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Abstract 

In this paper, two algorithms arc presented to solve integer linear fractional programming problems. 
The first algorithm is an extension of Bitran and Novacs method to solve a linear fractional program 
and the second algorithm is a refinement of the first. A numerical example is worked out by using both 
the algorithms, to illustrate tk c meth ods. 
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1. Introduction 

In this paper two algorithms are presented for solving integer linear ft actional program- 
ming problems. Their validity and convergence are also proved. 

The first. algorithm is obtained by modifying the algorithm given by Bitran and 
Novaes1  for a linear fractional programming problem, to the integer case. The proofs 
of the theorems given here are very much simpler compared to the proofs given by 
Bitran and Novaesl. 

The second algorithm is a refinement of the first algorithm and it employs a simple 
Check to decide whether the optimal solution, obtained at a particular iteration, to the 
parametric integer programming problem, is an optimal solution to the given integer 
fractional program. The second algorithm reduces by one, the number of iterations 
required to solve the given integer fractional program by the first algorithm. The same 
refinement can also be applied to the algorithm given by Bitran and Novaes' to solve 
the linear fractional programming problem. 

Both the algorithms are based on the parametric approach to the fractional program- 
ming problem given by Dinkelbach 3  and Jaganna.than 4 . To illustrate the algorithms 
a numerical example is solved using all the three algorithms. 
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2. Integer fractional programming problem 

Consider the following integer linear fractional programming problem 

Maximise (0 X OM' X + 

subject to 	AX = b, X? 0 
	

(2) 

and 	' is integral 
	

(3) 

where A is an (m x n) matrix, C, d, X are (n x I) vectors, b is an. (m x 1) vector, a, fl 
are scalars and the superscript t denotes the transpose. Denote the problem given 
by the expressions (1), (2) and (3) as problem P. 
Let 

S = {X e RVAX = b, X? 0, X integral}. 

It is assumed that (I) S is nonempty and bounded and (2) d' X + fl > 0 for all X in .5. 

For every real number 2, define the subsidiary integer programming problem P(1) 
as follows. 

Maximise 	(Cs X + a) - (GP X + fl) 
	

(4) 

subject to (2) and (3). 

F(A) denotes the optimal value of the problem P (2). 

3. Algorithm 1 

Step 1 : Let X be any feasible solution of P. Set i = 0. 

Step 2 : Set 20_1  = (0 Xi  OM' X i  + ft). Solve the integer programming problem 
P (44.1). If Xi is an optimal solution of P (14+0, then dkri  is an optimal solution of P. 
Otherwise let .44.1  be an optimal solution of P 01+0. Set I = i 	I and repeat step 2. 

3.1. Validity and convergence of the algorithm 

Theorem 1 : 	is a strictly increasing sequence. 

Proof : (Ct X, + a) 
- 	 (lit X4  + ft) = 0. 	 (5) 

Since X1  is not an optimal solution of P (14a) and Xi+1  is an optimal solution of 
P 

(C' X11  + — 	(di  X ri fl) o. 	 (6) 
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Hence 

(ct 14+1 + OM ' Z44 + ID > 

Theorem 2 : 	If Xi  is an optimal solution of P (244.1), then X4  is an optimal solution of P. 

Proof : 	Since Xi  is an optimal solution of P G1 4+1), it follows from (5) that 

(0 X + a) — A 44.1 (d' X + fl) 0 for all X in S 
	

(7) 

Hence 

(0 X + OM' X + fl) C.(0 X, + a)I(d. + P) for all X in S. 

Therefore cri  is an optimal solution of P. 

Theorem 3 : The algorithm converges in a finite number of steps. 

Proof : Since fle i  is a strictly increasing sequence, the X4  do not repeat themselves until 
termination. Since the number of integer solutions of P is finite, Xi  = X„.1  for some 
i and hence the algorithm terminates. 

Example 1: 	Consider ne following problem P1 . 

Maximise (7x1  + 9x2  + 3)/(3x1 + 4x2  + 2) 

subject to 

2x1  3x2  + x3  == 6 

3x1  2x2 + x4 = 5  

xi , x2  ?. 0 and integral 

X„ = (0, 0, 6, 5) is a feasible solution of 131  

Set 21  =-. 3/2. Consider the problem P 

Maximise (5/2) x 1  ± 3x2 

subject to (9), (10) and (11) 

= (0, 2, 0, 1) solves P (24). Set 22 = 21/10 

Consider the problem P (22) 

Maximise (7/10) x i  + (6/10) x2  — (12/10) 

subject to (9), (10) and ( 11 ). 

(8) 

(9) 

(10) 
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X2= 0,1 1 1 9 0) solves P (22). Set 23  = 19/9 

Consider the problem P (2 3) 

Maximise (6/9) x1  -1- 0/9) x2 - (1 1 /9) 

subject to (9), (10) and (11) 

=(l, 1 1 , 0) solves the problem P G13). 

Hence the algorithm terminates and orz  is an optimal solution of P1 . 

4. Algorithm 2 

The first algorithm terminates when X, is an optimal solution of P (2,44) for some i. 
In Algorithm 1, even after finding the optimal solution X i , we have to solve one more 
integer program before deciding that X4  is an optimal solution of P. If we had some 
means of checking the optimality of 14  at each iteration, we can stop the algorithm 
at the last but one iteration. Such a check is provided in algorithm 2. All the quanti- 
ties required for the check can be easily computed from the final simplex tableau at each 
iteration. 

At each iteration, we solve the problem P (2) for some value of 2 by Gomory 
method (see Hadley 5) and let 2 be the optimal solution of p (2). Let B be the basis 
matrix corresponding to the optimal solution I (The matrix B also includes the rows 
corresponding to the cuts introduced by Gomory method in solving P (2)1 Let 

ZI = B--' ai , Z =d ifla, 

for those columns a ;  of A not in the basis B 

(The columns of A also contain the columns corresponding to the slack variables corres- 
ponding to the Gomory cuts) (see Hadleye). 

Algorithm 2 : 

Step 1: Let X. be any feasible solution of P. Set I = 0. 

Step 2 : Set 2, 44  = (Cl Xi  -1- a)I(dt X i  +13). 
Solve the problem P (),;) by Gomory method. 

If X, is an optimal solution of P (2, ,,), then X4  is an optimal solution of P. Otherwise 
let X$4.1  be an optimal solution of P (444). Go to step:3. 
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Step 3 : Set XX11  and A =A.  

Compute the quantities ZI 	C.; and Zr t. di  corresponding Ws the non-basic variables 
xj  from the final simplex tableau for the problem P (A) 

— C 
Compute p = min 	( — 

	
(12) 

72  d • z 2  d > 0 --1 	I 

If — di < 0 for every j, take # = + 00. 

Step 4 : (a) If p = 	00, then 2 is an optimal solution of the problem P. (b) If 
± 00, compute 

F =(C'X -I- a) — p (IP +11). 

If F(p) 0, then I is an optimal solution of the problem P. (c) If F(p) > 0, 
set i = 	I and go to step 2. 

4.1. Validity and convergence of algorithm 2 

The convergence of this algorithm is proved in Section 3. The validity of the algorithm 
depends on the following results. 

Theorem 4 : 2 is an optimal solution and A, the optimal value of P if and only if 
EQ.) = 0 and X is an optimal solution of P (2). 

Theorem 5: 	For every X in S, the set A (I) = t2 eR I X is an optimal solution of 
P (2)} is a convex subset of R and henoe is an interval in R. 

Theorem 6 : In each interval A (X), F(2) is a piecewise linear function of). and hence 
is a continuous function of 2. 

Theorem 7 : F(2) is a strictly decreasing function of A and 

lirn FM= — oo and lint FM= oo. 
xe> + co 

Theorem 8 : If there exists A i  and 22  such that F (Al) > 0 and F (A2) < 0 and both 
(4) and P (22) have same optimal solution 2, then 2 is an optimal solution of P. 

Proof of validity of the algorithm 

if X, is an optimal solution of P (41), by Theorem 2, X4 is an optimal solution of P. 
Since 

A = 	= (Ct X + a)/(t1' X4  + 13), 

(C .  + a) — OP X4 +P)  0. 
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Hence F(ui) > 0. Since I is an optimal solution of P (A) 

(Zi Cj) — (Z1 — dj), 0 for all j. 

For Ai  k I is an optimal solution of P (A1) if 

(4-  — Cj) — (Z1 — di) 0 for all j. 

(14) is automatically satisfied if Z; — d r< 0 for all j. 

(14) is satisfied only when 

ZJ — C  —dj > 0 

(13) 

(14) 

(15) 

(i.e.), only when p Ai  where p is defined as in (12). 

Hence I is an optimal solution of P (Al) for A< Al < p. If p = oo, then by conti- 
nuity of F and Theorem 7, it follows that there exists some A i  > A such that F(1.1) =0 
and is an optimal solution of P (AI). Hence I is an optimal solution of P. If 
F(p) 0, then it follows from Theorem 8, that I is an optimal solution of P. 

Example 2 : 	Consider the Problem /31  given in Example I. 	X. — (0, 0, 6, 5) is a 
feasible 	solution 	of 	P1 . 	Set 	A1  = 3/2. 	X1  = (0, 2, 0, 1) 	solves 	P (A1). 	The final 
simplex tableau for the problem P (Ai) is given in Table I. 	Third row in Table I 
corresponds to the Gomory cut introduced in solving P (A s) and x5  is the slack 
variable corresponding to the cut. 

	

3/2. 	= 	= (0, 2, 0, 1). 

= (9, 7, 0). 4 = (4, 3, 0). 

	

Zit Cs =2, 	- d3  = 1. 

	

Z .t — Cs = I, 	d5  = 1/3 

p = min (2, 3} =2. 

F (A) = 6 > 0 and 	F ( p) = 1 > O. 

Set At = 21/10. X2 = (I, I, 1,0) solves P (A 2). 

The final simplex tableau corresponding to P (22) is given in Table II. Third row in 
Table 11 corresponds to the Gomory cut introduced in solving P (12) and x5  is the slack 
variable corresponding to the cut. 

'A == 22 = 21/10. I = X2 = (I, I, IA. 
Ca == (9, 7, 0), da  = (4, 3, 0) 
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Table I 

Basis 	Value of 	Xt 	XI 	X3 	Xi 	Xe 

basic 
variables 

x2  

X4 

Table ff 

Basis 

1 1 0 —2/3 

1 0 —1 0 1 

1 0 0 1 1 —5/3 

Value of 
basic 
vririables 

xi, x2  x3  x it x5 

X2 	1 	0 	1 	0 	—1 	1 

1 1 0 0 1 —2/3 

xa  1 0 0 1 1 -5/3 

214' C4 = 2, 

- C5 = 13/3, 	- = 2. 

/2 = 13/6. 

F() =1110 > 0 and F(p) = 3/6 < O. 

Hence 2 = (1,1, 1,0) is an optimal solution of P. 

Note : Using the first algorithm, we had to solve thrcc integer programs, whereas with the selyond 

one two integer programs sufficed. 
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