 such that |AD*f(n)| < K for all nel.

Let a,B be any two points in I. We consider the set of 2k points o < a;
<ay <... <ap; < By <... <B; < B in I. We relabel the set of points as

20 < N <D K. <21 <2 < Zhel < . K k-2 < Zypg
where o=, zzk—l=ﬁv ;= ay } = 1121“”! k-1 and ZI=BZE-[-—-€!

i=kk+1, ..., 2k-2. Then we have, using Lemma 4 of Russell'.
|Qt-1(fizu~21- ooy Tkst) = Ot lfiZis: s sz-l)|

k-1
= Z lQ*_|(f:Z,,”-; z;‘+k—l) _Qk—l(f;zi-i-ll teey zH-t)I

i=0

k-1
= Z l (2,— zi+k)' le(flzh Z.‘+k)|-

=0
Hence, by Theorem 8 (Mean value theorem) of De Sarkar et al*, we get

' Qxy (fiaaay, ..o @aq) =Qui (FiBi1s---» B1,8)|

k-1

S Z | (zi_zi+k)‘ ,AD"f('q,-)Uk!, n,€(2i,Zi+x),
i=Q

< K|a - Bl/(k-1)!
Since the existence of AD*f implies that of AD’f, 1 < r < k, it is now easy 1o see that
|AD*"'fa) - AD*'f(B)| = K |a—Bl|/(k-1)!

Hence AD*"'f is Lipschitzian on /, and so, by Theorem 2.1, C C G(f). For the rest of
the proof we proceed similarly as in the proof of Theorem 2.5.

From Theorem 2.6 we can easily deduce the following result.

Theorem 2.7: 1f AD*f exists on (a,b), then the set [a,b]— L*(AD*"'f) is a nowhere
dense set in {a,b].

Since P*(f) C P(f), L(f) C P(f) and L*(f) C P*(f) we have

Corollary 2.1: If AD*f exists on (a,b), then each of the sets [a,b] - LLAD*Y),
[a,b] - P*(AD*Yf), [a,b)— P(AD*"'f) is a nowhere dense set in [a,b].

We set

A(a,b) = { f € C(a, b)/G(f) is nonvoid}
and

B(a,b)={ f € C(a,b)/N(f) = [a,b]}

Then we have B(a,b) = C(a,b)— A(a.b).
We now prove the following theorem.
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Theorem 2.8: The class A(a,b) C C(a.b) is an F,5,—set of the first Baire category in
C(a.b).

Proof: Let R® be the set of all rational numbers of the interval (a,b). Let g € R®, § > 0,
£ >0, n > 0. We denote by A(q.8,&,m) the class of all such functions f € C(a,b) for

which the following holds:
If /(xiy0 .o Xiko1): (KioXik): 1=1.2 ..., nis an elementary system in {g — 8, g + 8],

ml= ) (x,xXi0)<m, then ol|l| < .

=
We shall show that A(q.6,€,7) is a closed subset of C{a,b).

Let f,.e A(q. 8. £, n); m=1, 2,..., let the sequence {f,,} converge to a function f in
C(a,b). We shall show that feA(q,.8.¢,7n).

Let I(x; 4, -.., Xix-1) & (XioXix);i=1,2, ..., n be an elementary system in [g-8, g + §]
with m/ < 5. Since f,, and f are uniformly continuous in [a, ], by a simple manipulation,
it can be shown that for each set of k points xg,xy, ..., Xx,; in [a,b] and an arbitrarily
chosen v > 0, we have for m sufficiently large

| Qu-s(fmiXo: %10 -oov Xkct) = Qi1 (fiXo, X1se-00 Xpey) | < €/2vm. (1)
Now, using Lemma 4 of Russell',

U'lll - .Zl | Qua(ixigs ooy Xik) = Quaa (FiXigseoon Xig) |

= Z l Qk-l (f;-xf,h vrry xi.k) - Qk—l (fm;'rl'.l""‘ x,"k) |

i=1

n
o Z | Qt-l(fm;—’ff.h cany Ii.k) ol 0. (fm;xf,n----. If.k-1) I

=]

+ 2 | Quct (fmiXios -oos Xik-1) = Qi 1(fiXigve-rs Xiny) |

im]

Hence from (1) and (2) and the fact that f,, € A(q,8,¢,m)
olll < e (1+1/v).

Since v > 0 is arbitrary, making v — ® we get o |/| < £. Hence f € A(q.8,¢,7) and so
the set A(q,8,e,7m) is closed. Also we see that

oo oo
Alg)lle) = Ny U A(q, 1a,l/B, 1/y)
B=1 y=}
and so A(q, l/a) is an F,; ~set in C(a,b). Again

A(q) = 8 A(q,l/a)

aw ]
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and is therefore an F, 5, - set in C(a,b). Since we have
A{a,b) = U A
@b) = U_A(g)

it follows, in view of the countability of R°, that the set A(a,b) is an F 4, - setin C(a,b).

Fu_rlthgr, if fe A(a,b), tl_nen by Corollary 2.4 of De Sarkar and Das? and Theorem e,
AD*'f is absolutely continuous on a certain interval / C (a,b) and AD*f exists almost

everywhcr_e on /. Hence in view of Theorem 2.1, it follows that A(a,b) is a subset H of all
such functions from C(a,b) which have at least at one point of (a,b) a finite derivative.

?i:llce H is a set of first Baire category (by Hewitt and Stromberg'®, p. 260) the theorem
ollows.

Corollary 2.2: The set B(a.b) C C(a.b) is a Gy, — set residual in C(a.b).
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