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ABSTRACT

The general conditional equation from which the propagation
constant of the hybrid mode can be derived has been formulated by
utilising the field components and boundary conditions given in a pre-
vious paper (Chatterjee, 1954). The propagation characteristics have
been calculated in the case when the cylindrical guide containing two
coaxial dielectrics is reduced to a simple dielectric rod. The dielectric
rod behaves as a guide or as an aerial depending on a certain limiting
value of the radius of the rod. The critical value of the radius depends
on the mode in which the rod is excited.

INTRODUCTION

In a recent paper (Chatterjee, loc. cit.) the propagation characteristics
of several hybrid modes have been derived from the field theory with some
approximations. The object of the present paper is to formulate the general
conditional equation from which the propagation characteristics of any
particular mode can be derived accurately. The paper also presents a report
of the calculation of the propagation characteristics in the case when by
making suitable assumptions the cylindrical guide with two coaxial dielec-
trics is reduced to a simple dielectric rod.

CONDITIONAL EQUATION

Applying proper boundary conditions, the following equations fll*f
obtained from equations (5) and (6) of the previous paper (Chatterje:
loc. cit.).

Adm (kiry) + By Ym (ki) =0
A" ' m (kyry) + B Y ' (ki) =0
ky® [Adm (kare) + B Yo (karg)le" "2 —ky? [Aydm (kora)] e1#=0(l
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Equations (1 ¢) and (1 d) can be written respectively as follows:

k* ‘}m_%ilizg [Adm (kyry) + BiYm (kyr)le =0 (2a)
m 3k

and

2m*\ Im (Kara) a § B'.Y'm (kyr)] €72 =0 (2 b)

(4’(12 s '};2'2' J?-,;.f_j(;f_']) [A 1J m (kyry) + B Y m K40
It is evident that the equations (1 @) and (1 b) are contained in the e‘,quatlons'
(2a) and (2b). So, the equations (1) can be reduced to the following four:

Adm (kyr) + B, Y (kyr)) =0 (3 a)

b
AV m (kyry) + B Y i (k) =0 (3 2)
Al ElYlli'm (klrg)
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Ajwpy € :TE Jm (Ky7g)
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In order that A’s and B’s in eq. (3) may have non-zero values, the following
condition must be fulfilled:

A, B, (@ 0 0
0 0 A, B,
: =0 4
AI{C) BI(C) A11(CJ Brltc} ( )
Altdl B, A’l‘d’ B’l‘d’

The A’s and B’s in the array indicate their respective coefficients in eq. (3).
The determinant when solved gives the following transcendental equation.

Yo (kyry) Yo (ka1 2) Im (ki) {P‘l € — %2“;3} ' %2622 Y (ki) I (kyra)

) il .. S S . P |
Emlan) oy G Vm Gear) {mres — 523} + Y m ) I i)

In the above equations (3) and (5), the following abbreviations have been
used.

s 2m?
. k.2
2__k22. 2

2
ka® =7 kﬁ—k; L (69)
1

P

_ Y (kyry) Y'm (kir1)
Xm (klf"l) Jm (klrl) " ‘!’m (klrl) = J’m (klrl) )

: b)
Em (Kara) = ;in gg:::; (6%

. . . . - ; cu]t.
The above equation is very much involved and a general solution 13 diff

. the
But as the propagation of hybrid modes requires that y; be equal to,_,:;)’,can
eqn. (5) in conjunction with the relation k,2 — kg2 = w?® (k&1 — #s
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he solved graphically for only some definite modes to give k,; and k., in t

of the radial dimensions and the electrical constants of th:: dielec:ric -e'li'n}::
other propagation characteristics can then be found from the values 'of k’s
The validity of the above equation can be tested as follows: '

For a single dielectric (say air) bounded by perfectly conducting metallic
boundaries
By =py =po € =¢, = ¢,

k':; =k4 == l T T CR—
The eqn. (5) reduces to the following identity:

X?‘Eﬂ":ﬂ’) - meﬁ@
Yrm (klro) Y’m (klrn) (7)

which shows that the general transcendental equation derived above is
correct.

DIELECTRIC ROD

If the boundary wall of the metallic guide js shifted to infinity (r, = o),
the guide with two coaxial dielectrics is reduced to the case of a dielectric
rod having dielectric constant e, immersed in a dielectric medium having di-
electric constant ¢,. In this case, in order to account for the exponential
decay of the field intensity to a vanishingly small value at infinity, the func-
tions J,,’s, You's and their derivatives for the first medium are to be replaced
by the Hankel functions Hp'V, Hp!® and their derivative Hp®’, Hp®
respectively. Applying continuity conditions at the i{lterface 'of the two
media and introducing the above changes in notations in equations () and
(6) of the previous paper (Chatterjee, loc. cit.) the following are obtained:

’ e.yoks J'm (Kors) (1)
A, [51711‘1 Hop Y (kyrs) — 2k 3222 e Hm (klrg)]

evolco Vm (Kors) (2)
+ B, [51'}’1}\’:1 Hm{m; (kyr ) — 2](:2 2 ]_: (ka"ﬁ) Hm (klrz)]

L

' n wita € M 1y ) (ke r ]
+ A 1 [wplel ;— Hm{l) (klr e -—k—;z—' s Hm ( 1 2)

2

Wil €o M (2) ] = () (8 a)
+ B, [“’F-l €1 7;”; Hp'? (kyr2) ;::2 : rs Hm (kars)

Wpg€y M 1y W) (kyr )]
A, [‘Uﬂlflij’:Hmm(i_‘flrﬂ) — T Fs Hp™M (ke

wpses My (kyry) |
rs
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| , oysks Vm (kyr
+ A’y [Pen’lkl Hn'YY (ky7s) _ifz 2 ] m(k:r:) H,,W (klrz)]

' f WoVoko I (Kor
+ B, [Pl'}’lkl Hpn'?' (kyrs) — 2]{: ® J:(k; 3) Hp 2 (klrz)]=0(8 b)

Ay

, ks

k32 Im (kor,)

i
+ A% Hun® (kyry) — ’-’iEHm (krz)]

— By [f‘”‘flk Hp'®" (kyrp) + jwe, k2 Tm (kar,) Hp'® (kﬂ'z)]
[‘J’l

ol | 3

]
B’ 1 ; ’E Hpn'® (kyry) + '}’2 k ; Hp'? (k1r2)] (8 ¢)
Fo Ky

ky*

ml

apres . Hm® (lars) + imges . 2 Hu® (lars) |

1
A, [‘—'-’P-Ifl — Hp'Y (k) — w#zezm i3 Hp ' (klrz)] -
Bl[

g ._ diyikes Hn @ (kirs) — vk 522 i nT(J(’f?S) Hn® (Kyrs)

o,

' . ‘ J - |
- B 1 _P’lylkl Hm(m (k1r2) + ‘/zkz ;:;2 J?;n((kkzi:;) Hm{zl (k].r2)‘-l

=0 (84d)
where, :
A=y e[ 4, B ) | g, Hn® )] 90
27 kgt YV m (k) T (kors)
and
v 1y [ar HaV (kirs) | o Hm'® (Kire) 9 b)
Ag—k‘lze z[Al Y (kory) . Jm (kars) ]

In order that A,, B,, A’,, B, may not vanish the following conditions must
hold good.

A,@® B,(@ A’l‘“’ B"lm
r (b)
A, B,® A’ B, - (10)
A,© —B,© A© — B,
Altdl _Bltd) Axl(d; _Brltd)

1 " . . : tions'
where A’s and B’s refer to their coefficients in the respective equa
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Solving the above determinant, the following equations are obtained:

H® (kyrg) H® (kyry) = 0 (11 a)
ey fentkite ey ey,
[H{l} H { ko2 .2k, }

+ H1 HE2) I {512?’2271k1k2 _ a*vitkikyy,
k2 k2~ ‘}

LA~

4+ HWD Hey J {%%2”‘2?1"'1 — f22'}’12?2k@}

e

J k k! kA
. J'e €2Yo KoZ €1y &5 €akis®
(2) (1) 272 2 iU 1 Y2 €aoftag
+ H H Jg { k32k42 k32k44 }]
={ (11 b)
- 2 3 B w2
[Ht“r H{g;: {ngiﬁi%;kL Plelki;ﬂé}/l_i }
’ -r € 3k k € 2k '}’2}1- € k
+ Ha» @ : {Pl 1k412 Y2 __ 1K 442 2 2}
VY (paetkakayr  pag’Kkakan
+ HO HeY {_1_1_&4_2__1_; P }

J'2 (ugy ko*¢€ 622 22_1&2‘2512!{1 :l
4+ HW H® e { 2 ::;kﬁ ke, 2k g2 }

ents of H's and J's have been omitted

where the cript m and the argum :
he: fpgeery llowing approximate values for the

for convenience. Substituting the fo
Hankel functions in (11 @) and (11 0)

m Mz

ST
Hm(“ (k1r2) it '\/wklré €
(12)

T Mr

A G
Hmlﬂj (klrz) ~ J 2 e (

are reduced to (134a)

Hin'? (kyry) Hin'® (kire) = 0

o — P 13 b)
Vi (kory) _ & £ v/ —4pT (
o " (13 ¢)
Vo (kory) _ 8 &+ & — 4820
Jm (k2r2) 29

b2
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where.
o = sytkalayy e eky”
K2k 2 ko2 2
9 = ] [fl_E'J’zzY;klkz ?12712_{(_1[{2')/_2_
2k1r2 k42 k42

+ ?'_22?’2 *k 2k_ 171 5227/ 1 2}:2ka 9
kd 2k34 k34

T = (l o] ) (_F_l?_’_xi"_’ff?_* _ ayaarnihy’

0= #2?2"23‘51522 . 3{2’\?2252512#1

= Ukkd T Kkt
§ =5 [Flefk_lﬁ?’ﬂ _ athayapa ke
2kyrs Ky n
£ H1€1 €, KoK 171 Mo Ezakzkﬂl]
2 ke 2k A

0= (1 + _-_1__) (&afﬁm{‘lz Hl‘lzez?’lklz)
4k,%r,? otk ,® =
The first condition Hpyp™Hp(2 = 0 is satisfied when the argument is large.
It is observed from (12) that in the case of Hpy, only the expression under
the root sign tends to vanish for large arguments. But in the case of Hp'®,
the expression under the root as well as the exponential one tend towards

sero as the argument is increased. As the arguments become very large,
it is evident from H,,/® — 0 that the following conditions hold good:

COS (k1r2 — E ";w ={ ' (14 a)
sin (k1r2 ~ =) =0 (145)
o1, -
j
k1=;; [;(m+n)+;:| (15)

where 7 is considered to have non-zero integral values in order to-accouﬂt
for the propagation of the hybrid mode. The above value of ky Ylelfis t:e
following value for the propdgation constant of the EHmn mode in the

first medium

; 1 Z
Y1=J \/wa,u,lel — ;e [g (m + n) +g]

2

(154)
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As the propagating mode 1s hybrid, Y1 =¥, in which case, p in (13 b) vanishes

AS me (k2r2) #‘: . Wj'Jm (kgrg) becomes evanescel.lt‘ ; .
following condition 1s satisfied. which holds good if the

2 (16)

where smp 15 the root of Jm, (kers) =0 where m and » répresent the order of
the Bessel function and the rank of the root respectively. The condition
(16) together with the relation k,2=1y,2+ wu,¢, give the following values
of the propagation characteristics of the hybrid mode in the second medium :

& :—- q — —
. A\ 2
e 2 mn e m
Va =] ,\/w Ha€o Y e Bg w2“252 — {_*n
!’2 r22

- ) 27r
ol . o O o Aor i 17
X i Vo r \ IHE o S
s g e n '
ey . Y
w Wiky €y — r.2
(’gp m— — '__'-_____ . _2___ =3 ’ ng i e — 2
A Wik €.
2 2 mn 2
J’w P"2‘E2 r 92
P

When the propagation constant in (15) under the assumption of Hp’s =0
is substituted for y in the expressions of field components, it will be observed
that there is spreading out of the field to a great distance. Or, 1n other
words, the dielectric rod acts as an aerial under the condition Hpy's — 0.
Whereas, when the propagation constant derived in (17) under the condi-
tion that J,,’s —> 0 is substituted for y in the expressions for field cqmponents,
it will be evident that the dielectric rod acts as a guide supporting a non-

radiating mode.

The following points regarding the phase and the group velocities are

significant.

(1) The phase velocity increases and the group velocity decreases as

the radius of the dielectric rod decreases and vice versa.

] city | ses with
(i) The phase velocity decreases and the group velocity 1ncrea

the increase of the dielectric constant of the rod and vice versa. |
, rea
.It will be evident from (15a) that the value of y, becomes Z€ro, T
°f Imaginary according as r, is equal. less or greater than
e (18)
{[% (m + n) + ;] / w x/mel}



56 S. K. CHATTERJEE

Or, in other words. there will be no energy flow in the first mediym il B
energy flow will be wholly concentrated in the second medium unless 7 i:
greater than the expression (18). It is also obvious from (17) that there ;nll

be no propagation in the second medium unless 7, is greater than —Smn

| . . @ Ve,
[t may, therefore, be concluded that the dielectric rod will behave as g guide

or as an aerial depending on the radius of the rod. The limiting valueg of
the radii of the rod in the above two cases are found from the following

expressions:

1 7 ™ ‘

Fo W \/F;;—_e—; [j (7’1 + H) -+ Z] (183)

and
s

re= — m7=__:2£2 (18 b)
The limiting values for some of the modes are tabulated below:
Modes .. - EH,, EH,, EH,, EH,
First medium .. 0:625 A, 1-125 A, 0-875 A 0-875 A,
Second medium .. 0:61 A, 1-34 A, 1-12 A, 0-82 A,

(0-386 A;) (0-848 1) (0-708 1)) (0-5194)

If the second medium possesses a dielectric constant of 2-5 and if the first
medium is air, then A, ~ 0-64 A, and the critical dimensions of the rod for
several modes are given in the above table inside parantheses. The follow-
ing conclusions may be drawn from the above table.

(i) If the radius of the rodis less than approximately quarter waves
length (rz < —34), none of the above modes can be propagated either in the
first or the second medium.

(ii) The energy fow is wholly concentrated in the second medinm wl:«::
the radius of the rod lies between 0 386 A, to 0:625 A, in the case when .
rod is excited in the EH,; mode. The limiting values for the other mo

can be similarly found from the above table.

(iii) When the rod is excited in the EH,, mode, if the radius of the l;gg
is increased beyond 0-625 A,, the energy flow will be distributed In both ihe
media. Similarly, for the EH,, mode when r, >1-125 A, and so on for
other modes the energy will flow in both the media.

T
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RADIAL SPREAD GF THE FIELD

The radial spread of the field in the case of the dielectric rod can-be
obtained from the radial components of the electric and the magnetic fields
(Chatterjee, 1954). These components when modified by the introduction
of Hankel functions so as to ensure the proper decrease of the field at infinity
and also to give the proper direction of energy flow when k becomes complex
are

E,=/P [k32k1'}’1 {gHn?" (kyr) — fHRpY (k)

+ Cmk o wp !:.’ {gHm'? (k) — fHm? (klr)}]cosmﬂe"ﬁz (194)

by == P[welkﬂﬂ T {f HpM (k) + gH'mm (kyr))

4+ cmyikik 2 {f Hm (kyr) + gHp'® (klr)}] sinmfe="% (19 h)

where, g. fand ¢y, in the altered form are given by the following expressions

fost o @ Jm (kgrg) Hm'® (ard)
S Hp (kyrs) Hp'? (kyry) — Hpn't! (kyry) Hp,'* (kyr)

_ Jon (kora) Hn' Car) (19 ¢)
g - Hmﬁ)—(kﬂl_) Hm-(_éj_(lzlréj - Hm“] (klr2) Hm{m (klra)

-e.lylk!kfii[_[ l__'l.mm’_(_l_‘l"zl ﬂﬂm*2l' (kyra)] — 527’2_’_‘;;’ 'm (Kols)
Wity € f: k 4* ¥i Hp't (kirs) gHmm (kira)]— wpece ;;Jm(kara)

Cm=—

being known, the radial fields at any point

ide. The
can be calculated in terms of the total power ﬂwa P aiine th; gu’llfl;e peak
power flow outside the guide (o0 >7 = a) is different ror ﬂi is
power flow through the space surrounding the rod (c0>71 =

The values of k;, v, and kg, 72

ar L 00 . (20)
P0= Re[f f rE?‘Hﬁ dfde]
f=0 r>a

Where, H, is given in the modified form as follows:

, 2 (ki
HB= —Pp {jklkazw‘fl [mell) (klr) + gHm (K1 )]

(2) cos m e~ (204)
+ cmk ey r;_l [FHn'Y (k,r) + gHm i (k'r)].}
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The numerical evaluation of the above integral is rather cumb

But, the evaluation is much simplified if the asymptotic S t;rsom,e.

and J’s are used for large arguments in the case of the lower order ;L;{s
€s.

il CONCLUSIONS

The results of the theoretical investigations (Chatterjee, 1953 1954)
on the propagation of microwaves through a cylindrical guide filled c'on;pletel
with two coaxial dielectrics lead to the following conclusions: !

1. All the modes which can be supported by such a guide except the
TM, are hybrid.

2. The phase velocity for a given mode can be adjusted to a pre.
assigned value by a suitable choice of the dielectric constants and radii of
the two dielectric media.

3. The calculation of the power flowing through the guide in the :ase
of the TE, as well as the other hybrid modes shows that most of the power
flow is located in the medium having higher dielectric constant when the

media are non-magnetic.

4, Depending on the relative values of pe for the two media, the fre-
quency of excitation may bc adjusted so as to concentrate the power flow
either in the first or the second medium.

5. The attenuation constant is higher in such a guide than a hollow
wave guide due to the additional losses introduced by the dielectrics.

6. The attenuation constant increases directly with the increasing loss
tangents of the dielectrics.

7. The attenuation constant increases as the square of the dielectric
constants of the two media.

8. The attenuation constant increases with the increasing frequency
of excitation of the guide. |

9. Hollow wave guides, dielectric guides are special cases of th
- guide filled with two coaxial dielectrics.

e metallic
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