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APPLICATION OF MACLAURIN SERIES IN 
STRUCTURAL ANALYSIS 

BY K. T. SUNDARA RAJA IYENGAR* 
Received October 6, 1953 

SUMMARY 

In the simple theory of flexure of beams, the slope, bending moment, 
shearing force, load and other quantities are functions of a derivative of y 
with respect to x. It is shown that the elastic curve of a transversely 
loaded beam can be represented by the Maclaurin series. Substitution 
of the values of the derivatives gives a direct solution of beam problems. 
In this paper the method is applied to derive the theorem of three moments 
and slope deflection equations. The method is extended to the solution of 
a rigid portal frame. Finally the method is applied to deduce three results 
on which the moment distribution method of analysing rigid frames is 
based. 

I. INTRODUCTION 

The elementary theory of bending of beams based on the assumption 
that plane cross-sections of a beam remain plane after' deformation gives 
the following equation for the bending moment at a point in a beam. 

El d2y1dx 2  = M 1  

By successive differentiation, we have 

EI d3yldx 3  = — V 

EI d4y1dx4  = q 

where 	E = Modulus of elasticity of the material. 

I = Moment of inertia' of the section about the neutral axis. 

M= Bending moment at any point. 

V = Shear at the point. 

= The intensity of the distributed loading. 

Equations 1 .1 to 1.3 represent the 'biography' of the bent beam as shown 

in Fig. I. 
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FIG. 1 

In an analytical solution, the orthodox method of solving the beam 
. _ 	 sarmatinn (1 .11 the constants of 

problem is by successive IntegraULM tn. %turn-. 

integration being given by the end conditions of the beam. 

2. REPRESENTATION OF THE DEFLECTION CURVE BY 
MACLAURIN SERIES 

fly = f (x) represents the elastic curve for the beam under consideration, 

the values of y at any point distant 'X' from the origin may be given by the 

Maclaurin Series 

(x) = f (0) + xil 11i (0) ± x2/2! ti (0) ± x313! iii (0) 	. . . . 
(2-1) 

Where f , f (0),- ...f" 
(0)1 etc., denote the valuts of 

f(x) ano its deriva- 

tives at the origin, x =--- 0. Thus we have, 
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f (0) = y0  (deflection at the origin) 

f 1  (0) = 00  (slop at the origin) 

fit (0) 	Mo/ E1 

jiff (0) = 	Vo/EI 	
(2.2) 

iv  (0) = gal 

• v =v 0  + 00 v — U NISEI *X 2  — * Vo/Et • X3  + go/EI ° X4  + • • • . (2.3) 
The great advantage of using this equation for the elastic curve lies in 

the fact that most often, the physical nature of the problem or simple require- 
ments of statics, define the values of y o, 00, M01  Vo  and go. e.g., In a simply 
supported beam as shown in Fig. 2 (i), if A is taken as the origin, the end 

RI 

A 

A 

Fla. 2 

conditions are yA  =--- _v s  0 and M A = M B = 0. VA  and VB  are known from 

statics. Hence Equation (2.3) can be completely written and the required 
quantity can be calculated at any point. The series form for the deflection 
curve will be 

y = 00x — +!0/2 EI.x 3  1! qx4/EI 	
(2.4) 

Substituting x = I, we have 

00  -= 1 /24 03/El. 	 (2.5) 
(2.6) 

y = 1 /24 . q/3/EI — 1 /12 ql x 31EI + 1 /24 qx4/EI 
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Substituting x ==1/2 in (2.6), we get the maximum deflection. 

Yvtax -a= 5/384 .q14/EI 
(2•7) 

In the case of a fixed beam [Fig. 2 (ii)} y A = yB = 0 and OA = OBI= 0, VA  and 
Vs can be calculated from statics. Hence the series for y can be written 
down easily. 

3. CASE OF AN ARBITRARY LOADING 

Representation of the elastic curve y - f (x) by the Maclaurin series, 
assumes the continuity of the function representing the deflection curve, 
and all its derivatives. However, in the case of a concentrated loading, 
there occurs a discontinuity in the shear force at the point of application 
of the load, i.e., a discontinuity in the 3rd derivative of the deflection curve. 
Similarly a couple acting at a point produces 4 discontinuity in the bending 
moment curve at that point, i.e., in the 2nd derivative of the function. To 
include all such above cases, the equation (2.3) for the elastic curve can be 
modified as an extension of Macaulay's method. 

Referring to Fig. 3 the modified equation will be 

y = 00.x- — 1/2! G/EI (x — b) 2 	1/3! Vo/EI X 3  ± WjEI (x a) 3  

+ 1/24 qx4/EI 	(3.1) 

no. 3 

The terms in the brackets should be interpreted as below: 

(z)n = zn if z is positive, 

(z)n = 0 if z is negative. 

With such modifications, the method is capable of generalisation for dis- 
continuities in y, 0 or in the derivative of the distributed loading. In all 

the above cases, the flexural rigidity El is assumed to be constant. How- 
ever, the method is readily applicable to the solution of beams of varying 

cross-sections as shown by Hetenyi. 2  
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4. THEOREM OF THREE MOMENTS FOR A CONTINUOUS BEAM 

The series form of the deflection curve can be applied to derive the 
theorem of three moments for a continuous beam shown in Fig. 4. 

MA 	CV, 	 Ch. 	 M 9: 111111441 .,  .44414114114111111:
r  

11' 
A 
	 L s    	

Fre,. 4 

Consider the span BC. Taking B as the origin, applying equation (2.3) 
for the span BC, 

Y = oBx — 1/2 . M B/EI - xr  — 1 /6 Vat -x 3  + 1/24-q2/E1-x4 	(4.1) 

Putting x = / 2, 

yc  =OB/2  —/2 - M B/Ele 4 2 — I /6 V B/EI /2 3+ 104 gal /24 	(4.2) 

Differentiating twice equation (4.1) 

d2y1dx 2  = MB /El - V BIET - x 	1/2 q2/E1-x 2 	 (4.3) 

Putting x = 1 2- 

— Mc — B — 	+ q212212 	 (4.4) 

Eliminating VB  from equations (4.2) and (4.4) 
— Mc/2 2/6 — El. yc  = — El 08/2 	M E 12 2/3 q2/24/24 	 (4.5) 

There are no concentrated loads between A and C except the reaction at B. 
Hence the same equation holds good for the span BA (9 13  becomes negative). 

2/6 	EIYA E19811 	MB 4 2/3 	q1 44/24 
	 (4.6) 

Eliminating O B  we have, 

MAii + 2  M B + /2) + Md2 = — 6 El (YE + 	q,4 314--g2/2 3/4  

(4•7) 

which is the Theorem of Three Moments for the continuous beam in Fig. 4. 
In a similar way any type of loading can be treated. 

5. SLOPE-DEFLECTION EQUATIONS IN STRUCTURAL ANALYSIS 

• 	 The Slope-deflection equations can be conveniently derived for a mem - 

ber of a framework, using the series form of the deflection curve. ,Let 
AR 

e  a member of a framework rigidly connected at A and B to other members 
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of the frame. Let it carry a uniformly distributed load of intensity 

q 
(Fig. 5). 	 • 
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The restraining moments at the ends A and B are M 48  and MBA. 
Taking A as origin, applying equation (2.3) for the elastic curve of the 

beam AB, 

= 0A - x — 1/2! M AB/E1*X2  - 1/6 V AB/EI .x 3  + 1/24 .0/El 	(5.1) 

dyfdx =9A 	M 48/E1-x— I /2 . VAB/EI -x 2  + 1/6•qx3/EI 	(5.2) 

and 

d2y1dx 2  = M AR /El — V ABIEI- x 1/2.qx 2/EI 	 (5.3) 

Substituting x 	/ in the above equations, we have 

d = OA */ - 1/2 . M AB/E1. /2 	1/6 VAB/EI • /3  ± 1/24 -qP/EI 	(5.4) 

9B =  °A 	MAB/EI - 1/2 VAB/E1 • / 2  + 1/6 q13/EI 	 (5 .5) 

M BA =  MAR-  VA& / 1/2 q/2 	 (5.6) 

Eliminating VA B from these equations, we obtain the standard slope- 
deflection equations for the beam AB. 3  

MABar- 2 EI//- [2 OA  + 00 - 30] q/2/12 	 (5.7) 

MBA = 2 EV/• [OA  + 2 OR 3d11]+ q12112 	 (5 . 8) 

6. APPLICATION TO RIGID FRAME 

Consider a hinged portal frame with a single concentrated load on the 
horizontal member at its centre, Fig. 6 (1). 
The bent shape of the frame is shown in dotted lines. In the analysis, we 
neglect the change in length of the bars and the effect of axial forces on the 
bending of bars. The frame can be considered as made up of three beams 
as shown in Fig. .6 (ii). 
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Consider the horizontal beam BC. 	Taking B as the initial point, writing 
the deflection curve in the series form, 

y =-- 08 -x ± 1/2 M/EI•x2  — 1/6 VB /EI•x 3  + 1/6 	(x //2) 3 
	

(6.1) 

dy/c/x = OB+  M/EI • x — 1/2 - Val -x 2 + 1/2 WEI (x — 1 12) 2 
	

(6.2) 

d 2y1c1x 2  = Min — V B •x/EI 	(x — 10) 
	

(6.3) 

Substituting x = / and eliminating O B  and VB 

Oc = M//2 El — 1/16 P/ 2/El 
• 

Applying similar equations to the member DC, 
and assuming uniform El throughout the frame, 
Since C is a rigid joint, Oc = O'c  

(6-4) 

taking D as the initial point 
we obtain O'c 	Mh/3 El. 

M//2 El — 1/16 P/ 2/El = M11/3 El 	 (6.5) 

.•. M = P//8-1/1 	 (6.6) 

The above equations can be modified for different types of loading sym- 
metrical or asymmetrical. 

Application of this method to rnultistoreyed frames, including sway 
effects, will be considered in a subsequent paper. 

7. Using the method of series expansion for the deflection curve, three 
results will be deduced on which is based the Moment Distribution Method 

 

Di- analysing rigid frames. 
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problem I. Given AB, a member of a frame or a section of a 
beam under any system of transverse loading, it is required to find the 
external couple required to produce an additional rotation 0 at B such that 
there is no additional deflection at B and additional slope and deflection at 
A are zero. 

Taking A as the origin, considering only additional loads and deflec- 
tions, the series expansion for the deflection curve will be 

Y = yA  OA •x — 1/2 M A/El - x 2  — 1 /6 VA /El .x3  

dy/dx 0.4 — M A -AVEI — 1/2 V A/El X 2  

d2y/dx 2  = M A/E 1 VA/El.x 

From the conditions of the problem, we have 

IA = YR -a= a OA = 0 and 9 B 

from which we obtain the external couple required at B 

MB =  2 MA =  4 MOH. =-- 4 EKO where I// = k 

and the couple required at A will be MA=  1/2.M B . 

Thus we have the first 
AB without change of dell 
and position, the external 
external moment required 
same direction. 

result: To produce a rotation 
.ction at B and the end A being fi 
moment required is proportional 
at the end A is half the above 

at B of a beam 
iced in direction 
to Eli° and the 
moment in the 

Problem 11. It is required to find the external moment required to 
produce an additional rotation at B and no deflection, the end A being 
fixed in position but not in direction. 

In this case we have yA = 0, MA  =0. The deflection curve for the 

beam AS takes the form 
(7.4) 

(7.5) 
Yx 7= OA  ex — VA/6 E1 x 3  

' e s Ox s"-= 	V A/2 Et •x 2  

• when x = y =-- 0, O B  re' 0 

•'. VA = 6 El//2 - OA 

MB and 
=a-  VA' / 	6 EU/. OA  = 3 El. 911-=3Ek 0  

Hence the external couple required at B, MB = 3Ek0. 

(7.6) 

(7.7) 
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Problem 111.—It is required to find the external moment required to 
produce an additional deflection A at B without rotation. A is fixed in 
position and direction. 

The equation for the deflection curve will be 

yx = - M A/2 EI sx 2  — VA/6 El x3 	 (7.8) 
Ox r- M A/EP — V A/2 Ei.x2 

(7 . 9) 

and 	 Mx= MA VAX 	 (7.10) 

When x =1, y = /1 and 0=0. 

These conditions give 

El A = — MA/2/2 — VA/3/6 	 (7.11) 

0 = MAllEI — VA/2/2 El 	 (7.12) 

MB = - MA V A/ 	 (7.13) 

from which Mg = - 6 El 	MA• 

Hence, the external moment required to produce an additional deflection 
A at B without rotation, the end A being fixed in position and direction is 
— 6 EkAj/ and the couple required at A is also the same. 

8. ACKNOWLEDGEMENT 

The author records his sincere thanks to Prof. N. S. Govinda Rao for 
his encouragement. 

REFERENCES 

I. Timoshenko, S. 	Strength of Materials, 1951, 135. 

2. Hetenyi, M. 	.. Jour. Franklin Inst., Nov. 1952, 254, No. 5, 369-80. 

3.
Thomas, F. Hickerson.. Statically Indeterminate Frameworks, 1949, 4. 


