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SYNOPSIS 

In the numerical solution of doubly connected sections in Torsion, 
only one of the boundary values, either inner 	or outer, can be arbi- 
trarily assumed. 	Usually 	the value assumed 	will be zero. 	For the 
second value, the method proposed 	by Southwell,' 	though exact, is 
tedious. 	In 	this article 	an alternative 	method, 	giving 	fairly accurate 
results is 	proposed. 

The governing differential equation of uniform torsion on a prismatic 
bar is 

( 1 ) 

d# 
together with the boundary condition 2 	 is the stress function). ds 

The numerical solution for singly connected regions is quite straight- 
forward. But for doubly or multiply connected regions the solution becomes 
tedious and involves enormous amount of patient Relaxation. The aim 
of this paper is to seek an alternative procedure which will minimise the 
labour without sacrificing the accuracy. 

The main problem will be the determination of the inner boundary values. 
In doubly connected regions the unknown boundary value will be only one 
since the other boundary value can be assumed to be zero without any loss 
of generality. 

The differential equation must be satisfied at the inner boundary. The 
value of the stress function at the inner boundary will be hereafter desig- 
nated by 01. 

This is otherwise expressed as 

fi bct  sn  d s 

where A is the area enclosed by the inner boundary curve. For our purpose, 
it will be convenient to have it in the former form only, i.e., 
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Referring to the membrane analogy this only means that in the equation 
v 2irk — K, K must be equal to — 2 at all points. 

In the membrane analogy experiments, the hole in the section will cor- 
respond to plate in the membrane. From the membrane over the solid 
section, we remove the portion corresponding to the hole and put a plate in 
its place, the membrane can take various shapes, with the plate remaining 
horizontal. The problem is then, to adjust the height of the plate correctly 

such that (v 24')i 	— 2. 

The torque of a prismatical bar is 

T = 2 if Odxdy 

- Similarly for the hollow section 
T 2 1194dxdy ± 2CA 

inequality can be written down ass (2) 
Ts  Tp  + Th,  

where 
Ts  ---= Torque 

Tpr- Torque 

Th= Torque 

of solid shaft 
of pierced shaft 

due to material 
removed in the hole 

Ts  --=-- 2 f f OsdNdy + 2 f f Oselvdy 
R3 

Tr= 2 f f Opcbcdy + 2 CA 
R I  

Th= 2 f f hdx d)' 
R3 

The torque 
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where Oh is the stress function of the shaft corresponding to the hollow 
portion. 

Introducing the membrane height z which corresponds to stress func- 
tion 0, we can write equation 2 as 

2 f f z sdxdy + 2 f f zsdxdy 2 f f zpdxdy ± 2CA + 2 f f zhdx-dy 
RI 	 l<2 	 R2 

Sol 
f f zs  dvdy = If z dvdi* 

P 	• • 
It (3) 

This equation is continuously true, i.e., if this is true for R 1 , it will be 
true for R 1  ± dill , the addition being done on both sides. 

For the Equation (3) to be true it is not necessary that z s  and zp  must 
be identical. It will be a particular case when the boundary of the hole 
coincides with the stress line in the corresponding solid shaft. 

We are concerned with the important case when z p 	z s  at every point. 

We shall consider centrally situated circular boundaries. The results 
hold approximately for nearly circular boundaries centrally situated. Then 
we can write zp  and zs  in the form of Fourier series. This is possible if the 
Dirichlets' conditions are satisfied. 

FIG. 2. 
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On the membrane of the solid shaft take a strip of infinitesimal width 
' di' adjacent or along the curve which corresponds to the hole in the solid 
shaft. 

Take the corresponding curve in the membrane of the hollow shaft. 
and z s  are functions of x and y. Open out the curves and lay them along 

zp  and z s  are defined in the interval 0 to 27r. 

Since we are not concerned with the behaviour of these functions 
beyond this interval, it is enough if all the Dirichlets' conditions are satisfied 
within this interval. 

The two functions are continuous and single valued; f (0) = (27r) . 

So we can represent both zp  and z s  by Fourier Series. 

CO 
	 00 

27 S = him E bmi  cos inls E ami  sin mis 

	

1,4=1 	 m1=1 

	

00 	 00 

ZP .= b20 E bin;  cos ma + E am, sin in 2s 
triz= 

27 2/r 
k 	1 f se  de 	 1 	

a  ds 

	

.z. s  14J 	 b20 = -- 	4  P vio — 2, 	 271. 0 (I 

27 

=-- 	zs  sin m iss& 

0 

27 

f Zp sin ',yds 
0 

27 

f Zp cos ni,sds 

0 

21r 

a mos  =-- f z s  cos mods 

0 
In the new system of axes 

21. 
f z s  dxdy dt f zs  ds 

dRi 	 0  

vr 

f I zp  dxdy =-- dt f zp  ds 
dR, 	 0 

Equating both, according to Equation (3) 

2 	 27 

I ts  ds------ f zp  ds 	
(4) 

7r 

0 	 0 
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As discussed in 
identical. They can 
functions oscillating 
axis-s.  

Equation 3, this will 
be as shown in the 

about the same axis, 

be true even if zs  and zp  are not 
•figure, i.e., they can be sinusoidal 
displaced by a distance from the 

Fm. 3. 

So this relation does not help us as it is to determine the function corn- 
pletely, i.e., we cannot determine the Fourier coefficients. 

We can seek for a relationship between the coefficients of the two expan- 
sions zp  and zs  means of the Pa rseval's Theorem. 

(z) 2  dz =-7  b 02  r 	
± 00 

E (ak 2  bk2 ) 
o 

 
k=1 

where 
00 	 00 

J(z) 	= bo 	ak  sin kx 11 b k  cos kx 
k=1 	 kat.' 

2V 	 CO 

zp 2  ds = b 20 2  -I-  E (am 2 2  bni2 9 
0 	 M2=1 

211' 	 00 

zs 2  ds == b 102 	E  (ams 2 
0 	 Ini=4 

Here we will have to make one more assumption which is approximate. 

The values of zp  and z s  depend mainly on b20  and b10. (This does not 
• • 	a• 	 •• •• • 	• 	• 	. 	!_ 	...11 ha 

mean that the rest cot the terms are negtigibte always, but Ineir SUM Witt tn. 

co 
comparatively small. The sum of their squares, i.e., E (ak 2  bk 2) can be 

k=1. 
neglected). 

Then 
21r 

zs 2  ds = 1)10 2  

211 

f 2  z ds = 1 2  )20 
0 
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From equation (4) 

21r 

f zs  ds f zp  as 

multiply both sides by 21.7).  
g 	. . 

2r  

I 	 I 	
17r 	 L 

0- 

2n  fi  zs  dr — — - f 
27T 	

Zp ds 	
.it. 

•
4  

o 	 0 
ie e . , 	 _ 

- 

SO 	
bio -Thr-: b21) 

. 	 b10 — 20  
Therefore,  

2w 	 2r 

zs 2  ds.  = f zp 2  ds 	 (5) 
0 	 0 

Consider at this stage, the internal boundary curve of the hole, both in the 
hollow and corresponding solid shafts. On the internal boundary of the 
hollow shaft Oi= constant, i.e., (zp) = constant =C. 

Equation (5) will, then, be 

2r 	 21r 

f C 2  ds =-- z s 2  ds 
0 	0 

27r 

f z s 2  ds 

	

= C2  = 9 	 (6) 
ds 

0 

This is the required relation which helps us to evaluate Oi from the 

values of O s  on the corresponding curve in the solid shaft. 

(Os = stress function of the solid shaft.) 

Evaluation of the right-hand side of Equation 6 can be done in the 

following way. 
Divide the curve into n-divisions, preferably equal. Then 

271w 

21r  zs 2  ds = 10s 2  ds 
o 	 0 

2 
EgSS1 2  ± OS22 • •  • • 	Ont 

ir• 
€ 1  A 2 visit nal 
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2 
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Osn 2  

ii 

n=1 

_ 

E Os n2  
C n=1 

ii 

• 

e 

FIG. 4. 

This method can be called R.M.S. Value' method, indicating the 
characteristic feature involved in it. 

Examples are given in the appendix. 

The author is thankful to Mr. C. V. Joga Rao and Mr. S. K. Lakshrnana 
Rao for the very valuable suggestions made during the preparation of this 
article. 
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APPENDIX 

1. Rectangular shaft with a circular hole at the centre.
- 

	

2 	1 (163 2  - 	- 1602  + 153.52+1502+147.252+ 1492+ 1492\ 6 2 
2 ) 

100 2  = 6 (1.33 	2.56+2.36 + 2-25 + 2.17 + 2.22+1.11) 

13•80 x 100 2  
==2.30 x 1002  

C =1-517x100=151.7 

Exact value =--- 149. 

This has been worked out by the author by the method of SouthwelP 
for 6" x 10" rectangle with 2" diameter hole. 

2. SplThed Shaft 4— 

217. 
f 03 2  ds 

	

C 2 	=-- [554R  x23002  + 	R  2485 2  
18 	18 

0 
4 R 54 

+ -27  25402] 19 R 

54 1 	 1 	1 	1 
= 	x ioo2 [6 x 5  9  x 529 + 3  x 6  x 557 ± 1-8  x 617 

4 +
27 

x 645] 

54 
=1002 [49 . 0 + 31 + 34.3 + 95.61 0  

54 
=1002  [209 • 91=1002  x 596.7 

19 

C =2442 

Exact value=2374. 
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