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Problems in Rotating Discs can be classified broadly as those in which 
the disc shape is specified, i.e., Y =f (x) is given and the stresses are required, 
and the converse problem where the stress variation is prescribed and the 
disc shape is required. 

When a stress variation is prescribed, the procedure for determining 
the shape is simple. Since the tangential and the radial stresses are not 
independent of each other, when one of the stresses is prescribed the other 
stress has got to be computed from the compatibility relation. Having 
known both the tangential and radial stress variation the disc thickness can 
be computed by integrating the equilibrium equation for the given bdundary 
conditions. 

The disc shape thus determined satisfies : 

(a) the equilibrium equation; 

(b) the compatibility equation; and 

(c) the boundary conditions, 
■ Olin 

which is a fundamental requirement of disc design. 

Since in general the radial stress is usually greater, let us assume its 
variation as given by the unit function 

• 

	

air = Ur mix ( 1 	e-kx), 	x > 	 (I) 

k > . 	• 

where x is the radius and k is a positive parameter. When, x ---= 0, i.e., at the 

origintr,=-- 0. The variation of ar  for different values of k has been plotted 
in Fig. 1 (O. From the figure it is clear that as k increases from 0-5 to 5.0 
ar  rises very rapidly from zero to its maximum value. In fact by choosing k 

very large ar  may be made to attain its maximum in as small an interval 
88 
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(a) Shows variation of radial .  stress for different vaitics ix 

(b),I Shows_ disc shape for k 5. 
make use 

acdesired. To'deterrnine at the tangential stress, we 

Compatibility equation, 

dat  (1 + v) v 0 	d a 	(1 + c 
	t 	

fix). 

of the 

(2) 

ax 

On the basis of equation (1), function f (x) is 
known and equation (2) allows 

the determination of at
. For this purpose, we use the expression 

Crt == UV 

Denoting derivatives by primes, we get 

vut u [21' + + 11 r=f 

V is so Chosen that 

spf + (1 4- 1,1)7.-c 	o. 
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IA 

Therefore, we get 
V = k1x—(1-1-0 

and for u we have 
vu' = f (x) 

so that we get 
f f (x) dx u 	±k 2  

We have therefore if k 1  k2  is replaced by c 1  

°Pt= X—(1+P) r r if (x) x(1-1-1F) d • x cd 

where 

	

f (..x) =, _dor, 	 a 

	

dx 	(1 	v)  X 

Making use of equation (1), we get 

f (x) = var  ke-kx (1 + ")'r  max  (1 — 

and substituting (4) in (3), we have 

(3) 

(4) 

at  X' [J x' 1 yar  max  ke—kX ± ( 1  + V) ar max ( 1  e-191 
+Cl i 

• 

Integrating term by term 

e-kxdx x-(1+7,0) 0 + 0•r max I XvdX at  = x.-- ( 144.1) vkar max  f xu+P) - 

	

..A.-(1+ 11 )  (1 + v)a, max  f x' e-kx 	cpr".4')  

e-kx 
-kx =-- Par maxe 	 — r ma 	kx  + 11) air MAX .x  

[c1 	co,,koir max  + c3 ( 1  + v) ar max + C4 ( 1 	v ) 7 max 

Denoting the constant under the bracket by c 

	

OPT max  [ 1 	1,160 k x ex-(14-11) 	 (5) kx 
The constant c has to be suitably chosen. In particular, if c =0 

	

at = Crr max [i 	ve—ICX+ 	 e-kx] 
kx 

We hold to equations (1) and (5) and find the disc thickness by means of 
the conditions of equilibrium, viz., 

d 
dx ‘x-Yari Yut iutt) 2x5 --= 
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which can be written as 

47t T ILW2xZ 
IMP•Mp 

d ()car) 	i 

xar 	d X 	X al  TA 	 (6) 
i0. 

where y stands for d. 

From (1) and (5), we 
yields the disc thickness. 

know ar  and at  and integration of (6) therefore 

Let us specify that at x=--  1, the disc has a thickness yo  and at any radius 

vs the thickness is given by y. Also a r  at x = 1 is given by 

ar, --=-` at max  

and at x 	
r :flax 	

e-kx). 

Substituting for ar  and at 
and integrating between the limits and x, we get 

x 	 rz e-kx . dx  

Ss' .,:iii: „... .5 __Tie_7_---_kx1 	dx 	)— v i x 	 

10 

1 
1 

	

1 ± 	
0 

	

1111) 2 . f 	xdx 
( 	0 S  .2it.x...i.i..-11„.  , r______ 	0 — e--kx) 4. 1.__.------ 	x2 0 , e 	) 	a, ma, 

	

k 	 1 
1 
3 	 iv  d (xagr) , ____1  

	

. 	 (z+v). dx C 	x--- 	 ---F---lx 	x i  
+ ------ fa.--_---.e.-=---i -tx) —  armax 	 1 

1 

which gives 	 ?A 	cks 	e–k  
X 	Pl_u . . 1,- — IT 

( v  ..- 1) . { ck  , e-k} + gr max  ( la 

	

loge  L = log x + ---- 1. ‹. 	( x  

	

Yo 	 kx e-k 	1  — I 1 

	

y 2 	L„„ -- 1-7-5?-3  .... ± 41 + .----- Ir-x:27; 	#1. 
. 	--- 1 	'" 	crr max 	 fv(1,Thr)1 

--- loge t w'r 

Taking c = 0, we pit 2 	Ck 
1122_ 

ICX  0  k} 	{ kx ( v 	1/ o 	 ar max  
loge  32- =--- log x 	 x 

Yo 	 kx) 
x 

X2 4., 	--- loge 1.  (I 	e 

(7) 
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For different values of k the expression (7) can be calculated. For instance 
when k =5, the values of disc thickness are plotted against radius in Fig. 1 (b). 
The material of the disc is steel with density 0.28 lb./cubic inch. Poissons 
ratio =-- 0.3, ar  max = 20,000 lb./square inch, and speed = 10,000 r.p.m. 

By making k very large, we get 

loge  — 
Yo 

.e., 
— 	

L( 22 
.2 	ti t°2 

 - 2a - 	2—ar max r ma x 

_woo  
y = yoe  2Crr mcmia° 120wr IIIIX (at x---= 1, y yo) 

or 

putting 

Sal  

= yo  e 2Crr max 

e2ermax " 1 3  

( _wag  ) 
e Iter max 

we have 
_ Awe 

y = 	e 2ffr max. 

This is the shape of the well-known De-Laval disc. 

An interesting conclusion obtained from this is that by assuming a unit 
function for the radial stress variation and making it attain its maximum 
value in the smallest interval by choosing k very large and computing the 
tangential stress from the compatibility equation, we are raising the stresses 
at every point in the disc to as nearly as possible the maximum permissible 
value. According to Holzer,' raising the stresses at every point to as high 
a value as possible is equivalent to having the work of deformation sustained 
at every point in the disc a maximum. A disc in which the work of deforma- 
tion sustained is a maximum is a disc of minimum material. 

So we have the result that De-Laval disc is also a disc of minimum 
material. This result is also obvious from Fig. 1 (a). As ar  attains its 
maximum at also becomes maximum with k --= 5, a, and at  both attain 
maximum value even. when x I. In other words it is a disc of constant 
stress equal to the maximum stress. When k =-- 5, the points lie close to a 
line and the shape of the disc is shown in Fig. 1 (M. 

For values of k < 1, the disc diverges, i.e., the thickness increases with  

the radius over a large interval and then converges. Such a shape has  
obviously no practical use. 
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When a stress is prescribed as varying as a unit function, we get different 
shapes for different values of k and when k is very large we get the De- 
Laval shape which is shown to be a (Ilse of minimum material. 

Finally, the author's thanks are due 
constant encouragement and comments. 

to Dr. A. Ramachandran for his 
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APPENDIX I 

The following simplifying assumptions are made: 

if ex (i+ r ) , A 	e-kx 
&ix= — -T--- [xci-Fo+ (1 +  v) v 	( 1 -1- v) v• 

k 	x + — 17-- • lc. x,...1  

+ 0.11.(v — 1) 
k.k.k 	 . 

neglect terms containing 40 and higher powers of k. 

r  e-ksdx _ r  e-kx  
— e-kx) (2) 

Expanding by binomial theorem 

f e•{1 	e-kx 	e-2kx 	e-akx + etc... ..}. 
• 

Taking only the first term 

e-kx 	e-kx 1 	1 	e—kx 	2_ r e-kx 	..] 

x 	k 	; k 

r 

 k 	X2+ k ) X3 I  

neglecting terms containing k 2  and higher powers of k 

C e-kxdx x-Ic 

xi 0 --7-Tnex.)e k 
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