SOME TECHNIQUES FOR STRUCTURE FACTOR CALCULATIONS

By S. Ramaseshan and R. V. G. Sundara Rao (Department of Physics, Indian Institute of Science, Bangalore-3)

Reccived November 6, 1956

Abstract

Although the computations involved in crystal structure analysis by X-ray methods are very well known, certain procedural techniques in effecting the same have been found to economise both time and effort. In this paper, some of the techniques for calculating two and three dimensional structure factors are described.

Introduction

The computational work involved in crystal structure analysis by X-ray methods consists in the main two types of calculations. Given a set of Fourier co-efficients, called the structure factors, the electron density $\rho(x, y, z)$ in the unit cell is obtained by the sum:

$$
\begin{equation*}
\rho_{(a y z)}=\frac{1}{\mathrm{~V}} \int_{h} \int_{-\infty}^{\infty} \int_{i}^{\infty} \mathrm{F}_{k k l} \cos \left\{2 \pi(h x+k y+l z)+a_{h k k}\right\} \tag{1}
\end{equation*}
$$

Without any loss of generality, we confine ourselves to centrosymmetric structures only. The phase \pm of the Fourier coefficients is then implied in the definition of structure factor.

The other type of calculation involved is as follows: Given the fractional coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ of the various atoms in the unit cell, the structure factor $F_{k k l}$ for the reflection from the plane ($h k l$) is computed from the formula

$$
\begin{equation*}
\mathrm{F}_{k k l}=\sum_{i} f_{i} \cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right) \tag{2}
\end{equation*}
$$

where i runs over all the atoms in the unit cell and the atom is situated at (x_{i}, y_{i}, z_{i}). While Equation (2) is the most general form for a centrosymmetric structure, it often reduces to one or other of the following forms (or forms similar to these):-

$$
\begin{align*}
& \mathrm{F}_{a k l}=\sum_{i} f_{i} \cos _{\sin } 2 \pi\left(h x_{i}+k y_{i}\right)_{\sin }^{\cos } 2 \pi l z_{i} \tag{2a}\\
& \mathrm{~F}_{n k l}=\sum_{i} f_{i} \sin _{\sin }^{\cos } 2 \pi h x_{i} \cos _{\sin }^{\cos } 2 \pi k y_{i} \cos _{\sin }^{\cos } 2 \pi l z_{i} \tag{2b}
\end{align*}
$$

Since most of the work is done using two dimensional projections the more important forms of (2) are:-

$$
\begin{align*}
& \mathrm{F}_{h k 0}=\sum_{i} f_{i} \cos 2 \pi\left(h x_{i}+k y_{i}\right) \tag{2c}\\
& \mathrm{F}_{\lambda k 0}=\sum_{i} f_{i} \cos \sin 2 \pi h x_{i} \cos 2 \pi k y_{i} \tag{2d}
\end{align*}
$$

The magnitude of the work is often considerable, depending on the number of atoms in the unit cell and the number of reflections observed. To calculate the trigonemetric factors in the above formulæ various machines are in use such as the I.B.M. and the Hollerith machines of the digital variety and the S-FAC ${ }^{1}$ of the analogue type, existing in Professor Pepinsky's laboratory. Many other mechanical devices of a more modest type have also been designed by various workers to do the same. Numerical tables listing the values of cosine or sine for values of x from 0 to $1 \cdot 00$ divided into suitable equal parts and h running from 0 to about 30 have been published by Buerger ${ }^{2}$ and others. Pepinsky and his co-workers devised an elegant table ${ }^{3}$ for calculating the trigonon etric factors of the type

$$
\begin{align*}
& \pm \cos _{\operatorname{siu}}^{\cos } 2 \pi h x_{i} \operatorname{cis}_{\sin }^{\cos } 2 \pi k y_{i} \tag{2e}\\
& \pm \sin _{\sin }^{\cos } 2 \pi h x_{i} \sin _{\cos } 2 \pi k y_{i} \tag{2f}
\end{align*}
$$

During the course of our work, it was found that this table can be extended in its use, by adopting certain procedural techniques to economise the labour involved. These methods are described below.

Computational Methods

Before proceeding further, it is necessary to explain how the table, reproduced below (Table I), is constructed. Putting $\cos 2 \pi h x=\cos 2 \pi \theta$, the interval of $(0-1)$ for θ completes ore full cycle for the argument of the cosine. This interval is divided into 100 equal parts and the cosine for each is tabulated in the first horizontal row (Row 1, Table 1). Similarly taking $\cos 2 \pi k y=\cos 2 \pi \phi$ the value of $\cos 2 \pi \phi$ for values of ϕ at intervals of $1 / 100$ is tabulated in the first vertical column (Column 1, Table I). The product $\cos 2 \pi h x \cdot \cos 2 \pi k y$ for any $h x=\theta$ and $k y=\phi$ is then evaluated and written at the intersection of the respective values of θ and ϕ in the Table. Remembering that

$$
\cos 2 \pi \theta=-\cos 2 \pi\left(\theta+\frac{1}{2}\right)=+\cos 2 \pi(\theta+1)
$$

we can easily see that if θ lies between $\cdot 25$ and $\cdot 75$ the value of the cosine is negative and at all other places it is positive. A simple colour code is adopted in the table to indicate this. The argument $h x$ in intervals of 01 is typed in four rows (Table I C) with the first and the fourth rows in black type ard the second and the third rows in red. (Here the second and the third rows are printed in bold face.) If θ is in red, the value of the cosine is negative and if in black, it is positive. In evaluating $\cos 2 \pi h x \cdot \cos 2 \pi k y$ therefore, if both the arguments agree in colour, the product is positive and if they disagree, the product is negative. Remembering this colour code, one can therefore find out all such products from Table I. In practice, the argument ϕ is typed in four vertical columns, the middle columns

 டஜ゙

 おんも

 ©
[printed in bold face in Table II (a)] being actually typed in red, on a small strip of the same size as shown in Table II (a) and $\mathrm{II}(b)$. If it is desired to calcualte $-\cos 2 \pi h x \cos 2 \pi k y$, the colours in the above strip, Table II, are interchanged. Actually a single strip with the four columns typed on both sides, one side having the outer columns in black and the other side having the outer columns in red serve to represent $k y=\phi$ for $+\cos 2 \pi k y$ and $-\cos 2 \pi k y$ respectively. Likewise to evaluate $\pm \sin 2 \pi \theta \sin 2 \pi k y$ another strip with the columns as arranged in Table II (c) and $\mathrm{II}(d)$ is preprared with the bold face as indicated in the above tables. When evaluating $\sin 2 \pi \theta \sin 2 \pi \phi$ the horizontal rows marked (S) in Table I are used.

Table II

$+\cos$(a)				$+{ }_{(b)}^{+\sin }$				$-\cos$ (c)				$\begin{aligned} & -\sin \\ & (d) \end{aligned}$			
100	50	50	00	75	75	25	25	100	50	50	00	75	75	25	25
99	51	49	01	76	74	26	24	99	51	49	01	76	74	26	24
98	52	48	02	77	73	27	23	98	52	48	02	77	73	27	23
97	53	47	03	78	72	28	22	97	53	47	03	78	72	28	22
96	54	46	04	79	71	29	21	96	54	46	04	79	71	29	21
95	55	45	05	80	70	30	20	95	55	45	05	80	70	30	20
94	56	44	06	81	69	31	19	94	56	44	06	81	69	31	19
93	57	43	07	82	68	32	18	93	57	43	07	82	68	32	18
92	58	42	08	83	67	33	17	92	58	42	08	83	67	33	17
91	59	41	09	84	66	34	16	91	59	41	09	84	66	34	16
90	60	40	10	85	65	35	15	90	60	40	10	85	65	35	15
89	61	39	11	86	64	36	14	89	61	39	11	86	64	36	14
88	62	38	12	87	23	37	13	88	62	38	12	87	63	37	13
87	63	37	13	88	62	38	12	87	63	37	13	88	62	38	12
86	64	36	14	89	61	39	11	86	64	36	14	89	61	39	11
85	65	35	15	90	60	40	10	85	65	35	15	90	60	40	10
84	66	34	16	91	59	41	09	84	66	34	16	91	59	41	09
83	67	33	17	92	58	42	08	83	67	33	17	92	58	42	08
82	68	32	18	93	57	43	07	82	08	32	18	93	57	43	07
81	69	31	19	94	56	44	06	81	69	31	19	94	56	44	06
80	70	30	20	95	55	45	05	80	70	30	20	95	55	45	${ }^{05}$
79	71	29	21	96	54	46	04	79	71	29	21	96	5	4	${ }_{0} 04$
78	72	28	22	97	53	47	03	78	72	28	22	$\stackrel{97}{98}$	53	48	02
77	73	27	23	98	52	48	02	77	73	27	23	98	51	49	01
76	74	26	24	99	51	49	${ }_{00}^{01}$	76 75	74 75	$\stackrel{26}{25}$	25	100	50	50	00
75	75	25	25	100	50	50	00	75	75	25	25	10			

The mode of evaluating any product is thus obvious. To illustrate the method the following example is given. For the sake of simplicity, two dimensional data are taken up and we shall assume that it is desired to evaluate the structure factors of the type $h k 0$, for a fixed $h,(h=3$ say $)$ and a running k. Let us suppose that h and k run from 0 to 10 and the trigonometric factor in $F_{k k i}$ is of the type $\cos 2 \pi h x_{i} \cos 2 \pi k y_{i}$. Let $x=-12$ and $y=\cdot 15$. The following Table III is prepared. In evaluating $h x$ it is obvious that only the non-integral portion of $h x$ or $k y$ need be taken. Thus $h x$ for $h=9$ and $x=\cdot 12$ is actually $-1 \cdot 08$. But $\cos 2 \pi=(1 \cdot 08) \cos 2 \pi(\cdot 08)$.

Table III

The strip [Table II (a)] is placed at $\cdot 36$ in the horizontal row and values of $\cos 2 \pi(3 x)$ $\cos 2 \pi k y$ are read off by noting the value against $0, \cdot 15, \cdot 30$, etc., on the vertical strip. The proper sign is to be attached by following the colour code: thus $\cos 2 \pi(\cdot 36) \cos 2 \pi(\cdot 15)$ is negative, equal to -.37 while $\cos 2 \pi(\cdot 36) \cos 2 \pi(\cdot 60)$ is positive equal to $\cdot 52$ because $\cdot 36$ is in red, $\cdot 15$ is in black and $\cdot 60$ is in red. It is found that preparing an initial table for every atom with co-ordinates (x_{i}, y_{i}, z_{i}) of the values of $h x_{i}$ and $k y_{i}$ as in Table III is quite expeditious in later work. Often one has to separate, say, the even and odd h 's and k 's. The odd ones may be marked off in the coloured pencil so that one can readily identify the required type of h or k.

This table is devised for the evaluation of products. It is often customary to evaluate $\cos 2 \pi\left(h x_{i}+k y_{i}\right)$ by using a different machine or by expanding the expression and writing it down as the sum of the products of cosines and sines. The purpose of this paper is to show that Table I can be used for calculating any type of structure factor for two or three dimensional work. In fact, with the procedure outlined in what follows, this table is found to be much more expedient for the evaluation of the factors of the type $\cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)$. The procedure
given below is with the aid of the Marchant calculating machine; but it can be adopted for any other standard calculating machine.
(1) Calculation of the Type $\cos 2 \pi\left(h x_{1}+k y_{i}\right)$: For the sake of simplicity, two dimensional data is taken up first. We shall assume that h is constant and k is the running index. The machine is operated in the " stop" position so that the carriage does not move. First, the non-integral portion of $h x_{t}$ is punched into the machine. Then the value of y_{i} is locked in the panel of the machi e. Then by repeated pu iching on the addition (+) key, one gets the value of $\left(h x_{i}+y_{i}\right),\left(h x_{i}+2 y_{i}\right)$, etc. Taking the non-integral portion of the same, one can directly read off the value of the cosine from the very first row of Table I. After a little practice, one usually remembers the first row, so that with each punching of the $k y_{i}$ value one can write down the value of the cosine itself, even without referring to the table. After exhausting all $k y_{\text {}}$, the machine is cleared, the rext value of $h x$, i.e., $(h+1) x$ is put in and the process repeated, till all the h 's are completed. The same proredure is adopted for all the atoms in the unit cell, or as done in practice, for the asymmetric unit.
(2) Type $\cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)$: It is easy to see that the above process can be extended without difficulty to the three dimensional structure factors. All that is necessary is to keep two of the indices constant and use the third as the running index, a procedure which sho uld be ad opted in any computation. Herce taking the l index as the running index, the value of $\left(h x_{i}+k y_{i}\right)$ is punched into the machine and then for getting ($h x_{i}+k y_{i}+l z_{i}$) assuming O to L the maximum value l, the procedure is the same as in case (1).

If it is desired to calculate $\sin 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)$ the procedure is similar using of course the horizontal rows (S).
(3) Type $\cos _{\text {sin }}^{\cos } 2 \pi h x_{i}$ in $2 \pi k y_{i} \sin _{\sin }^{\cos } 2 \pi l z_{i}$: A trigonometric product of this type can be calculated in many ways. But in practice we found the following as ultimately less time-consuming. Every product of the above type can be written as the sur of four cosines or sines. Thus for example

$$
\begin{aligned}
& \cos A \cos B \cos C \\
& ==1[\cos (A+B+C)+\cos (A+B-C) \\
& \quad+\cos (A-B+C)+\cos (A-B-C)]
\end{aligned}
$$

Hence the procedure is only a slight variatio i of the one in case (2). This leaves us with only four additions ultimately which is far simpler in operation than multiplications every time.

A variation for this case, which may sometimes be found easier, is to list the values of $\cos 2 \pi h x_{i}, \cos 2 \pi k y_{i}, \cos 2 \pi l z_{i}$ fo, all the values of h, k and l separately from the first row of Table I and then effect the multiplication.

40 S. Ramaseshan and R. V. G. Sundara Rao

References

1. R. Pepinsky, .. 'Computing Methods and Phase Problem in X-Ray Crystal Analysis, Pennsylvania State University, 1952.
2. M. J. Buerger .. Numerical Structure Factor Tables, The Geological Society of America, 1953.
3. Eiland, P. F. and Pepinsky, R. Number Field for Structure Factor Calculations, Pennsylvania State University.
