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Abstract

In this paper, two algorittms arc prescnted to solve intcger lincar fractional programming problcms.
The first algorith.m is an extension of Bitran and Novacs metlkod to solve a lincac fractional program

and the second algorithm is a refinement of the first. A numcrical cxample is worked out by using both
the algorithms, to illustrate tFe metkods.
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1. Introduction

In this paper two algorithms are presented for solving integer linear fiactional program-
ming problems. Their validity and convergence are also proved.

The first algorithm is obtained by modifying the algorithm given by  Bitran and
Novaes! for a linear fractional programming problem, to the integer case. The proofs

of the theorems given here are very much simpler compared to the proofs given by
Bitran and Novaes!. |

The second algorithm is a refinement of the first algorithm and it employs a simple
check to decide whether the optimal solution, obtained at a particular iteration, to the
Parametric integer programming problem, is an optimal solution to the given integer
fractional program. The second algorithm reduces by one, the number of iterations
required to solve the given integer fractional program by the first algorithm. The same

refinement can also be applied to the algorithm given by Bitran and Novaes' 10 solve
the linear fractional programming problem. '

Both the algorithms are based on the parametric approach to the fractional program-
Mg problem given by Dinkelbach® and Jagannathan!. To illustrate the algorithms
& numerical example is solved using all the three algorithms.
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2. Integer fractional programming problem

Consider the following integer linear fractional programming problem

Maximise (C'X + a)/(d' X + P) (1
subject to  AX =b5,X20 2)
and X 1s 1ntegral (3)

where A is an (im X ») matrix, C, d, X are (n X 1) vectors, b is an(m X 1) vector, q, §
are scalars and the superscript ¢ denotes the transpose. Denote the problem given

by the expressions (1), (2) and (3) as problem P,
Let

S={XeR'/AX =b,X>0, X integral}.
It is assumed that (1) S is nonempty and bounded and (2) 4° X 4 § > 0 for all Xin §.

For every real number 2, define the subsidiary integer programming problem P (})
as foliows.

Maximise  (C'X + o) — A(d' X 4 B) 4)
subject to (2) and (3).

F (/) denotes the optimal value of the problem P (2).

3. Algorithm 1
Step 1 : Let X, be any feasible solution of P. Set i =0.

Step 2 1 Set A,y =(C'X, 4+ a)/{(d'X; + B). Solve the integer programming problem
P (241). 1€ X, is an optimal solution of P (1,,,), then X,is an optimal solution of .
Otherwise let X,,; be an optimal solution of P (A1). Seti=i-+1 and repeat step 2,

3.1. Validity and convergence of the algorithm
Theorem 1 : ), is a strictly increasing sequence.
Proof : (C'X; +a) — An(d'X, +p =0. ©)

Since X, is not an optimal solution of P (4+) and X, is an optimal solution of
P()'H'l):

(C' Xia +a) — lia (d' X;a+p)>0. (6)
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Hence
)"'i'*"z = (C: Xi"!"l + G)/(d‘ XHI + ﬁ) > ;‘i-!-].‘

Theorem 2 : 1f X, is an optimal solution of P (4,,,), then X, is an optimal solution of P.
Proof : Since X, is an optimal solution of P (2,,), it follows from (5) that
(C'X+a)—An(dX+p<Oforall Xin S (7)
Hence
(C'X 4 a)(d* X + B) <(C* X, + a)/(d* X, + B) for all X in S.
Therefore X, is an optimal solution of P.
Theorem 3 : The algorithm converges in a finite number of steps.

Proof : Since A, is a strictly increasing sequence, the X, do not repeat themselves until
termination. Since the number of integer solutions of P is finite, X, = X, for some

i and hence the algorithm terminates,

Example 1: Consider the following problem P;.

Maximise (7x; + 9x; + 3)/(3x; + 4x, + 2) (8)
subject to

2% + 3%y 4+ %y = 6 9)
3%, +2x, +x, =5 (10)
X1, X, 22 0 and integral (11)

X,=1(0,0,6,5) is a feasible solution of P,
‘Sct 4y = 3/2. Consider the problem P (1))
Maximise (5/2) x; + 3x,
subject to (9), (10) and (11)
X, =(0,2,0,1) solves P(4). Set 2, = 21/10
Consider the problem P (4,)
Maximise (7/10) x, + (6/10) x, — (12/10)
subject to (9), (10) and (11).
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X, =(1,1,1,0) solves P(2). Set 23 =19/9
Consider the problem P (4g)
Maximise (6/9) x; + (5/9) x, — (11/9)
subject 1o (9), (10) and (I11)
X, =(1,1,1,0) solves the problem P (/).

Hence the algorithm terminates and X, is an optimal solution of P,.

4. Algorithm 2

The first algorithm terminates when X, is an optimal solution of P (4,,) for some ;
In Algorithm 1, even after finding the optimal solution X,, we have to solve one more
integer program before deciding that X, is an optimal solution of P. 1If we had some
means of checking the optimality of X; at each iteration, we can stop the algorithm
at the last but one uteration. Such a check is provided in algorithm 2. All the quanii-
ties required for the check can be easily computed from the final simplex tableau at each
iteration.

At each iteration, we solve the problem P (2) for some value of 2 by Gomory
method (see Hadley®) and let X be the optimal solution of P(2). Let B be the basis
matrix corresponding to the optimal solution X [The matrix B also includes the rows
corresponding to the cuts introduced by Gomory method in solving P(J)]. Let

Z} =CpB-'a, Zt =di B g,
for those columns a; of 4 not in the basis B

(The columns of A also contain the columns corresponding to the slack variables corres-
ponding to the Gomory cuts) (see Hadley®).

Algorithm 2 :

Step 1 : Let X, be any feasible solution of P. Set { =0
Step 2 Sel 2, q =(C' X, + a)/(d* X, + p).

Solve the problem P (}.,) by G;)mory method.

IT X; is an optimal solution of P (2,,,), then X, is an optimal solution of P, Otherwise
let Xi41 be an optimal solution of P (4,,,). Go to step’3.
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Step 3 . Set X=X, and i=).‘+l. “ o m g . il A

Compute the quantities Z; — C; and Z? — d, corresponding td the non-basic variables
x; from the final simplex tablcau for thc problem P (A)

. 2! h
Compute g = _min ( R 4) (12)
—d, >0\ —d,

If Zz — d;< 0 for every j, take u = + co.
Step 4 : (a) If 4 = + oo, then X is an optimal solution of the problem P. (b)) If
UF + oo, compute

F(u) =(C*X +a) — u(d' X + ).

If F(p) <0, then X is an optimal solution of the problem P. (¢) If F(u) >0,
set i=1 + 1 and go to step 2.

4.1. Validity and convergence of algorithm 2

The convergence of this algorithm is proved in Section 3. The validity of the algorithm
depends on the following results.

Theorem 4 : X is an optimal solution and 2, the optimal value of P if and only if
F(’) =0 and X is an optimal solution of P (4).

Theorem 5 : For every X in S, the set 4(X) ={Ae R| X is an optimal solution of
P(2)} is a convex subset of R and hente is an interval in R.

Theorem 6 : 1In each interval 4 (X), F(2) is a piecewise linear function of /4 and hence
1s a continuous function of A.

Theorem 7 : F(2) is a strictly decreasing function of A and

lim F(A) = —o0 and Iim F(2) = 4 oo.

A=>+4 00 A~>—00

Theorem 8 : 1f there exists A, and 4, such that F (Al) >0 and F(/,) < 0 and both
P(4) and P(.l) have same optimal solution X, then X is an optimal solution of P.

Proof oj validity of the algorithin

If X, is an optimal solution of P (2%441), by Theorem 2, X, is an optimal solution of P.
Smce

X = = (C* X, + )(d* X, + B,
(C*X, 4+ a) — A{d* X, + B) =0.
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Hence F(A) > 0. Since X is an optimal solution of P (3)
(22 — C) —A(2Z}—d)=0 for all j
For 2, > A, X is an optimal solution of P (4y) if
(Z — C)) — 4 (Z — d;) 20 for all J.
(14) is automatically satisfied if Z? — d,< 0 for all j.
(14) is satisfied only when

Z:'I T CJ

(i.e.), only when u=> 4, where u is defined as in (12).

(13)

(14)

(15)

Hence X is an optimal solution of P (4,) for A< 4, € u. If u = + oo, then by conti-
nuity of F and Theorem 7, it follows that there exists some 2y > A such that F(2) =0
and X is an optimal solution of P (). Hence X is an optimal solution of P. If

F(y) <0, then it follows from Theorem 8, that X is an optimal solution of 2.

Example 2 : Consider the Problem P, given in Example .

X,=1(0,0,6,5) is a

feasible solution of P,. Set A =3/2. X, =(0,2,0,1) solves P(4). The final

simplex tableau for the problem P (2;) is given in Table I.

Third row 1n Table |

corresponds to the Gomory cut introduced in solving P (4;) and x; is the slack

variable corresponding to the cut.
Asdy =30, X=X=(0,2.0;])
Ca=(9,7,0). dy=(4,3,0).
Z;—Cy=2, Zi—dy=1.

L —Cs=1, 2Z:—dy=1/3

g=min{2, 3} =2.

FAQ)=6>0 and F(y)=1>0.

Set 2, =21/10. X, =(1,1,1,0) solves P(1,).

The final simplex tableau corresponding to P(J,) is given in Table II. Third row in
Table Il corresponds to the Gomory cut introduced in solving P (4,) and x; is the slack

variable corresponding to the cut.

A=, =21/10. X=X,=(l,1,1,0).
CB =(9, 7, O), dﬁ =(4, 3, 0)
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Table I
e . e e T
Basis Valuc of Xy X3 x5 Xq X5
basic
variabies
XL 0 | 0 —1 0 1
X4 | 0 0 1 1 —5/3

Table II
S
Basis Value of xy Xy X3 Xg x5
basic
viriables
Xy 1 0 1 0 —] 1
Xy ] 1 0 0 | —2/3
X3 l 0 0 1 1 —35/3
Zy—iC, =133, 23 —d,=2.
i = 13/6.

FAQ)=1/10>0 and F(y) = —3/6<0.
Hence ¥ = (1, 1,1,0) is an optimal solution of P.

Note : Using the first algovithm, we had to solve three integer programs, whereas with the scoond

one two integer programs sufficed.
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