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ABSTRACT 

The general conditional equation from which the propagation 
constant of the hybrid mode can be derived has been formulated by 
utilising the field components and boundary conditions given in a pre- 
vious paper (Chatterjee, 1954). The propagation characteristics have 
been calculated in the case when the cylindrical guide containing two 
coaxial dielectrics is reduced to a simple dielectric rod. The dielectric 
rod behaves as a guide or as an aerial depending on a certain limiting 
value of the radius of the rod. The critical value of the radius depends 
on the mode in which the rod is excited. 

INTRODUCTION 

In a recent paper (Chatterjee, The. cit.) the propagation characteristics 
of several hybrid modes have been derived from the field theory with some 
approximations. The object of the present paper is to formulate the general 
conditional equation from which the propagation characteristics of any 
particular mode can be derived accurately. The paper also presents a report 
of the calculation of the propagation characteristics in the case when by 
making suitable assumptions the cylindrical guide with two coaxial dielec- 
trics is reduced to a simple dielectric rod. 

CONDITIONAL EQUATION 

Applying proper boundary conditions, the following equations are 

obtained from equations (5) and (6) of the previous paper (Chatterjee,  

/oc. cit.). 

Arim (k 1" 1) ± B iY m  (k ir 1 ) =--- 0 	 (I a) 

A'irm (kin.) ± W irt, /  (k ir 1 ) = 0 	
(1 b) 

kl 2  [ArInt (k ir 2) 4- B iY nt  (k ir 2)}66-72z  — k 2 2  [A 2.1 ni (k 2r 2)] 
er 0 (I 0  
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27112  

(k1 2 	-) [A ldan (ke2) + BilYnt (k1r2)] 

n72  
(k22 	

2
e-72z r2 	A' 24. (k 2r 2) = 0 (1 d) 

e-tiz+ wilt el 'Li  [A' am (k1,'2)Einki [A ir m, (1( 11.2) + VP in  (I c ir 2n 
r 2  

,Y m  (Ii ir 2 )] v k [A 	ar r 11 sr 2/ 2-2 t- -2- f ern v.2. 2,j 	ar2z  
in  

(4L 2  €2 r- 2  [A
, 
 2Jin (k2r2)] e-72z  = 0 	(1 e) 

cop l e, 	[A,J (k ir 2 ) 	B,Y m  (kg. 2)] e-stiz 	[A'irm  (k ,r r 2  

+ 	Y'm  k 2)) e-itz - cop, 2  € 2  "1 2  [A. int R2r2)] ert:z  r 2   

P2712k2 [K2Fin (k 2r2)]e-72z  = 0 	(If) 

Equations (1 c) and (1 d) can be written respectively as follows: 

k 2 Jrn (k ir2) (k ir l )1e-tiz =0 	 (2 a) 
in (kir ,) [A" (k ir ' ) 	BlYni 

and 
2m 2  J (k r2 ) 

(k1 2 	- ) 	ikirm, (kir') + Birm (k i ral e-191.2  =--- 0 (2 b) 
r 2 	J 	nit 

It is evident that the equations (1 a) and (1 b) are contained in the equations 

(2a) and (2 b). So, the equations (1) can be reduced to the following four: 
(3 a) 

(3 b)  
Aiim (kir') B iYm (kin) =0 

A ' irra  (kirl ) 	BitYfin  (IC ir == 0 

Aleiyik i r m  (k1r2) 
k. t  

+ B 1  [EihkirmAkira 	60/2A' bin lib 21

r 
2

\ 
1 1 a 

iv ce, 
in v-1.

r  
2, 

Xm (kin) %TM (kir2)}] 

+ Ail  cupl 	1771 (k1r2) 
r 2 

B' a : 1 	 E1YM (kir2) 14-2E2 	r ) 
k . 2  m (k " 

— 	(k in.) jim (k ir 2)}] =r-- 
(3 c)  



0 

(4) =0 
0 B' 1 (

b) 

6'1') 

fy d 

AY !" 

0 

A'1 (c )  

A'i tch 
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In 
A l cop —Jm (Ic 1r2) 

r 2  

131[I.LifiYma1r2)-1 
Ka
*E: {Y ni (k lr 2)—Xm (ke ml) (k r 	in  2  co , 

re 
+ A iith 	(k1r2) 

[ilinkirm (kir 2) — 	 {Y in (kir 2) 

— Om. (kirJ) m (ke2)1 CM, (k2r2)] = 0 
	

(3 d) 

In order that A's and B's in eq. (3) may have non-zero values, the following 
condition must be fulfilled : 

The A's and B's in the array indicate their respective coefficients in eq. (3). 
The determinant when solved gives the following transcendental equation. 

E1 	P2 c2 ) 	M2 62 
Ym, (kiri) 	

Ym  (k it 2) Jam  (kir t ) fp, + 	Y172 (k1r1) 1771 Red 
	  (5) 

Yi n), (ki r ' ) YTh, (kit%) Fm (k I r l ) {pi  Ei  — 14—k2. 61  2.1 	Y' m  (ki r) tm Rir 2) 

In the above equations (3) and (5), the following abbreviations have been 
used. 

k. 2 	2m 2 
..2 

r 2 2  
C4/ 2- 	  

2m2  
k7 2  

r 2 

(6a) 

y nz(kri) 
(k1r0 	(kwl) 

r ent  (k,r i ) 
Om (k el) = 

Jim  (/c12)
Ent (k2r2) --= -

m vci0 
(6b) 

The above equation is very much involved and a general solution is difficult. 
But as the propagation of hybrid modes requires that Vi be equal to Ys' the  

eqn. (5) in conjunction with the relation kl 2 	k22 = (02 (Mi E1 —ausEs) Can  
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be solved graphically for only some definite modes to give k1  and 1c2  in terms 
of the radial dimensions and the electrical constants of the dielectric. The 
other propagation characteristics can then be found from the values of k's. 
The validity of the above equation can be tested as follows: 

For a single dielectric (say air) bounded by perfectly conducting metallic 
boundaries 

— M za= 	 El = 62 = eo 

k3  = k4 

 
—1 	r2 	—r 

The eqn. (5) reduces to the following identity: 

Ym (kiro) 	Yin (k 1  r0) 
r-m (k l ro) 	rom(kiro) 	 (7) 

which shows that the general transcendental equation derived above is 
correct. 

DIELECTRIC ROD 

If the boundary wall of the metallic guide is shifted to infinity 0.1  = 00, 
the guide with two coaxial dielectrics is reduced to the case of a dielectric 
rod having dielectric constant E2  immersed in a dielectric medium having di- 
electric constant El . In this case, in order to account for the exponential 
decay of the field intensity to a vanishingly small value at infinity, the func- 
tions Jm's, Ym's and their derivatives for the first medium are to be replaced 
by the Hankel functions Hm" ) , Hm(2)  and their derivative Um", 1-1m c 2 ' 
respectively. Applying continuity conditions at the interface of the two 
media and introducing the above changes in notations in equations (5) and 
(6) of the previous paper (Chatterjee, /oc. cit.) the following are obtained: 

62Y2k2 J' (k 2;'2) }Imp Rio] 
A1 [ €171k1 Fire(kir2) —.-  k 3 2 	Vc2r2) 

E y k 2  Y in  (k2r2) yr ti ( 2)(k r)] - 
B, [ei yiki  am,(2) ' (k1r 2) 	j 1  (k 2r2) 

	

n2 	 coth2 62 
A' 1 [0112 1 e1 — H ( 1 ) (Ic1r 2) 

iv 4 

(412 62 

	

[1€1 — Him" )  (k1,'2)
r2 	 4 

nz A1  [wp.1 E H rn,(1)  (k 1 r2) — it-2-121‘1) 2  
r2 	 k32 

coPtea 
+ B1 [coiLici nj Hm.(2)  (IWO — r2  

in Rot(1) (k in)] 

in 

r2  

Hin(2) (kir2)] = 0  
r2  

m_. lim a) (k 1;'2)] 
r2  

in, Hirn( 2) (kind 
r2 

(8 a) 
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A' 1  [Pink' Hm"(kir2) — 1±2Y2kg nt  (k2r2) 

	

 
k42 	

H 
(k2r2) 

m (1, 
i(kir2)] 

12,2Y2k_2 Fm(k2r0 H (2) 1_ B'l 	H m( 2)1  (k1r2) 

	

_ 
ic74 2 	(k2r2) m (icir2)] = 0  b) 

A 1  [fwEik 	
k2 	(k 2r 2) 	(1  

1  H m" (k ir2) — .RDE2 km j 	H m  ) (k i r 2)] 

	

3 	?ft 	2/ 2/ 

k
22 

J'.„w(k 6441.2)  H 	) 13/ Pa) 	H m(2)' (k1r2) 	c 
Poe2 it 3  in (k 2(k 2,'2) m

(2 
 'n 
a  

v v 

nil  
-1- As/  [yi 

r
-2 Hm(1)  (kg .2) 	(k 1r2)] 2 r  b. 	171 

2 11'4
2  

 

m 	 m 1 
-7 B 11 [y i  - fli m(2)  (k ir2) + 7,2 — — H (2)  (k 1r2)] = 0 	(8 e) r2 	 r2  k4 2  m  

A, kyl e/  Ln  Ham" )  (0.2) — cokt2 e2  11  -I H " ) (k i r 2)1 r 2 	 r 2  k a2  M 	 - 

	

wi j  (2)  it  ,,t 	m 1 u  
— B1  [copere i  — Am - -- knen 	coP-2E2 " k 2 "In(2) (lc1r2)] r2 	 • 2 3  

& 1-1.2 itm (k2,'2) (1) (lcIr 2)] 4- 	[ Fink  HM (1)1  (kir2) — Y2n2 	jm  (k2r2I a m  

	

/12 F in " C2?-2)  H ( 2) 	)] — 13'1  [plyi k i  Hin,(2)1  (k1r2) 	v2k2 17--s 2 	(k2r2 ) 	m( 1r  2  

=0 (8d) 
where, 

1 	H ( n(k 1 r2 	B  ) 	14 (2)  (k r ) 	
( 9  a) A.= — esta[A  nt 	— m 	_21  

" k 3  2 

	

1  j m, (k2r2) 	—rilt(Tc2r2) 
and 

Limo) R ir2) 	(9 b) 1 pa7SZ [A ELM") (k1r2)  ± EV " 
1 —i nt  (k2r 2) = Le, 2 	

1 Jim (k2,'2) 4 

In order that A 1, B1, A' 1, 	may not vanish the following conditions must 
hold good. 

1 Ai (a) 	B1 (a) 	K 1  (a) 	B' 1  (a)  

i1/2.1 (b )  B?1 (b) 
= 0 	(10) 

lk.1 (e)  B C ) 1"sli (C)  13 — 1 1 (C)  

—B1 (d) 
	

A'1(4 ) 
where A's and B's refer to their coefficients in 

B
s(d) I 

the respective equations. 



Propagation of Microwaves through a Cylindrical Metallic Guide—V 53 

Solving the above determinant, the following equations are obtained: 

Hu) (0E2) F1(2)  (k 1r 2) = 0 	 (11 a) 

[Huy H(2)/ 1 6171t3/C1 2E2 . €2y2   

k32k4 2  1 

+ H(1)1 H(2) JP  i 61 2Y22Y1k1k2 _ 61 2Y1 2kik27 121 
J 	k 4 2 	 k 4 2  - j 

• 
J r 	e 2A, 2je Al  L. 

'227 t 2Y2kik2 ± H(1) H(2)1 	2 r n2 .r int 
I 	k 4 21(34 

± H(2) H(1) it 2  t E 2Y 22k226 1Y1 	E tY2362k22}  
J2 	k 2k 

3 4 	 k3 2k 44  

=0 	(11 b) 
If 

[HOW H(2)/ la'2_7:2 	 111 612 E2Yiki 2} 
k 32k42  IC  3 

4_ Huy H(2) J 1  ri€1 3kik2Y2 	E1 2k1Y012€2k2} 
k 2 	k7 

{, 1 61 E 2 2kk  2  1. 1 	P'2 E23/c2kfyli 
Hm H(21/ 

k34 	k4  

± Ho.) H(2) 1'2  1112/12k22E1E22 	Y2k2262612141 

J2 	k 32k 44 	k 42k 32  

(11 c) 

omitted 
for the 

= 0 

where the subscript nt and the arguments of H's and is have been 
for convenience. Substituting the following approximate values 
Hankel functions in (11 a) and (11 b) 

Him" )  (leir2 ) 

1-1 nt( 2)  (kir2) 

- 2 
tiv nkirz 

/ 2 
- it/ erk-_r_ 

r tnr) 
(k ir 2 — --4 T 

mw\ 

e
-4  ( 1( 11.2—  

(12) 

and after simplification 
are reduced to 

v "'vie z 
and rearrangement of the terms, the equations 

(11) 

(13 a) 
Hm(i) (k1r2) Hm(2)  (k1r2) =I--  

	

nt(k2r2) 	l ± /02  
Jrn(k2r2)-  

	

J im (ic 2r 2) 	8 ± 

b2 	
(k 2r2) = 	20 

(13 b) 

(13 e) 



&.44 S. K. CHATTERNE 

where. 
€2Y22k2 2  EiYi 	€1723  €2k2 2  

P 	k-32k 4 2 — k32k 

1 	€ 120y22y1k 1k2 	E 4 2y1 2k 1k2y2  
= 21(1,2 	k 42 	k 42  

E22Y2 2k2k1y1 
— 

€22Y12Y2k1k2] 
1721, 4  1( 3' fs 4 1%3 

3k 2  E 2  
= (1 -4- 	

1 	) (El an 1_ 	E2VV- 1/1 	) 

	

itk i  2r -22  ck-32 	k32k42  

P. 272k22  6 1 622 	"2 b22€2 El 2" 1 = 
k 3 2k 14 	k32k4 2  

1 	pal  skik2y2 	€1_2kiY21.42 €2k2 8 = 2k-1r ! 	k 4 2 	 k 44  

	

il 6 1 E2 2k2k1Y 	P 

	

l 	 1 	2 - — 	—_ 	E23k2kiyi 
k 	 k 4 214' 

= (1 ± 1  \ (it2E22 e1v1k12 	ei 2  E2Yiki 2) 
'4W) 	--k-Tk-  -2 	 k32 3 4 

The first condition fi ni" ).1-1m12)  = 0 is satisfied when the argument is large. 
It is observed from (12) that in the case of lins" ) , only the expression under 
the root sign tends to vanish for large arguments. But in the case of Hs" ), 
the expression under the root as well as the exponential one tend towards 
zero as the argument is increased. As the arguments become very large, 
it is evident from am" )  -4.0 that the following conditions hold good: 

 

7r 	MIT 
COS (ki r  2 4 - 2 ) 

IT Min = sin (kir 2 	4 	/ 

(14 a) 

(1 4 b) 

or, 

k= 4- ir (m 
n) +741 i2 L F2 . 

(15) 

integral values in order to account 
The above value of k1  yields the 

following value for the propigation constant of the EHrm, mode in the 

first medium 

where n is considered to have non-zero 
for the propagation of the hybrid mode. 

(15 a) 
=./ Vc02121 	 (M n) 1

2 

it _I r2 	2 
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As the propagating mode is hybrid, Yi= Y2, in which case, p in (13 b) vanishes. As yin  (k 2r 2 ) 	oo,. Jm  (k 2r2) becomes evanescent1  which holds good if the 
following condition is satisfied. 

ko = sr 
• 2 (16) 

where smn  is the root of Jm  (k2r 2)= 0 where in and n represent the order of 
the Besse] function and the rank of the root respectively. The condition 
(16) together with the relation k22  = y22+ to21t2e2  give the following values 
of the propagation characteristics of the hybrid mode in the second medium : 

MO. 

2
nut  

Y2 	02/2 2 E2 
f 2 

smn  _ = 	. _ _ 
• 2.17r2  '112 E2 ' 

co 
c2P  — 	_  i__ _ , 

il
s inn 

tt)2Pw 2 E  2 a  
r 2 

s 	2
rnn 

	

fl2 = 	2142 €2 r2  

27Tr 

	

Ace. 	
(17) smn  

	

-- 	
0)2112E.iis2ntn 

p2 2  g  
C2 

Wi.42 62 

When the propagation constant in (15) under the assumption of Hm's --> 
is substituted for y in the expressions of field components, it will be observed 
that there is spreading out of the field to a great distance. Or, in other 
words, the dielectric rod acts as an aerial under the condition Mm's 
Whereas, when the propagation constant derived in (17) under the condi- 
tion that J m's 	0 is substituted for y in the expressions for field components, 
it will be evident that the dielectric rod acts as a guide supporting a non- 
radiating mode. 

The following points regarding the phase and the group velocities are 
significant. 

(1) The phase velocity increases and the group velocity decreases as 
the radius of the dielectric rod decreases and vice versa. 

(ii) The phase velocity decreases and the group 
the increase of the dielectric constant of the rod and 

It will be evident from (15 a) that the value of yl  becomes zero, 

or imaginary according as r 2  is equal, less or greater than 

1[3 n  + 	7:4] I Cma  / 1 
	 (18) 

velocity increases with 
vice versa. 

real 
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Or, in other words. there will be no energy flow in the first medium arid the 
energy flow will be wholly concentrated in the second medium unless r

2  is greater than the expression (18). It is also obvious from (17) that there will 

be no propagation in the second medium unless r2  is greater than-S!iL.  w vice! . 
It may, therefore, be concluded that the dielectric rod will behave as a guide 
or as an aerial depending on the radius of the rod. The limiting values of 
the radii of the rod in the above two cases are found from the following 
expressions: 

1 	1-11 	
71,4] 	 (18a) r 2  = co  vii; --e; L2 

and 

s Inn  
T2 r- 	

 
(18 b) 

ilii2E2 

The limiting values for some of the modes are tabulated below: 

Modes 	.. • • 	EHn  EH22 EI-112  EH 21  

First Medium .. 	0-625 Al  1125A1  0.875 Ai  O'875 4 
Second medium .. 	0.61 A2 1.34 A 2  I ' 12 A2  0.82 A2 

(0.386 Ai ) (0.848 Ai ) (0.708 Ai ) (0.519 AO 

If the second medium possesses a dielectric constant of 2.5 and if the first 
medium is air, then A2  2: 0-64 A1  and the critical dimensions of the rod for 
several modes are given in the above table inside parantheses. The follow- 
ing conclusions may be drawn from the above table. 

(i) If the radius of the rod is less than approximately quarter wave- 

length ( r 2  < A l) none of the above modes can be propagated either in the 4  5 

first or the second medium. 

(ii) The energy flow is wholly concentrated in the second medium.' when 

the radius of the rod lies between 0 386 Ai to 0.625 Ai  in the case when the 
rod is excited in the El-I11  mode. The limiting values for the other modes 
can be similarly found from the above table. 

(iii) When the rod is excited in the Ella  mode, if the radius of the rod 

is increased beyond 0-625 Al , the energy flow will be distributed in both 
the 

media. Similarly, for the EHe0 mode when r. >1-125 A1  and so on for the 
V • 	 it OP 

other modes the energy will flow in both the media. 
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RADIAL SPREAD OF THE FIELD 

The radial spread of the field in the case of the dielectric rod can be 
obtained from the radial components of the electric and the magnetic fields 
(Chatterjee, 1954). These components when modified by the introduction 
of Hankel functions so as to ensure the proper decrease of the field at infinity 
and also to give the proper direction of energy flow when k becomes complex 

are 
Er  = ji) [k 3 2k iyi  (gH Tn(2)1  (k ir) — am" (k i r)) 

HI 

	

cnik 4 2 041-2 	ig H m(2)  (kir) — Km" )  (k indcos m0 e--nz (19 a) 

m 
Hr 	p [ co  ei k n - 	tf H m(1) (k i n + 0(2) (ki r)} 

+ cm-ylkik,2 If14mm' (k ir) + gl1rni2P  (0)}] sin me e-7:z (19 h) 

where, g, f and cm  in the altered form are given by the following expressions 

Ira (k 2r  2 ) 1-1 m(2)  (k ir 

H in.“ )  (k i r2 ) 1-1 m(  2)  (k ri ) — H m(1)  (k 1 r 1 ) H in,(2)  (k 1 r2) 

ha  (k 2r ,,) H m(1)  (k i r i) 
g = 
' Hine" (k1r1)Hm(2) (k ir  0 _ li mo) (k1r2)  H m")  (kir2) 	

(19 c) 
 

	

E iyi k i k 32 	
(k 2r 2) 

Li 1-1.m  1) ' (k 1 r2) + gH,n(2)1  (k1r2)] — €2Y2k2J ' in  

Cm = - 

	

k 
	___ 

111 2  [f a 	( 	
m T  zr r2)  

0.4k • E. 	• 	m(' ) kir2)--1-gf-tm,(2)  (kir2)]— COaLL— En -- 4 ,in c% 2, 

	

it I  r 2 	4 	
.4  z r2  

The values of 1( 1 , 71  and k2, y2 
 being known, the radial fields at any point 

can be calculated in terms of the total power flow P along the guide. The 

power flow outside the guide (00 > r > a) 
is different from P. The peak 

Power flow through the space surrounding the rod (oo > 
r > a) is 

21r < 00 	 (20) 

Po == Re [ f 	rEr 1-1 0 *  drde] 

49=0 r> a 

where, H o  is given in the modified form as follows: 

Flo=— Pt jkik32(.0 [f Itinur  (kir) + gffm" P  (kir) 1  

cn-fk 4 2y, 	[ f Itin,") 	+ ga (kir) 	

(20a) 
m,(2) (loll cos tne e-7a 
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The numerical evaluation of the above integral is rather cumbersome. 
But, the evaluation is much simplified if the asymptotic expansions for H's 
and J's are used for large arguments in the case of the lower order modes. 

CONCLUSIONS 

The results of the theoretical investigations (Chatterjee, 1953, 1954) 
on the propagation of microwaves through a cylindrical guide filled completely 
with two coaxial dielectrics lead to the following conclusions: 

I. All the modes which can be supported by such a guide except the 
TM 0  are hybrid. 

2. The phase velocity for a given mode can be adjusted to a pre- 
assigned value by a suitable choice of the dielectric constants and radii of 
the two dielectric media. 

3. The calculation of the power flowing through the guide in the ,:ase 
of the TE01  as well as the other hybrid modes shows that most of the power 
flow is located in the medium having higher dielectric constant when the 
media are non-magnetic. 

4. Depending on the relative values of ite for the two media, the fre- 
quency of excitation may bc adjusted so as to concentrate the power flow 
either in the first or the second medium. 

5. The attenuation constant is higher in such a guide than a hollow 
wave guide due to the additional losses introduced by the dielectrics. 

6. The attenuation constant increases directly with the increasing loss 
tangents of the dielectrics. 

7. The attenuation constant increases as the square of the dielectric 
constants of the two media. 

8. The attenuation constant increases with the increasing frequency 
of excitation of the guide. 

9. Hollow wave guides, dielectric guides are special cases of the metallic 
guide filled with two coaxial dielectrics. 
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