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Problems in Rotating Discs can be classified broadly as those in which
the disc shape is specified, i.e., Y=f(x) is given and the stresses are required,
and the converse problem where the stress variation is prescribed and the
disc shape is required.

When a stress variation is prescribed, the procedure for determining
the shape is simple. Since the targential and the radial stresses are not
independent of each other, when one of the stresses is prescribed the other
stress has got to be computed from the compatibility relation. Having
known both the tangential and radial stress variation the disc thickness can
be computed by integrating the equilibrium equation for the given boundary
conditions.

The disc shape thus determined satisfies:

(@) the equilibrium equation;
(b) the compatibility equation; and
(¢) the boundary conditions,

B aun

which is a fundamental requirement of disc deSign.

Since in general the radial stress is usually greater, let us assume 1ts
variation as given by the unit function

- - -

O = Or max (l - e—kﬂ‘:)’ X > 0 . (”
k>0

where x is the radius and k is a positive parameter. When x=0, i.e., at th
origin ¢,=0. The variation of o, for different values of k& has been plotted
in Fig. 1 (a). From the figure it is clear that as k increases from 0-5 10 5-0
oy rises very rapidly from zero to its maximum value. In fact by cho‘osmgk]
very large ¢, may be made to attain its maximum in as small an interva
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as"desired. To™determine oy the tangential stress, W
compatibility equation, * _ 2
dog (1 + v)yop _ vdoy (LT 1% —f(x).

dx % dx X

_ - V1
On the basis of equation (1), function f (x) 18 k]f; us
the determination of oy For this PR

and equation (2) allows
e the expression

ot= Uy

Denoting derivatives by primes, we E°t
vl _ £
w4 ulv 4+ 0+ 9 5] =/

" 350 chosen that

v
z!’-i—(l-l-“’)';c‘ = 0.
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Therefore, we get

o' = f(x)
u=ff(x3dx i

We have therefore if k, kg 15 replaced by ¢,
o= x—(1+l’} [J"f(x) _\{-{l-l—l’l'.dx + cl] (3)

and for v we have

so that we get

where

d
fER=r=T+ 1+ )T,

Making use of equation (1), we get

(1 + V) O max (1 i e—kﬂ.?)
X

f(x)=voy fe~h% ;

and substituting (4) in (3), we have

U't=.x_u+p} [fx(l-i-ﬂ {“'0'1' ax ke—km l (l + V) Ty m;‘(l —_ E‘k'r)} I fl]

(4)

Integrating term by term
op= x4 vka, ... | x+2) . o~KT gy 4y~ (142) (1 4+ v) o, ., [ xvdx

— X (1 4+ v)oy pax [ X"€7KE 4 o x-0+9

kx g
= = VOr paxf T Oz 1 kx (1 v) Tr max

+ x—ﬂ'i-ﬂ [cl + c?”’kafmax + C3 (i + V.) Tr max + Cy (I + P) Or m"‘]
Denoting the constant under the bracket by ¢

| —k __
" mu[l o (1 —I-;ie "‘] 4 ex—lrte) (5)

The constant ¢ has to be suitably chosen. In particular, if ¢=0

ot = 01’ max [l

We hold to equations (1) and (5) and fird the disc thickness by means of
the conditions of equilibrium, viz.,

d
T (xyor) — yoy + pwix?y =0
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which can be written as

A Sl o Lo
d X0 0% ey (6)

, dy
y stands for c?;:)'

where

Erom (1) ard (5), we know o, and ot and integration of (6) therefore

yields the disc thickness.
the disc has a thickness y, and at any radius

Let us specify that at X = 1,
A]SO Ty at x = | 18 gi\"eﬂ by

¢ the thickness is given by y.
UT:=UT max (l = E_k)

and at X
Or = U max (l i e-k.’l}')' ”

and oy and integrating between the limits 1 and x, we g€t

I

Substituting for o7
e~k -dx

"'y, 5§ Jie
— —— Vv —_
{5 =) sa=e { zit=e=

1

pETH chEdx___ pe, ~ o xdy
| k P —e*)  Orax (1T — e
1

1

’x—t2+v).dx J‘I d(xep) 1

c
L &;.:; (1 — € KT dx  XOr
which gives
| x o2 (e
loge .- = v =Y {e;,,-k}+f_~ =~ F
Be log v + % - e o kX k
kx k |
x* ¢ g~ ST PO 1
2l = E‘k"'_:)
Taking ¢ = 0, we gzt
kX pw” e
! Z_—_-: (V—-l)-'e_.:----.-'f’_k +"_——tfﬁ K
Ofe B log x + —% { 2 } Op max
(N

xﬁ
- 4 B
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For different values of & the expression (7) can be calculated, For i;stance
when k =5, the values of disc thickness are plotted against radius in Fig. 1 (b)
The material of the disc is steel with density 0-28 Ib./cubic inch. Poisson;
ratio=0-3, oy n,,=20,0001b./square inch, and speed = 10,000 r.p.m.

By making k very large, we get

[ y __ TR s, U@
Ofe 5 SR
Yo Or max Tr max
i.e.,
-“wl’,_'_'__"w,
y=roeTastimrmn (alx=1, y=yo)
or
—L pw?
V=¥, €20rmax (E’ oy “““‘) .
: .
putting
- w3
€ 20rmax =2 l,
we have

— [wie®
y = .1"0 £ 20r max,

This is the shape of the well-known De-Laval disc.

An interesting conclusion obtained from this is that by assuming a unit
function for the radial stress variation and making it attain its maximum
value in the smallest interval by choosing k& very large and computing the
tangential stress from the compatibility equation, we are raising the stresses
at every point in the disc to as nearly as possible the maximum permissible
value. According to Holzer,! raising the stresses at every point to as high
a value as possible is equivalent to having the work of deformation sustained
at every point in the disc a maximum. A disc in which the work of deforma-
tion sustained is a maximum is a disc of minimum material. .

So we have the result that De-Laval disc is also a disc of mimmum
material. This result is also obvious from Fig. 1 (a). As o, attamns 1ts
maximum o also becomes maximum with k¥ =5, ¢, and oz both attain
maximum value even when x =~ 1. In other words it is a disc of constant
stress equal to the maximum stress. When k=5, the points lie close to 2
line and the shape of the disc is shown in Fig. 1 (5).

For values of k < 1, the disc diverges, i.e., the thickness increases with
the radius over a large interval and then converges. Such a shap¢ has
obviously no practical use,
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When a stress is prescribed as varying as a unit function, we get different
shapes ror different values of k and when k is very large we get the De-
Laval shape which is shown to be a disc of minimum material

Finally, the author’s thanks are due to Dr. A. Ramachandran for his
constant encouragement and comments.
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APPENDIX 1

The following simplifying assumptions are made:

fe-k:c.xum.dx— E;(km [x“*” | ( }t i x* 4 (1 + v T

(1 4+ (v —1)
Mi— F e )

neglect terms containing k2 and higher powers of k.

e kxdx e~k .
f (I —ekx) = f T (1 — e~K&)-1.4x, - 2)
Expanding by binomial thecrem
p— KT

—=—* {1 F e Lt L B LG, o

Taking only the first term

ek kx| 1 [e kT | 2 e~k
[ =F 5+ [F s+t [ S+ ]
neglecting terms containing k2 and higher powers of %
e"¥dx  gkxT |
x (1 — e k%) ¥ X

-
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