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Abstract 

A generalized problem in dynamically routing the arrivals in a parallel queueing network is proposed and an 
optimal routing algorithm developed. Customers arrive in an arbitrary stream into a queueing network 
composed of n parallel G: M 1 queues. The individual mean service times of the n servers are distinct; the 
individual queue lengths arc measurable. It is desired by appropriately regulating routing of arrivals, to 
minimize the running cost of the system, viz., the expected total time for the completion of service on all 
customers arriving within a specific time interval 10, TI. Optimality of a proposed algorithm is proved and is 
further substantiated by simulation results. 

Key words: Queueing network, dynamic routing policy, routing algorithm, recursion. 

1. Introduction 

Routing problems arising in queueing networks naturally fall into two broad categories: 
static and dynamic. In static routing, the strategies are stationary in the sense that they 
are not responsive to changes in system parameters. Such strategies were studied by 
Fretta et al l  and Gallager2 . On the other hand, the study of dynamic routing has been 
relatively less extensive. A dynamic strategy bases its choice for the route of an arrival on 
the information currently available. In this paper we propose a generalized dynamic 
routing problem in the context of n parallel queues and develop an appropriate routing 
algorithm whose optimality we subsequently establish. The organization of the paper is 
as follows. The remainder of this section describes the background and formulates the 
problem. In Section II, the routing algorithm is developed and physically interpreted 
using a diagram. In Section III, the algorithm is formally proved to be optimal. Section 
IV discusses the results of simulation of the problem and draws useful inferences. 
Finally, Section V concludes with a brief summary of the ideas and results provided in 
this paper. 

A service center employs a queueing network consisting of n parallel G I M 1 queues, 

where the individual mean service rates m i (i = 1, 2, 	 , n) are known a priori and are 

in general distinct (fig. 1). Incoming arrivals are to be routed among the n parallel 

queues. It is desired to develop a routing algorithm that exhibits optimal behaviour w.r.t. 
the running cost associated with the system — the expected total time for the completion 
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Fici. 1. A queueing system composed of ri GiMil 
queues among which arrivals are to he routed. 

of service on all customers arriving within a specific time interval 	, Ti. Ephremides a 
a1 3  consider a similar routing problem and develop an optimal routing algorithm. Their 
study is confined to the routing problem in a queueing network consisting of two parallel 
queues, each served by an identical exponential server. Winston 4  deals with a somewhat 
more general problem of n identical exponential servers. In both the cases the authors 
have established the optimality of what they term the Send-to-the-Shortest queue (SS) 
policy, w.r.t. the cost defined above. In this paper we shall be concerned with a very 
generalized situation in dynamic routing where It distinct parallel exponential servers 
comprise the service facility. We see that a special routing algorithm that we propose is 
optimal. and that SS policy ceases to be optimal. Our conclusions are supported by 
theoretical proofs as well as results of computer simulation. 

There are other papers which deal with related queueing problems although they use 
models quite different from ours. For instance, Agrawala et a1 5  study the problem of 
scheduling a given set of jobs among n processors while Yum 6  analyses the performance 
of deterrninistic routing sequences which maximize traffic bifurcation in a queueing 
network. Lin and Kumar .' consider routing customers from a single queue to two 
heterogeneous servers. Rosberg and Towsley s  consider arrival routing to n servers with 
unequal service rates but without any queuing facility in the system. 

Applications of the routing problem considered here are manifest in the context of 
routing individual packets among several links in a computer network employing 
store-and-forward and packet switching technologies. Another interesting area is that of 
transfer lines' where routing semi-finished products among alternative channels is a 
rather important problem. 

2. Development of the optimal routing algorithm 

We may assume without loss of generality that the service rates m, (i = 1, 2, 	, n) are 
arranged such that 

m2 	• • • a" mn• 	 (1) 
The cost function defined in the previous section, namely, the expected total time for the 
completion of service of all customers arriving in [0, 7] is seen 3  to be given by 

T 	n 	 1  n 	1  

K(T) = E[ f
( 
	dt + ! E -L xikx ii  - + 1) 	 (2) 

0 ( id i i 	2 in 1 mi 
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where xi, denotes the length of the i-th queue, (i 
the expectation w.r.t. the random variables 4. 
our exposition of the algorithm development 

	

= 	, 	, . . . , x7), 

	

as  = 	, 	= 1, 2, ... , n), 

and 
ai 

(— s 
+ 1 	a, 

= 1, 2, ... , n) at time t and E stands for 
We will need some definitions to aid in 
and the proof of optimality. Let 

(3) 

(4) 

(5) 

It should be noted that C(x i, xi) is really a dyadic predicate which has been assigned a 
binary relation over the domain 

D = Ice ,x1 )1x 1  and xi are non-negative integers} = N 2 . 	 (6) 

Also, for a given sum 17. xi  = k, let K(x 1 , x2 , . . ,x") represent the value of K(T) 
computed per (2), assuming that x 0  = (x 1 , x2 ,. 	x") and that a fixed routing policy is 
adopted throughout. Clearly Kk thus computed would depend for its value on the initial 
load configuration (x 1 , x2 , . . . x") = xo. In the following, we shall first state the optimal 
routing algorithm and then undertake an interpretive discussion in order to hopefully 
develop an intuitive feel for the algorithm. 

Algorithm I 

At any arrival epoch t e[0, T I, the optimal routing choice for the arrival is computed as 
follows: 

j = arg Imin 	+ 1)1 	 (7) 
S 

where arg is an operator which yields the value of the argument i over 11, 2. 	n}, 
satisfying the intended operation (which in this case is minimization) on the given 
function. Routing performed using the above computation is guaranteed to behave 
optimally w.r.t. the cost function K(T). 

For clarity and ease of handling we shall consider the simple case n = 2 of the dynamic 

routing problem in the following discussion. Dropping subscripts denoting the arrival 
epoch, we readily see that 

C(xl ,x2 ) -=> (x 1  5x2 ) 

• 	or 

((x 1  > x2) and (a l (x l  + 1) ts a l  (x2  + 1))) 	 (8) 

where => denotes logical implication and the predicate C is as defined by Buzacott and 

Hanifin9. This idea is clearly brought out in fig. 2 which portrays plots of K k (x 1 , x2) for a 
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FR.. 2. Form plot of KA . the waiting overhead, against x l  and x 2  arranged hack-to-back. 

fixed sum k, against x l  and x2  arranged tack-to-back'. The diagram depicts forms of the 
plot for the two cases — (i) a l  = a2  and (ii) a l  < a2 . The plots for these two cases are 
intentionally superposed on the same graph in order to enable us readily see which 
algorithm can be expected to perform optimally in each of the cases. 

Recalling the interpretation given earlier for K k (x l ,x2 ), we immediately infer from 
fig. 2 that there is what is known as an optimal initial load configuration (x 1 ,x2 ) for a 
fixed sum x' +x2  = k, w.r.t. the resulting value of Kk. In the case of identical 
exponential servers this optimal initial configuration is just the balanced distribution 
ak/2], [k/2]). This case is identified by the plot corresponding to a l  = a2 . On the other 
hand, in the more general case of distinct exponential servers (a 1  < a2 , e.g. ,) the optimal 
initial configuration departs from the balanced one as suggested in fig. 2. Here it is a bit 
skewed, and is given by (x i , 12 ) such that (x i  + 1)41 2  + 1) has the closest possible value 
to the ratio a 2 /a 1  . This observation is the key to the following discussion aimed at a 
physical interpretation of Algorithm I. Before proceeding with that we make a final 
observation that our foregoing considerations hold even in the general case where 
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K k (x l , x2) is interpreted using x, = (x', x 2) instead of xo  = (x l , x2) where x l  +x2  = k. In 
other words, consider the routing situation where x,_ = (x l x2) ,  xl +x2 = k,  t  _ 
denoting the instant just prior to the arrival. Once the arrival is routed, x, = (x l  + 1, 
x2) or xi+  = (x i , x2  + 1) so that x l  + x2  + 1 = k+ 1. Now, K(k I) can be interpreted with 
reference to x, +  which might have one of two possible values. It is to our obvious 
advantage to base the route for the arrival on that choice which leads to the smaller value 
for K(k+i). With this preparation we launch into the interpretive discussion. The 
coordinate space in fig. 2 is dissected into three slices. Within slice I, x' s X2 . For values 
of 4 and st? falling in this slice, Algorithm 1 advocates routing to the first queue. This 
concurs with one's intuition — server 1 is the quicker (recall that m 1 	mz ) of the two and 
at time t queue 1 happens to be the shorter one; naturally, therefore, routing should be 
done to the first queue in order to achieve optimality. 

Within slice II, however, things are a little strange. Though x l  > x2 , Algorithm 1 still 
rules that routing be done to the first queue. One natural way of viewing this situation is 
to expect that the routing policy which makes for the 'proportionate' distribution of the 
load between the servers, exhibit optimal behaviour. Thus, this should take account of 

4, as well as the individual server capacities. In other words, although x, i  > 4, since 
m 1  > m2  (there would be no slice II if m i  = m2 ), viz., server 1 on the average serves 
faster than does server 2, he can afford to take more load up to some `limit', whose value 
is dependent on m i  and m2 . Again Algorithm 1 is seen to reinforce our reasoning. 

Inside slice III, (x 1  > x2) and (not C(x l  , x2)). For values of xi , x? corresponding to 
this coordinate slice, it is clear that the limit up to which server 1, by virtue of his faster 
average rate of service, can take excess load without upsetting the proportionate 
distribution of the existing load, has been exceeded. Therefore, as Algorithm 1 rightly 

points out, queue 2 is the optimal routing choice. 

Observing the form plots of fig. 2, we are really trying to approach the minimum point 
in the Kk plot w.r.t. the load distribution. SS policy seeks to divide the load evenly 
between the two servers irrespective of their individual capacities (mean service times). 
Such a policy leads to an optimal behaviour only in the case of identical mean service 
times (case (1), a l  = az , fig. 2). For the case a l  < a2 , viz., of distinct capacities, SS policy 

never approaches the minimum point on the Kk plot for case (ii) in fig. 2. In that case, 
however, our algorithm — Algorithm 1 — is seen (qualitatively at this stage) to make for 
the minimum point. In reality, Algorithm 1 coincides with SS policy only for the case 

a l  = a2 . 

The optimal routing algorithm developed is different from SS policy in the crucial 

region — slice II. In the next section, we shall exhibit a proof of optimality for Algorithm 

1. In Section IV, we compare the behaviour of the two algorithms in the light of 

simulation results. 

3. Proof of optimality 

We present the proof in two stages. Let us assume in the sequel that Algorithm 1 is 

adopted as the dynamic routing policy for the queueing network with n parallel queues. 



xxit 	 V. S. LAKSHMANAN AND M. A. L. THATHACHAR 

et 	w (xl, 	4') be observed continuously; let V(t, x 1 , x2 	, f) denote the 

-expected cost incurred over It, 71 where x, = (x' , x2  , 	, xn). Finally, for any arrival 

Ispot-h t r 10, 	let t — and t + denote instants immediately prior to, and after the 

fl  fl 

l emma 1 

if 

i) 	 . 	/1 ) = 	ai xi(xl + 1). 
t 

(ii) If is any arrival epoch, then 

V(t 	ti. t 2 ,... 	= V(t +. x 1 ,... , 1 1  + 1,..., xn) 

where ai (xl + 1) = min a, (xi + 1). 

(ill) If there is no arrival during the interval It dt, tj, then 

V(:— dt, x l , x2 , 	, x") = V V(i, .ti,..., (x i  — 1) + , 	. , 	dt 

PT 
± (1 	M. dt) V(t, 	st.2 9  . . . xn ) 	). xi dt, 

se= 	 1=1 

where (x)+ = x if x > 0, otherwise (x) +  = 0. 

Proof 

Result (1) is a direct consequence of (2), defining the expression for the cost function 
K(T), as substitution will readily reveal. 

Result (ii) is but a formal mathematical statement of Algorithm 1. Since we have 
assumed that Algorithm 1 is being adopted as the routing policy for our network, result 
(ii) is trivially true. 

As for result (iii), suppose that there is no arrival during the interval Et — dt, tj. If 
x,_ d  = (x 1 , x2 , 	, x"), then the changes in x, are caused only by service completions at 
the individual queues. It will thus be seen that result (iii) is easily obtained using the 
relation 

W. 4, x2 , 	, x") = El VO, xl, 4, • • • X111 )/Xt dt = (x l  x2 , • - 

In establishing the optimal behaviour of Algorithm 1, we employ an indirect path. We 
first develop an optimal routing policy from dynamic programming considerations and 
show later that Algorithm 1 behaves identically with this policy. For this, suppose that re  
be the probability that an arrival be routed to the ith queue, at some arrival epoch t. 
Evidently 17., 1  re  = I. Again, the problem being one of dynamic routing, re , (i = 1, 
2, 	ii) in general vary with time. From dynamic programming considerations (An 
excellent treatment of dynamic programming is offered in Larson and Casti)w ) the 
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expected 
adopted. 

cost must satisfy the following equation irrespective of the routing policy 

V (I 	, X2, . , Am) = 
in I 

V(t +, x i , 	, x + 1 ,. . ., 

	

(9) 

at any arrival epoch t, where x,_ = (x i , x2 , 	, x"). Our interest is centered on arrival 
epochs rather than any other instants. 

The principle of optimality" )  implies that any segment of an optimal state space 
trajectory between the two given points is still an optimal trajectory between the 
intermediate points framing the segment. In consequence, it is easy to infer from the 
recursive equation (9) that at any arrival epoch t, the optimal routing choice should seek 
to minimize V(t +, x' 	x' + 1, . , x"). I n consequence of this observation, we have 
the following policy. 

Policy I 

Let t be any arrival epoch with x,_. = (x i , x2 , . . . , x"). The optimal routing choice for the 
arrival should be identified with the value of i over 11, 2, ... , n1 which minimizes V(t +, 

•, x` + 1,  

In other words. Policy 1 suggests that re  be made unity and other r1 , j0 i set to zero for 
the optimal routing choice i. The optimality of Policy 1 is the direct outcome of the 
validity of the recursive equation (9). We may now proceed to prove the optimality of 
Algorithm I. We will need a couple of more definitions to achieve notational elegance. 
To this end, let 

e, = (0, 0, 	, 1, 0, 	, 0) 
	

(10) 

where the ith entry is unity and the rest are zeros in the n-tuple. Now suppose that for 
x = (x' , . 	xn) an arrival is routed to the ith stream. The new state can be denoted by 
x + ei , which for our convenience, we denote as +,(x). Thus, 

+ 1 (x) = x + e, 

where x and 4 have been defined earlier. 

Theorem I 

Algorithm 1 is optimal w.r.t. dynamically minimizing the cost function K(T). 

Proof 

As outlined earlier, we establish optimality by proving identity with Policy 1. As rightly 
suits a recursive =lotion, we exhibit in what follows, a recursive proof. 
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Base step 

Without loss of generality, let T be the final arrival epoch. Clearly T + = T, the routing 
decision being assumed to consume infinitesimal time. With x.r _ = (x i , x2 , 	, f), we 

have, 

V (T 	, x2 1 	
xn )  = 	 +i(ir-)) 

but 

= 
n 

ri 	ar x l (x l  + 1) + 2a,(x i  + I) . 	 (12) 
i 	1- 

Since in (12) the first term inside braces is a constant, a chosen j will minimize V (T, 
+,(x 7-4) iff it minimizes eider' + 1). Thus, r 1 , where j is chosen to minimize ai (x' + 1) 
should be made unity and r,, i 	j, set to zero. Note that r„ (i = 1, 2, ... , n) constitute 
the decision variables of any routing policy. 

Recursive step 

Let us assume the recursive hypothesis - Algorithm 1 and Policy 1 behave identically, or 
in other words Algorithm 1 shows optimal behaviour, for some instant t +, where t is an 
arrival epoch (Note that a decision about the queue to which a new customer is to be 
routed is made at the arrival time. This decision is based entirely on the server 
parameters and the state of the system (i.e. the lengths of queues) at that instant. Thus 
departures from the system do not affect the routing decision directly. They only affect it 
indirectly by changing the state of the system. Since the state of the system is anyway 
taken into account in the formulation of the optimal policy, it is not necessary to consider 
intervening service completions explicitly in the proof. It suffices just to consider the 
arrival epochs.) 

viz., [in = arg min as (xl + 1))=--> 

m = arg min V(t +, +,(x)) 

where 
x, = x = (x l ,  

Define y = xg, i m 
ym = n1  + I. 

Clearly y are the components of +„,(x). 

(13) 

(14) 

Let al (yi + 1) = min ai (y` + 1). 	 (15) 

Two cases need to be distinguished now. 

Case (i) 

= m. 
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This qualitatively means that the mth stream qualifies for routing as determined by 
the criterion of Algorithm 1, at two successive arrival epochs, assuming no intervening 
service completions. 

Per Algorithm 1 

+„,(x) ) = V (t +, +,„(+m (x ) )). 	 (16) 
Also, since the mth stream constitutes the optimal routing choice for the given criterion, 
for the distribution +„,(x) = (x i , 	ft+ 1, 	, x"), so it will for a distribution + 1(x), 
= 1, 2, ... n. Thus we have (cf. Appendix 1 for a proof), 

V(t 	+,(x)) = V(t +, +„,(+ i (x))) (i = 1, 2, ... , n) 	 (17) 
under the control of Algorithm I. 

For the present case 

am (yin +1) = min ae (y i  +1). 
a 

From this and the recursive hypothesis (13), with y = +,„(x) 

V(t +, + m (+„,(x))) = min V(t +, +,(+„,(x))). 	 (18) 

as follows by modus ponens. 

The LHS of (18) is evidently equal to V(t 	+„,(x)) for case (i), while for the RHS 
observe that 

+ I ( +„,(x)) = +„,(+,(x) ). 

Thus, 

V(t 	+,(+„,(x))) = V(t +, +„,(+ , (x) ) ) 

—, + 1 (x)) 

by virtue of (17). 

All the foregoing considerations allow us to rewrite (18) as 

V(t 	+„,(x)) = min V(t 	+i(x)). 	
(19) 

This concludes the recursive step for case (i). 

Case (ii) 

0 m. 

This means that the distribution of the queue lengths {xi } is such that for two 

consecutive arrivals between which there are no service completions, the same queue 
does not constitute the routing choice twice, for the criterion used by Algorithm 1. 

Itt 
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In view of Algorithm 1, 

V( t— , +m (x)) = V(t +, -4-j (+ m (x))) j 54  m. 	 (20) 

For case (ii), 

421 (yj + 1) = min ai(y i  +1), j 54 m. 

From this and the recursive hypothesis (13), 

V(t +, +1 (+ m (x))) = min V(t +, +,(tm (x))). 	 (21) 

We also observe that 

+,(x)) = V(t +, + m (+,(x))), i S m 	 (22a) 

and 

V(r—, + m (x)) = V(t +, 4- 1 (+,(x))) 	 (22b) 

under the control of Algorithm 1. 

The RHS of (21) is transformed as follows: 

V(t +. +,(+ m (x)) ) = V(t +, + m (-4- 1 (x))), 

= V(t 	+ 1 (x)), iS m. 

As for V(t +, + m (+ m (x))) we know that it is greater than or equal to V(t +, 
+1 (+ m (x))). Hence we can write 

V(t 	+ m (x)) = min V(t 	+ i (x)) 
a 

(23) 

by virtue of (21), (22a, b), and the above considerations. That concludes the recursive 
step and the proof is complete. 

Algorithm 1 and Policy 1 have been shown to behave identically and hence the 
optimality of Algorithm 1 w.r.t. dynamically minimizing the cost function K(T). 

4. Simulation results and inferences 

Simulation of the problem was carried out using SIMULA 67, a powerful programming 
language providing for discrete event simulation, on the DEC 1090 system running the 
TOPS 10 operating system. The following user-specifiable features were incorporated in 
the development of the program: 

(i) selection of number of queues, 	 . 
(ii) selection of a service policy out of several, 
(iii) selection of mean service rates of each of the exponential servers, 
(iv) selection of the mean arrival rate of customers. 
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Table 
Performance of routing policies 

SI. 	No. of 	Waiting overhead cost 
no. 	arrivals 

RR Policy 	OP Policy' 	SS Policy' 

1 174 2214X0 13•20 56.17 
2 163 298.57 29•00 58.17 
3 87 1144)0 24-00 48-00 
4 96 73•00 1040 44.00 
5 220 666.53 21.00 56•43 
6 112 2231K) 15.00 39.00 
7 222 61310 2510 117.50 
8 116 47100 12400 37.00 
9 190 99•80 12400 63.43 

10 154 231-00 20410 454$0 
11 199 233.43 34.00 88.33 
12 147 183.00 14.08 46400 

' Round-Robin Policy; 'Optimal Policy; 'Send-to-Shortest queue policy. 
• The theory does not make any assumptions on the nature of the arrival 
time distribution. However, in computer simulation, for the sake of con- 
venience. the Poisson arrival process was used throughout. 

Incorporation of these features has facilitated computation of cost for various values of 
the parameters involved. Three distinct service policies — Round-Robin Policy (RR), 
Send-to-Shortest-queue Policy (SS), and Optimal Policy (OP) were implemented and 
cost computations carried out for diverse values of number of queues, mean service 
rates, mean arrival rate, etc. The entire collection of simulation results is compiled in 
Lakshmanan's thesis". However, in this paper we have collected in Appendix H a small 
typical portion of the results for our reflection. Specifically, for fixed values of the mean 
arrival rate, the number of queues, and the individual mean service rates given, we 
compare in Table I the performances of the three routing policies. RR has been included 
in simulation for purposes of comparison of performance. It is readily seen that the OP 
developed in the preceding section by far produces the best performance w.r.t. the cost 
defined for the parallel queueing network. These results bear out the desirability of 
adopting the OP in minimizing the running system cost — the waiting overhead defined 
by Gallagee. 

5. Conclusion 

In this paper, we have proposed a generalized version of the dynamic routing problem of 
the type most likely to be manifest in real life applications like computer network 
message switching and transfer line production systems. We have developed a routing 
algorithm, established its optimality, and verified the same through computer simula- 
tion. Before we conclude, we make a note that a modified version of the same routing 
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problem where the individual mean service rates of the exponential servers are not 

known a priori, is posed in Lakshmanan's thesis ll  and a learning automaton model of the 
modified problem has been proposed. It is expected that this paper will act as a stimulus 
for further research in extensions of the routing problem such as service centers with 
non-exponential servers. 
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Appendix I 

Here we show how to deduce (17) from the various considerations applicable to case (i) 
of the proof for Theorem I, given in Section III. To this end, let us define 

Z' = x` :4- 1 for the given i 	m 

(Al) 
From (15) it follows for case (i) 	= m) that 

+ 1) = min al (y i  + I). 	 (A2) 



(i) m i  =4 

(ii) m2 = 5  
(iii) m 3  = 4.6 
(iv) m4  = 5.8 
(v) m5  = 6 

(vi) m6 = 12 
(vii) m 7  = 16.8 

(viii) m8  = 11.8 
(ix) m9  = 9 
(x) m io  = 25. 
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From the definition of y l  (14), this in turn implies that 

am (x'n + 1) = min ai (x i  + 1). 	 (A3) 

Now, (A2) and (A3) together imply 

am (rn + 1) = min ai (Z 1 + 1). 	 (A4) 

It is easily seen that (A4) is true for all i = 1, 2, 	n. Realizing that Z 1  are the 
components of +1 (x). where x = (x'. x2  , . . . x"). (A4) is seen to indicate that the mth 
queue is the optimal routing choice for a distribution given by +,(x) at some arrival 
epoch. A formal version of this statement is 

V ( t 	+ I (x)) = 	+ 1  +„? ( +.(x) ) ) 
	

(A5) 

which is the same as (17) 

Appendix II 

Results of simulation on the generalized dynamic routing problem 

Number of servers (n) = 10 
Mean arrivals rate (A) = 10 

Individual mean service rates 

[0, T1 is the interval of observation. The waiting overhead cost defined in (2) relates to 

this interval. A simulation time of 30(X) sec. was used. For successive intervals [0, TI 

with T = 15 sec., the waiting cost was computed for each routing policy. A portion of 
the complete simulation results" is reproduced here. 

The (random) number of arrivals for several successive time slices of the same 

duration T and the associated waiting cost incurred by each policy are given in Table I. 

• See footnote below Table I. 




