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Abstract

This paper deals with the derivation of the transfer matrices of the two-duct reverse-flow (expansion and
contraction) elements, using both the segmentation and distributed parameter methods. These have been used
to evaluate transmission loss (TL) of the expansion element. TL predictions over the entire plane wave
frequencies range have been compared. A near complete agreement between the two curves at different mean
flow Mach numbers indicates the correctness of the transfer matrices derived by the two methods.
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1. Introduction

Commercial automotive mufflers (or silencers) make extensive use of perforated
elements. A uniformly perforated tube opens into an expansion chamber, leading the
mean flow in and out. Of late, two substantially different methods have been developed

for the aeroacoustic (or flow-acoustic) analysis of these perforated elements. The first of
these methods is the Segmentation method due to Sullivan'? and the second is the

Distributed parameter method due to Rao and Munjal®>*, In the Segmentation method.,
the perforations are notionally lumped at the junctions of an arbitrary number of
segments, whereas in the distributed parameter method, a uniformly perforated tube is
treated as such. While the former involves simultaneous solution of a number of
algebraic equations (for the usual assumption of the sinusoidal time dependence,
characteristic of the frequency-domain analysis), the latter involves simultaneous

solution of two or three ordinary differential equations, coupled through the impedance
of the perforate.

Both these methods have been made use of to derive transfer matrices of concentric
tube resonators, two-duct cross-flow expansion, two-duct cross-flow contraction,
three-duct cross-flow chamber, and three-duct reverse-flow chamber (fig. 1). These
matrices have been verified indirectly by comparing the computed values of the
performance (in terms of transmission loss (TL) of the mufflers made from various

" Permanent address: Department of Mechanical Engineering, University College of Engineering, Osmania
University, Hyderabad 500 007.
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b. Cross-flow expansion clement. c. Cross-flow contraction ¢lement.

Fig. 1. Two-duct perforated forward-tlow clements.

perforated elements, with those observed experimentally over the entire frequency
range relevant to pure plane wave propagation'™,

In this paper attention is directed to the yet unexplored elements, the two-duct
reverse-flow perforated elements (fig. 2). The two elements differ only in the direction of
mean flow, and as will be clear later, their transfer matrices would be inverse of each
other. So, attention is restricted to the first configuration (fig. 2a) for most part of this
article. The transfer matrix of this element is derived by means of both the methods.
These two substantially different forms of the transfer matrix are used to estimate values
of TL at all frequencies (relevant to pure plane wave propagation). These are then
compared to check the correctness of the transfer matrices derived by the two methods.

2. The Segmentation method

Two flow ducts are joined together by a perforated section of length L and specific
acoustic admittance a(x). Duct 1 has cross section S, and termination acoustic
impedances Z,(0) and Z,(L). These and the corresponding parameters for duct 2 are
shown in fig. 3. Mean flow mach numbers M, and M, vary all along the duct due to mean

flow interchange between ducts. Temperature gradients along the duct length are
neglected.
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Fic. 2. Two-duct perforated reverse-flow elements.
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Fic. 3. Basic two-duct clement.

In an approximation, the admittance is lumped at discrete intervals or branches.
Between branches, the admittance is zero (rigid wall) and convected plane wave motion
1s assumed. Thus each duct is reduced to a finite number of parallel branch points, each
of which can be assigned a spacing, an admittance and a mean flow mach number to suit
the configuration to be modelled (fig. 4).

The equations necessary for determining the acoustic pressures and velocities at the
branch are derived from consideration of momentum balance, and continuity of energy

and mass flow.

Assuming that the spatial variations in both mean and fluctuating components over
each face of the control volume, shown in fig. 5, are negligible, the energy and mass

balance equations for the jth branch may be solved simultaneously to obtain'+®
FP1.2;. [ Pygj-1 ]
U, .2 Uy,2j~1
Pyo| =[G | P3.2j-1
LUz, | Uz.25-1 | (1)

where E G; ] is the jth branch 4 x4 transmission matrix, the elements of which are as
1.5

GH - (I"B‘;(Bq""Bs))llEl;
Gz = (B,—Bs3(1+ B;(Bs+ Bs—B3))) Ey;

follows
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Fic. 4. Branch point model of perforate. Fii. 5. Control volume represcntation of the J"

branch two-duct ¢lement.

Gy3 = BiBs/E); Gy = B;C)Bs/Ey;

Gy = Bs/Ey; Goy = (1+B,(Bs—B>))E,;

Gy3= —Bs/Ey; Gy = —C,Bs/Eq;

G = G3B5/E;; Giz = By G Bs/Ey;

Gy = (1 - C3(Cs+ Bs) ) Ey:

Gy =(C,—GC(1+C (Cs+ Bs—Cy)) YV Es;

Gy = —Bs/Ey; Gy = — B, Bs/E5;

Gaz = Bs/Ey; G = (1+C(Bs—Cy) ) Es;
where

By=M,;Z,, B,=M,,lZ,;

By = Ml.j+lzl; By = M|.1+|le;

Bs = A, (1= (My ;1= My, Z3I Z7);

Ci=M,,;2,, Co =M, ,/Z;;

Cy = M2j+1zz; Cy = Mz,fHJ’Zz;
M E2=1-M3,,,.

s
"

(2)

(3)

(4)

(5)
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U = (uS) volume velocity; S, = ndl,
d = diameter of perforated tube and /; = length of tix poyment.

ASSUming Uﬂe-dimEnSional. convected flow betweer Utalety mts. the pressure and
volume velocity equations for harmonic motion may t=sranged to yield"s

.P].2f+l-l rPlz,
Uy 2j+1 Uy 3
Przj+r | =l H] | Py

.U2.2;+| » _UZ 21_

(6)

where [ H;] is a 4 x4 transmission matrix between the ; ant ranches, the elements

of which are as follows.
H,, = Fycosa;; H; = iF, Z, sinq
Hs=H,=0; Hy =iF,Z7! sina,
Hy; = Fycosa,; Hyin=Hyy =0
Hy, = Hy; = 0; H3y3 = F; cosa;
Hy = iF;Z;sinay;, Hy = Hyp =0
Hy = iF,Z5" sinay; Hyy = F; cosa,
where
a; = K|/ E,
a, = kl/E,
E, = I_M%.j*-l; E, = I_M%.j+1
Fy =cos (M), yay)—isin (M ;, a;)

F, = cos (Mz.;uﬂz)-f sin (M2.;+lai)'

By successive multiplication of transmission matrices gives by eqns (1) and (6) the
pressure and volume velocity at x = 0 can be related to the prewsure and volume velocity
at x = L; Le.,

[Pl.zw -I Py
U]_zN Ul.l

| P2on | =[ Taxsa ] | P2a

y UZ'ZN. l U2.l

. (7)

where N is the number of segments or branches, and [ 7'] is the overall transmission
matrix given by
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[T] = [Gw] Ml’[ﬂl [Hx] [Gk] - (8)

By specifying ¢two of the four termination impedances in the basic element (fig. 3), we
get a four-pole parameter representation of the remaining two terminals.

The boundary conditions for the flow-reversal element of fig. 2a are:

Ul.l

— = A, , = (i/Z,) tan ki, (9)
P

U

ik Ay = (—i/Z,) tan ki,,. (10)
P

With the help of these two boundary conditions, eqn (7) reduces to the desired transfer
matnx relation

[l BT [

where the elements of the 2x2 transfer matrix {T’] are given by’
Ty = (de—cf)/(ad - bc)
T2 = (af — be )/ (ad - bc)
T2, = (dg—ch)/{ad - bc)
T2 = (ah—bg)/(ad - bc)

(11)

with
a=TpA;,+Ty, b=TyA;  + T
¢c=TpA ) +Ta;, d=TuAs 1+ Ty
e =Ti3A\ 1 +T; f=TuAr 1+ T
g =TnA11+T5; h=TAy,+ T,

Now, getting out of the nomenclature of the segmentation approach, and referring to
fig. 2a, we can recognize that

Pr=pranV1 = Ujon,p2 = pran and vy = Us oy

and [T'] of eqn (11) is the required transfer matrix [TM]. Thus eqn (11) may be
rewritten in the form
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FiG. 6. Control volume of a two-duct perforated

element.
P T™,, “TMIZ -Pz'
Vi = TM:I TMZZ Va2

645

(12)

where p and v are acoustic pressure and acoustic volume velocity. Points 1 and 2 refer to
the points immediately upstream and immediately downstream of the flow-reversal

element, respectively.

3. The distributed parameter method

In this method, the starting point is the partial differential equations describing mass
continuity, momentum balance and isentropicity for a control volume of infinitesimal
axial length dz in the inner tube as well as the outer annular tube (fig. 6). For sinusoidal
time dependence these equations reduce to ordinary differential equatlons Eliminating
density and particle velocity terms, we get® two coupled equations in acoustic pressures

py and p,. These may be written in the matrix notation as

D*+a,D+a; ayD + ay pi(z)
asD + ag Dz"'ﬂ?D'*'ﬂH |p2(2)

or

[A(D)] {p} = {0},

where

iM, (kﬁ"*kz) k‘z'

3

P]
0
(13a)

(13b)
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iM, ki—K ka—k*y
el ( ' );““h(]-ﬁi)’

vae=—| :
( ) " ( I—Mz)

iMy, [ ki+k? k%
Qg = — —— y Qg = | 8
’ 1—M?2 ( k ) SV
k= — 3=k1_ﬂ
Co di{
idkd d
k§=’k2" - : o and D= —
(di—-d?)¢ dz
Defining
Dp,=pi=y, Dp=pir=y2, pr=ysand p; =y, (14)

eqns (13) reduce to a more convenient form as

{_l '0 D 0 H Y1 ‘1 { 0‘]l
D 0 I'I]D+ﬂ_2 C!3D+ﬂ‘4 Y3 - 0
0 D a5D+a6 a7D+a3 Ya 0 (153)
or
(A] {y} = {0} . (15b)

The characteristic polynomial of [A] has to be the same as the characteristic polynomial
of [A]. Hence equations (15) are transformed to the principal vaniables Iy, I';, I'; and I',
as

D-B, 0 0 0 r, 0
0 D-8, 0 0 I 0
0 0 D""ﬁg 0 Hrg e 0
0 0 0 D—B, .| |o
a - T o (16)

where Bs are the roots of the fourth degree polynomial
|A| =0, (17)

to be found numerically on computer by means of one of the standard subroutines.
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Nm?, a modal vector {d_;, i ¥2.j> ¥, ¥ ;} can be calculated for each of the roots B;.
Equations (16) are the desired decoupled equations. The principal state variables I’ fos A

I'; and I'y are related to the variables y,, y;, y; and y, through the eigenmatrix [¢] as

{y}=[¢]{T} (18)
or as
dpm <
m=—= d’m,n [‘,,,m= 1,2 |
Ym=— E: (19a)
4
Ym+2=Pm= 2 ¥(m+2),n T, m=1,2 (19b)
nm=|]
where
lbl.ﬂ — 1(53)’),
ﬂi"’ﬂ'l ﬁn"’aZ
‘bZ.,n = ’
aJBn"'a#
1. = 1/B,
and

d‘-l'-.n ™t %,n‘(ﬁu = %.n '1"3.n1 = 1127314*
The general solution to eqns (16) can be written as
Fa(2) = cae™,n =1,2,3,4. (20)

Equations (18), (19) and (20) combined with the momentum equations yield’

-pl(_z) 1 FCI-]
' Pz(z) | | Cz

PoCo W, (Z) =[Am.n (Z)] gl!

WalZ .
| Pocow2(z) [Ca -
where
Al.n = d’ln eB’" y A2.n = 'lt’li..v:“'i“g"|= ’
eﬂ“ A ‘ﬁ‘z.nfﬂ'"
A n= " S E TR R ——
> ik+ M B, ik + M, B,

and n = 1,2, 3 and 4 for the respective columns of A, n(2). The state variablf:s atz = 0
can be related to the state variables at z =/ through the transfer matrix relation
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i

F § N il

p2(0) p2(0)

po co w1 (0) = [T nl pocow: (D)

_pocow2(0) | | PoCo Wz(’)_i
(22)

where

[Tonn] = [Am.nl0)] [A, (D} mn =1,2,3,4. (23)

The final two-by-two transfer matrix for a particular two-duct element may be
obtained from [ T] making use of the appropriate boundary conditions of the element.

For reverse-flow expansion chamber (fig. 2a) the boundary conditions are:

z = pr (D) = —{cot (kip), (24a)
pocow (£

z = I P2{) = —f cot (ki). (24b)
pocowz(l)

Equations (22) and (24) yield the following transfer matrix relation’

[p1(0) } {Ta - Tb] p2(0) ]
| PoCo wi(®)] = |Tc= 14 pocowa (0},
(25)
where
{Ta Tb] [Al Az] B, By |
T. T;] = LAy A, B; B, (26)
Ay =T+ XT3, Ay =Ty 2+ X; Ty 4,
Ay=Ty,+X; T35, Ag =Ty ,+ X, Ty 4,
By =T+ X133, By =T+ X315 4,
By=Te 1+ X3T43, Bs=Ty+X5T44
and

Xz = { tan (k!b)*

| Not.e. thz_lt the_min.us sign with T, and T; in eqn (25) is due to the fact that w; here
Is positive in a direction opposite to the reference. This is needed to make up the transfer
matrix adaptable to the transfer matrices of other downstream elements.

Finally, eqn (23) may be rearranged in the form of eqn (12) with the four-pole
parameters of the desired transfer matrix given by

™, =T, (27a)
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_ PuoCo
M= =T -5 (27b)
M, = T. 2
21 < c
PuCo (27¢)
TMy, = — T, 2
22 s, (27d)

4. Reverse-flow contraction element

The last two sections have deatt with derivation of the transfer matrix of the reverse-flow
expansion element (fig. 2a). A look at figs 2a and b, the governing equations, and the
boundary conditions would readily reveal that the analysis of the reverse-flow
contraction element would run on identically similar lines except that points {or
subscripts) 1 and 2 will be interchanged everywhere. Hence the transfer matrix of the
contraction element would be simple inverse of the transfer matrix of the expansion
element. It would therefore suffice to validate the transfer matrices of the expansion
element.

5. Validation of the transfer matrices

In the foregoing sections, the transfer matrix of the reverse-flow expansion element has
been derived by two methods, which differ from each other in substance as well as in
detail. In the absence of experimental verification it would be instructive t¢ compare
values of TL computed from the transfer matrices derived using the two different
methods.

TL is related to the four-pole parameters by®

S C S
U TMy 220 M,

Po€o Sz 32

7L = 20 !'ng[ 1/2 |TM||+ TM|2

] (28)

Impedance of the perforate, used in the computations, is given by the following formulae:

stationary medium®
¢ 7 = [6x1073+ jko(t+0-75 dy))/ o (29)

cross flow!-?

d; M
[ = [ 0-514 2127 4095k, (:+0-75 d ) ]/cr (30)

{cr
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where :
o = porosity of the perforate sample

M = mean flow Mach number along the perforated pipe upstream of the
perforation

d, = diameter of the holes

| = length of the perforated section

d, = inner diameter of the perforated pipe
t = thickness of the perforated pipe

f = wave frequency, Hz

k, = wave number, 2w f/c,.

Making use of the four-pole parameters of the reverse-flow expansion element
evaluated from the segmentation method (eqn 11) and the distributed parameter method
(eqn 27), TL was calculated from eqn (28) by means of a general computer program at
various frequencies covering the entire range of pure plane wave propagation.

Figures 7-9 compare the predictions by the two methods for mean flow Mach numbers
of 0-0 (stationary medium), 0-05 and 0-15, respectively. Near complete agreement
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Fic. 7. Comparison of TL stationary medium M = 0 . ———-segmentation method; ——distributed para-

meter method.
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between the two for all Mach numbers and at all frequencies indicates that expressions of
four-pole parameters of the reverse-flow expansion element derived by the two methods

must be correct.

As indicated earlier, no separate validation of the four-pole parameters of the
reverse-flow contraction element is called for, as the transfer matrix of the contraction
element is simple inverse of that of the expansion element.

These transfer matrices may be combined readily with the other muffler elements
(upstream and downstream of the two-duct reverse-flow element) in order to evaluate
the overall performance of the exhaust system”.

6. Comparison of the two methods

The distributed parameter method is more elegant than the segmentation method as it
treats the continuous system as such. However, the segmentation method i1s more
suitable for modelling cross-flow elements because it allows for the variation of
convective mean flow Mach number along the tube length. However, flow velocity
through the perforations has been assumed to be independent of the axial coordinates in
both the methods. But the perforate impedance depends only on this radial velocity as is
implied in the resistive component of eqn (30) where M is mean flow Mach number
upsteam of the perforation (not the local value). Out of these two effects of mean flow
(i.e. the convective effect and dissipative effect), the latter plays a primary role as is
indicated by Munjal®, whereas the former has only a marginal role to play. This is why
the agreement between predictions of the two methods tallies not only for the stationary
case (M = 0) but also for the moving medium (0 < M = 0-2).

Thus, the conceptual advantage of the segmentation method over the distributed

parameter method is not significant. :
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