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Abstract 

This paper deals with the derivation of the transfer matrices of the two-duct reverse-flow (expansion and 
contraction) elements. using both the segmentation arid distributed parameter methods. These have been used 
to evaluate transmission loss (TL) of the expansion element. U predictions over the entire plane wave 
frequencies range have been compared. A near complete agreement between the two curves at different mean 
flow Mach numbers indicates the correctness of the transfer matrices derived by the two methods. 
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1. Introduction 

Commercial automotive mufflers (or silencers) make extensive use of perforated 
elements. A uniformly perforated tube opens into an expansion chamber, leading the 
mean flow in and out. Of late, two substantially different methods have been developed 
for the aeroacoustic (or flow-acoustic) analysis of these perforated elements. The first of 
these methods is the Segmentation method due to Sullivan" and the second is the 
Distributed parameter method due to Rao and Munja1 3-4 . In the Segmentation method, 
the perforations are notionally lumped at the junctions of an arbitrary number of 
segments, whereas in the distributed parameter method, a uniformly perforated tube is 
treated as such. While the former involves simultaneous solution of a number of 
algebraic equations (for the usual assumption of the sinusoidal time dependence, 
characteristic of the frequency-domain analysis), the latter involves simultaneous 
solution of two or three ordinary differential equations, coupled through the impedance 
of the perforate. 

Both these methods have been made use of to derive transfer matrices of concentric 
tube resonators, two-duct cross-flow expansion, two-duct cross-flow contraction, 
three-duct cross-flow chamber, and three-duct reverse-flow chamber (fig. 1). These 
matrices have been verified indirectly by comparing the computed values of the 
performance (in terms of transmission loss (TL) of the mufflers made from various 
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FIG. 1. Two-duct perforated forward-flow elements. 

perforated elements. with those observed experimentally over the entire frequency 
range relevant to pure plane wave propagation'. 

In this paper attention is directed to the yet unexplored elements, the two-duct 
reverse-flow perforated elements (fig. 2). The two elements differ only in the direction of 
mean flow, and as will be clear later, their transfer matrices would be inverse of each 
other. So, attention is restricted to the first configuration (fig. 2a) for most part of this 
article. The transfer matrix of this element is derived by means of both the methods. 
These two substantially different forms of the transfer matrix are used to estimate values 
of TL at all frequencies (relevant to pure plane wave propagation). These are then 
compared to check the correctness of the transfer matrices derived by the two methods. 

2. The Segmentation method 

Two flow ducts are joined together by a perforated section of length L and specific 
acoustic admittance a(x). Duct I has cross section S i  and termination acoustic 
impedances Z 1 (0) and Z 1  (L). These and the corresponding parameters for duct 2 are 
shown in fig, 3. Mean flow mach numbers Al i  and M2 vary all along the duct due to mean 
flow interchange between ducts. Temperature gradients along the duct length are 
neglected. 
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In an approximation, the admittance is lumped at discrete intervals or branches. 
Between branches, the admittance is zero (rigid wall) and convected plane wave motion 
is assumed. Thus each duct is reduced to a finite number of parallel branch points, each 
of which can be assigned a spacing, an admittance and a mean flow mach number to suit 
the configuration to be modelled (fig. 4). 

The equations necessary for determining the acoustic pressures and velocities at the 
branch are derived from consideration of momentum balance, and continuity of energy 
and mass flow. 

Assuming that the spatial variations in both mean and fluctuating components over 
each face of the control 
balance equations for t 

IP  P1 , 24  1 
1.11 . 24 

I P2 . 21 I =[ Gj  

I U2.2/] 

where ( G I is the fth branch 4 x 4 transmission matrix, the elements of which are as 

follows 1 1 5  

G 11  = (1 — B 3 (134  + 115 ))/E 1  ; 

G12= (B1-B3(14- $1(B4+ B5 132 ) ) El ; 

volume, shown in fig. 5, are negligible, the energy and mass 
e jib branch may be solved simultaneously to obtain 1.5  

[P
1 , 74 . 1 

Ut .2i. I 

1 	P212/ - 1 
U24 2,- I 	 ( 1 ) 



G13 = 133 135I ; G4 = B3 C B,5/ Ei; 

G21  = BsiEl ; G22 = ( 1  + Bi ( B5 "I-  BM/El ; 

G23 = – B5/ E1 ; G24 = — C1135/ E1; 

G31 = C3 B5/ E2 ; G32 = Bi C3 B5/E2 

where 

G33 = (1 — C3(C4 + B5 ))/E2 ; 

G34 = (C1 – C3(1 + CI (C4 + B5 C2 ) YE2 ; 

G41 = B5/ E2 ; G42 = 81 85/ E2 ; 

G43 = B5 1 E2 ; G44 = ( 1  + CI ( B5 -  CM/1 E2; (2) 

81 = 	; B2 = 	; 

B3 = M14+1 ZI ; 84 = M1,1+ 1/Z1 ; 

B5 = 4,(1 (41,1 4.1 – M1,1) 2 4/Zi); 

Cl = M24 Z2 ; C2 = M21/ Z2 ; 

C3 = M2 4%f ' Z2 ; C4 = M2 4) + 11Z2 ; 

E1 ' 1 — ML+1; £2 = 1 – Mii+1 • 

(3) 

(4) 
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= (uS) volume velocity; Sbi  

d = diameter of perforated tube and 11  length of tiat ••74yikent 

Assuming one-dimensional, convected flow betweet masa -"tents, the pressure and 
volume velocity equations for harmonic motion rna% u. oar.trranged to yield", 

P21 +  I 
U1 1 21+ 

P2,44- 1 
U2.2f4- 1 

[ 	
. 

U1 , 2, ; 
P2 . 4 

U2 . 2, -1  

(6) 

where [ H1 J is a 4 X 4 transmission matrix between thy j tit - iranches, the elements 
of which are as follows. 

= 	cosa i  ; H12 = if41 Z 1  sin a 1  

H13  = H14 = 0; H21 = iFI ZT I  sin a l  

H22 = F1 cos a l  ; H23 = H24 = 

H31 = H32 = 0; 1133 = F2 cos a2  

H34 = i F2 Z2 sin a2  H41  = if4 1 

H43 = i F2 Z I  sin a2  ; H44 22: F2 COS a2  

where 

= 

a2  = kiliE2  

= 1 	; E2 =1 — 

	

= cos (M 1 ,1+1  a l )—i sin 	al ) 

F2 = cos ( M2 .1+  a2  ) —i sin ( M2.1  + a2 ). 

By successive multiplication of transmission matrices given by eqns (1) and (6) the 

pressure and volume velocity at x = 0 can be related to the pretsure and volume velocity 

at x = L; i.e., 

[u  P1,1N 1 	 p1,1 
bri . 2N 

P2,2N 	=[ Tis x4 	P2,1 

U2,2N 	 u2,1 
(7) 

where N is the number of segments or branches, and 71 hi the overall transmission 

matrix given by 

tr, 



r2, 
U2 .  2N 
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N 1 

T] = [G 	Fl [Hid [Gici 	 (8) 
Km= 1 

By specifying two of the four termination impedances in the basic element (fig. 3), we 
get a four-pole parameter representation of the remaining two terminals. 

The boundary conditions for the flow-reversal element of fig. 2a are: 

L1 1 . 1  
= A 141  = (HZ ' ) tan lab , 	 (9) 

Pill 

U2, I = 
A2 1 1 2 . 1 2= (— i/Z2 ) tan kb,. 	 (10) 

P2,1 

With the help of these two boundary conditions, eqn (7) reduces to the desired transfer 
matrix relation 

where the elements of the 2 x 2 transfer matrix [ r I are given by' 

T; 1  = (de 	cf)1(ad 	bc) 

712 = Of be)I(ad— bc) 

r; 1  =7 (dg 	ch Mad — bc) 

7";. 2  = (ah— bg)1(ad— bc) 

with 

a = T32A3 , 1 + T31 ; b = T34A2.1 + T33 

c = 7:42 A 1,1 + 7141 ; d= T44 A2,1 + T43 

e= TnAi.i + Tii; f = Ti4A2,1+TI3 

g = T22 A lit + T21 ; h - T24 A 2 , i + T23 . 

Now, getting out of the nomenclature of the segmentation approach, and referring to 
fig. 2a, we can recognize that 

Pi = P1,2N, V1 = U1,2N P2 = P212N and v2 = U2.2N 
and L  r I of ego (11) is the required transfer matrix [ TM!. Thus eqn (11) may be 
rewritten in the form 
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(12) 

where p and v are acoustic pressure and acoustic volume velocity. Points 1 and 2 refer to 
the points immediately upstream and immediately downstream of the flow-reversal 
element, respectively. 

3. The distributed parameter method 

In this method, the starting point is the partial differential equations describing mass 
continuity, momentum balance and isentropicity for a control volume of infinitesimal 
axial length dz in the inner tube as well as the outer annular tube (fig. 6). For sinusoidal 
time dependence these equations 
density and panicle velocity term 
P 1  and p2 . These may be writtl 

reduce to ordinary differential equations. Eliminating 
;, we get' two coupled equations in acoustic pressures 
n in the matrix notation as3  

[a5D 6

D2-i-criD+a2 	a3D -Fait 	 Pi(z) 
D 	

101 
+ a 2 -1-a7D+an I 1/22(2)] 	LI 

(13a) 

or 

[A(D)] {p} = {0} , 	
(13b) 

where 
	 r 

Ic!-frk2 	 lc! 
al  = TIMM 	

a2 
1 — MI 	k 
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k 122 k2 
- 2 ) 

k 	
* a4= 	

1--Mi 

I 31 	

( 
1 	7 	k 

iM 2 1k- k2 	 ki- k2  
a5 = 	 a6 = 

	

- M2 	k 	 1 - A13) 

iM 2  (0, k2  ; 
er7 = 

1 - Mi 	k 

k 
a8  

i4 k 
k= , Ic! = k 2  — 

Co 	 d 4.  

kd 1„.2 	 and 	D 
" ' (d2-di) 	 dz 

Defining 

Dp i 	= Yi DP2 MS!. = Y2, Ps = Y3 and P2 = y4, 	 (14) 

eqns (13) reduce to a more convenient form as 

1 	0 	D 
0 	— I 	0 
D 	0 	a1 D-i-a2  
0 	D a5 D-i-a6  

0 
D 

a3D+a4 
a7 D+ (kg 

Y 
j 	 I 

Y21  
Y3 

Y4  4 

0 
1 0 

- 	0 

I 0 (15a) 

Or 

fAJ {y)= {O}. (15b) 

The characteristic polynomial of 	has to be the same as the characteristic polynomial 
of [A]. Hence equations (15) are transformed to the principal variables r,,r,,rs, and T4 
as 

w 	 - 	0 	- 
D - /3, O 	0 	0 	

- 1 
' r i i 	01  

0 	D - 02 0 	0 	r2 	0 
0 	0 	D - /33  O 	r3  = 0 

1=0 	0 	0 	D - /34 	' r4 	oi 
(16) 

where Ps are the roots of the fourth degree polynomial 

II = 0 9 	 ( 17) 
to be found numerically on computer by means of one of the standard subroutines. 
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Now, a modal vector th,i 9  412 ti 413 ./ 4/J4 41 can be calculated for each of the roots pi . 
Equations (16) are the desired decoupled equations. The principal state variables rl  12, 
r3  and r4  are related to the variables y i .y2 , y3  and y4  through the eigenmatrix [ as 

or as 

(18) 

dp n, 
y,n = 

dz 

ym+ 2 = Pm = 

akm ., rpi  in = 1,2 

Crn 4- 2), n 1 ,, m = 1,2 

(19a) 

(19b) 

where 

= 1 (say), 

2 
Pn+alfin+a2 

n = 
a3 /3 + a 

413, = 

and 

1414 on = th r n ifln = 42:,n 1113,n n = 1,2,3,4. 

The general solution to eqns (16) can be written as 

,,(z) = c,, 	n = L2,3,4. 	 (20) 

Equations (18), (19) and (20) combined with the momentum equations yield 7  

where 

1-  
Pi (z)  
P2 (z) 	1 	 C2 
PoCo wi (z) = [A frim (1 	C3 

Pocow2(z) 	 C4 • 
,. (21) 

Al.n = 	ea" , /12,n = 4/4,n e ll"  7 

A 3,ri 	 A4 ,n  = 
ik M 	 ik + M2 on  

and n = 1,2,3 and 4 for the respective columns of AL„„.„(z). The state variables at z 
can be related to the state variables at z = I through the transfer matrix relation 
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p i  (0) 	1 
P2(°) po  co  w i  (0) 
po co w2 

= IT„,.,.,] 

iPi (0) 
P2(1) 
POCO WI (0 

LPO CO W2 (1)j 
(22) 

where 

= [A,„,(0)] 	 rn, n = 1,2,3,4. 	 (23) 

The final two-by-two transfer matrix for a particular two-duct element may be 
obtained from [ TI making use of the appropriate boundary conditions of the element. 

For reverse-flow expansion chamber (fig. 2a) the boundary conditions are: 

Pi (I)  
= I -1-`■• 	 i cot (k1h), (24a) 

Pocwl (I) o  

P2(0  = 1: = — i cot (kb, ). (24b) 
Po co w2 

Equations (22) and (24) yield the following transfer matrix relation 7  

[pi (0) 	 Tb  I 	{/9 2 (0) 
po co w (0)] = 	Td 	3ocow2(0)], 

(25) 

where 

[ T. 	7-1,1 	A 1 	A2 I 	{ B i 	821 -1  
t Te 	Td j 	= 	A3 	144 	B3 	84 	 (26) 

A 1  = 7. 1.1 -i-X2  T1 . 3, A2 = T1,2 + X2 TIA 1 

A 3 = T3 . 1 + X2 T3,3 9  A 4  = T3 . 2 + X2 T3 . 4 , 

Bi = T , j + X2 T2.3 i B2 = T2.2 + X2 T2,4 1 

B3 = T4,1 + X2 T4.3 i B4 — T4,2 + X2 T4,4 

and 

x2 = e tan (klb ). 

Note that the minus sign with Tb and Td in eqn (25) is due to the fact that w 2  here 
is positive in a direction opposite to the reference. This is needed to make up the transfer 
matrix adaptable to the transfer matrices of other downstream elements. 

Finally, eqn (25) may be rearranged in the form 
parameters of the desired transfer matrix given by 

TM11 = Ta  

of eqn (12) with the four-pole 

(27a) 
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po  co  
771412 	Th  

S I  
(27b) 

S2 
T3421 = Tc 	 (27c) 

NC°  

S2 
TM 22 = Td 	 (27d) 

Si 

4. Reverse-flow contraction element 

The last two sections have dealt with derivation of the transfer matrix of the reverse-flow 
expansion element (fig. 2a). A look at figs 2a and b, the governing equations, and the 
boundary conditions would readily reveal that the analysis of the reverse-flow 
contraction element would run on identically similar lines except that points (or 
subscripts) and 2 will he interchanged everywhere. Hence the transfer matrix of the 
contraction element would he simple inverse of the transfer matrix of the expansion 
element. It would therefore suffice to validate the transfer matrices of the expansion 
element. 

5. Validation of the transfer matrices 

In the foregoing sections, the transfer matrix of the reverse-flow expansion element has 
been derived by two methods, which differ from each other in substance as well as in 
detail. In the absence of experimental verification it would be instructive to compare 
values of TL computed from the transfer matrices derived using the two different 
methods. 

TL is related to the four-pole parameters by 8  

S I qr. 	 PO CO 	S 
TL = 20 log io  [ 1/2 ITM II + TM 12 	 TM22 	

] 
	(28) 

) ) C0 	S2 

Impedance of the perforate, used in the computations, is given by the following formulae: 

stationary medium 6  

r' 	 t6  x 10 -3  -i-jk0 (t+0-75 dh)licr 	 (29) 

cross flow l ' 2  

M 
C9 = 0-514 — +0-95 ko  (i+ 0-75 dh 	 (30) 
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where 	
cr = porosity of the perforate sample 

M = mean flow Mach number along the perforated pipe upstream of the 
perforation 

dh  = diameter of the holes 

I = length of the perforated section 

= inner diameter of the perforated pipe 

t = thickness of the perforated pipe 

f = wave frequency, Hz 

ko  = wave number, 27rfico . 

Making use of the four-pole parameters of the reverse-flow expansion element 
evaluated from the segmentation method (eqn 11) and the distributed parameter method 
(eqn 27), TL was calculated from eqn (28) by means of a general computer program at 
various frequencies covering the entire range of pure plane wave propagation. 

Figures 7-9 compare the predictions by the two methods for mean flow Mach numbers 
of 0.0 (stationary medium), 0-05 and 0.15, respectively. Near complete agreement 
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between the two for all Mach numbers and at all frequencies indicates that expressions of 
four-pole parameters of the reverse-flow expansion element derived by the two methods 
must be correct. 

As indicated earlier, no separate validation of the four-pole parameters of the 
reverse-flow contraction element is called for, as the transfer matrix of the contraction 
element is simple inverse of that of the expansion element 

These transfer matrices may be combined readily with the other muffler elements 
(upstream and downstream of the two-duct reverse-flow element) in order to evaluate 
the overall performance of the exhaust system'. 

6. Comparison of the two methods 

The distributed parameter method is more elegant than the segmentation method as it 
treats the continuous system as such. However, the segmentation method is more 
suitable for modelling cross-flow elements because it allows for the variation of 
convective mean flow Mach number along the tube length. However, flow velocity 
through the perforations has been assumed to be independent of the axial coordinates in 
both the methods. But the perforate impedance depends only on this radial velocity as is 
implied in the resistive component of eqn (30) where M is mean flow Mach number 
upsteam of the perforation (not the local value). Out of these two effects of mean flow 
(i.e. the convective effect and dissipative effect), the latter plays a primary role as is 
indicated by Munja18 , whereas the former has only a marginal role to play. This is why 
the agreement between predictions of the two methods tallies not only for the stationary 
case (M = 0) but also for the moving medium (0 < M 0•2). 

Thus, the conceptual advantage of the segmentation method over the distributed 
parameter method is not significant. 	
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