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INTRODUCTION 

Torsion problems of solid and hollow prismatical bars of uniform 
cross-section have been solved by various workers. okuboi recently deve- 
loped an approach for the torsion problem of a prismatic cylinder. The 
technique of the relaxational approach to these problems has been used 
by Southwel1. 2  The solution for the torsion of the equilateral triangle 
problem has been given by him. Similar problems have been solved by 
Shaw and others. 

The determination of stress distribution in a prismatic bar with uni- 
form cross-section subjected to torsion consists in finding the stress func- 

tim 	The stress function # satisfies the differential equation 

21/1  v 	 — 	 (1) 
Dx2  

at every internal point of the shaft and satisfies the boundary condition 
that has a constant value on the boundary. Without loss of generality 
we assume to be zero on the boundary. 

The corresponding stress components are 
(2) b111 	Xz 	
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where 7. denotes the angle of twist per unit length and it, the modulus of 

rigidity. 
To work with non-dimensional units we put = D 2X, where D is some 

representative length in the cross-section so that X is purely numerical. 

Writing 
x 	y =--- 	 (3) 

so that 	y' are numbers and substituting in equation (1) we obtain 

---= 2X 	
2X 

m = 
X 	.37r2 	 (4) 

an equation involving purely numerical quantities. This equation is now 
replaced by approximate relations involving finite differences. We next 
proceed to the evaluation of the wanted function X, at a large number of 

nodal points within the specified domain. 

To start with we employ triangular net so that there is only one internal 
node 0, at the centre of the hexagon. Let Di denote the length of a side 
and a, the mesh side, The partial differential equation (4) is now replaced 

by equations of the type 

X/  + X2  ± X 3  ± X4  -1- X5  ± X6  — 6X0 — 32- • 2a2 	(5) 

the values of X at the six nodal points where Xi (i 	1, as..., 6) denote 
A, B, C, D, E, F around 0. 

Here Xi 	0 (i ----- 1, 2, .. , 6), since all these points are on the boundary. 
Also a = 1. Hence X 0, the displacement at 0 is given by 

° 
I 	3 	1 	 (i) — • 2 — 
62 —  2 

The equation (5) of finite differences written as 

x, + x2  + x3  x4  + x51+  x6  — 6X0 	Na 2  O 	(6) 

(N denoting the number of meshes adjoining each node, N =--: 6 in the case 
of triangular nets) represents the equation of equilibrium at the node 0. 

In general, equation (6) is not true since the values of X around arlY 
node are only assumed values and hence will not be very close to correct 
values. So we have to replace equation (6) by the equation 

8 	 (7) 
E xi — 6X0  iNa2  F0  

iszi 
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where Fo  denotes the residual force at 0. The problem can be considered 
to be solved when the residual force at each nodal point is reduced to zero 
or a negligibly small number. 

Equation (7) can be rewritten in the form 

F0  = F0  + F0 	 (8) 
6 

where F0  Z 	6;1  is the force at 0 due to the displacements and ----- 

F0  = N a 2. , is the external force applied at 0. 

We now proceed to finer and finer nets. The second advance is to 
hexagonal nets with the centroids of these six triangles of the original tri- 

angular net as nodes. Now the mesh side a= —
1 and N = 3. Denoting 

these new nodes by Ai (1 --z--1, 	6) the values of the trial displacements 
at each nodal point are calculated as follows. The external force at A 1  is 

FA3  = Na2  == 	(v---1:-3-)2 =--- 

The force at A 1  due to displacements is 

FA3 = X0 XA X B  3XA:  

= 1+ 0 + 0 3XA 1  

The residual force at A 1  is 

FA = 	3XA1  by eqn. (8) 

and it will vanish if XA1  

From consideration of symmetry, 

= 1 s 2'. 	.3 6) 	 (ii) 

The third advance is to triangular nets in which a = f; since six surround- 

ing nodes round each nodal point of this third net at wilich the values of 
X are known cannot be found, we take N=-- 3, in the calculation of the trial 

displacements. 

Let Bls B2) •B6 denote the centroids of triangles 

I • • °AGA, and C1, 	C6 9  the centroids of triangles 

AA1A6 . Then 

FBi 	iNa 2  :=-- 4 -3 . (1) 2  = 

FBI  ==xo  xjki + xits - 34, 

31/4 

' 6 ' FBI  = 	 31/4 

FBI  will vanish if XB:  

0A1A2, 0A2A. 3, 
CA2A37 
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By symmetry 	X134 	(i = I, 2, 	6) 
(iii) 

Similarly, 

Fol 	XI/ + 	XA0 3XCI 

=o - -F 	3Xc1  

Fc, 	I + — 3xe1  

.e.F , 
== 0 f 

Again by symmetry 

Xci 	= I, 2, . 	, 6) 	 (vi) 

If D1, 132, 	. 1  D12 denote the nodal points on the boundary then 

= 0 (i 	 12) 	 (v) 1 2 Di 	 9 ' a 	 a,  

The fourth advance is to hexagonal nets in which a
1 	

The nodal 

points of this net are the centroids Ej (i = 1, 2,... 6) of the six triangles 
surrounding 0, the centroids Fi, G 1, G, Hi„ Hj, , Ti„ 	-= 1, 	6) 
of the six triangles surrounding each Ai and the centroids ¼ fi. (1 = 1, 2, 
...., 6) of the two triangles surrounding each nodal point of the boundary 
belonging to the first triangular net. The values of the trial displacements 
at each nodal point of this net are calculated just as before in terms of the 
displacements of the three surrounding nodes of the previous net. 

The fifth and the final advance is to triangular nets in which a =-1. 
The new nodal points of this net on the sides of the first triangular net are 

Ki, Li, Mi, Ni and Pi(i = 1, 2, . .., 6). J1 9  J29 . 	. 9  Jo are the centroids 
of the triangles 0E1E 2, 0E2E3, . 	0E6E1  ; K 1, , K6 are the centroids 
of the triangles B 1E1 E2 , 	13 6E6E1 ; LI" . 9  L6 are of triangles 

B1GI202194. 4  ./ B6G62G11 ; Mil . .9 Mit are of triangles C1G1 2621)4...9 
6_63_11 	 P6 C6G62Gn ; N1 9 . . . 9  N6 of triangles 	 C6163111, and Pi,• • . • y  

of triangles 13I13121, • • 	AI63111 . The values of X at these points are 
calculated just as before by taking N 3. 

On account of six axes of symmetry of the regu 
to consider only 1/12th of the section. The values 
within this section are obtained similarly in terms 

at three surrounding nodes of the previous net. 

Now the residual force at each nodal point 
N 	6. The residual at 0 is given by 

lar hexagon, it is possible 
of X at the nodal points 
of the known values of 

is calculated by taking 
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Fo  = F0 ± F0 

	

Na 2  + X i, + X i , + Xj, 	+ xi. + xi. — 

1 	(1 ) 2  40 40 40 	40 40 40 — •-6. 	- 	 + 	-4-  
2 	9 	81 	81 	81 ' 81 ' 81 ' 81 

3 	240  
— 3 

— 81 	81 

O. 

Similarly the residual at each point is calculated. Before relaxing the trial 

displacements and residuals are multiplied by 162 to avoid fractions. 

Fig. 1 shows the regular hexagon with only four advances. Fig. 2 
shows 1/12th of this section with all the nodal points of the finest net. The 
values of the trial displacements and the consequent residdals are marked 
to the left and right of each nodal point. 

f-1 

FiG • 1 
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FIG. 3 

The final values of the displacements (values of X) after relaxation are 
shown in Fig. 3. The shear stress at any point can be calculated from 
equations (2). 

In conclusion, I am indebted to Mr. C. V. Joga Rao for suggesting the 
problem and checking the calculations. I also thank Mr. P. Narasimha 
Murthy for checking the calculations. 
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