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- 1. INTRODUCTION

mmifal??artshia;m;:eﬁf;a;nti;Vetnhantt:he ’probi‘em of elast.ic tm:sion of pris-
semi-inverse method of folgutiin ‘*Fﬂ EI}tIOI’l p nurr}efc{us lnvestlga'tors. -~

: : lor this problem initiated by Saint-Venant
hlrr}self has yielded exact solutions for several important cross-sections.
Quite a number of cross-sections have also been successfully dealt with by
the method of conformal mapping.''? where one transforms the region of
the given cross-section onto the inside of a unit circle. However, in many
cases it is impossible to obtain exact solutions and one has to depend on
approximate techniques among which the variational, numerical and graphical
ones are important.? Synge! has given a new method of approximation
for problems in elasticity, based on the method of the hypercircle in function
space developed by himself and Prager.® These and other methods provide
upper and lower bounds for the solution.

The present paper deals with the problem of elastic torsion of a uni-
form, isotropic bar whose cross-section is a rhombus. In Part A below,
we use the method of Rayleigh-Ritz to obtain an approximate solution of
the problem and also notice bounds for the torsional rigidity by some ot‘her
methods. We use the technique of relaxation in Part B to obtain a numerical
solution of the problem taking the acute angle of the rhombus equal to 60°.

9. STATEMENT OF THE PROBLEM

ts in the determination of the warping

n the region of the cross-section and he_ls
If ¢ (x, y) is the harmoniC

The problem of torsion consis

function ¢ (x, y) which 1s h_armonic i
prescribed normal derivative on the boundary.

conjugate of ¢ (x,y), we have
v¥ (x, ) =0 at all interior points of the region,

and

_ L K
Jix,y) =3 x>+ )+ COHS[an\f“._,.-t on the boundary. a

b3
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Writing

(v, y)=¢(x,p) — (%4 p?)

the problem is equivalent to the determination of (the stress function) ¥
such that

VY +2=0 at interior points - (2.1)
and ‘
¥ = constant on the boundary (2.2)

The constant may be taken equal to zero for a simply connected region.
The stresses are, with the usual notation of (Ref. 1).

h} o dY¥
Tex =HE 55y Tzy T T == (2.3)
and the torsional rigidity is
D=2u [[¥dxdy . (2.9
PART A

We are concerned with the bar whose cross-section is the rhombus
(side a, acute angle 26) bounded by the lines

X i ¥y _
cos @ — sin 6

+ a (Fig. 1)

-
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the problem by the Rayleigh-
" Energy Integral ” of the

3. To obtain an approximate solution of

Ritz method which consists in minimizing an
form

(N =[11(v/)* = 41) dxdy 3.1)

Jf assuming the same boundary values as the wanted function ¥, we take
(for a first approximation)

S y)=q [(cos 8T &h 6)2 - aﬂ] [(coi ] Siﬁ 9 2 az]; (3.2)

this obviously vanishes on the boundary of the region. The condition of
minimization of (3.1), viz.,

¢y .’- JA@ M VEAG Y dedv=—2[[f (x, y) dxdy (3.3)

' 5 (sin 20)®
A= 3 g

The corresponding approximate torsional rigidity is

giv es

S b
D, =2uc, [ [fi (X, y) dxdy = 5. (sin 20)* a'. (3.4)

To have a better approximation for the solution, we take

L, »)= [(cos # " sin 9) B ] [ cos f  sin '3)2 B az]

= [01 T Ot (EB%H T Jf )2+ Ca(coz §  sin 9 ]
(3.5)

e clgl (".1 ,l") + C‘-’-gﬂ (I, .V) + 6333 (3:‘, }') |
which are to be obtained from the minimization condttions, viZ.,

i Ois B
; | 3.6
> ci [ [ g V% dxdy=—2[[g: dxdy ( _)
(=1, 2 3)
are solutions of the linear equations
48 — sin26 cos®6. .
l85 ik <5 72 a‘c‘g 4o l a4c3 sin*f# co
| in%6 cos? 3.7)
152 sin2f cos 6,
52“""+315"4“’+105 8 _

152 , . — 1 Gin2g cos?é.
17 31 4 at Ca= 4 SIN -
jsrat 210“""2 3154 573



162 S. K. LAksHMANA RAO AND K. T. SUNDARA RAJA IYENGAR

Employing Kramer’s rule, we have

5 19079 (sin26)* " 15 631  (sin 26)?
32 20033 at, ~16 20033 ai

15 593 (sin 26)?
— 32 20033 a? (3.8)

The approximate stress function is then given by (3.5) and (3.8); and the.
torstonal rigidity 1s

Do=2u [ f (181 + €282 + cags) dxdy = (0.1400) ua® (sin 26)3. (3.9

It is well known that the approximate torsional rigidity found by the Ray-
leigh-Ritz method falls short of the exact value. Denoting the latter by D,
we have then D > D,, D, of which the better result is

D > (0- 1400) ua* (sin 26)°. (3.10)

4. An upper bound for the torsional rigidity will now be obtained by
a method due to Friedrichs (Ref. 1, pp. 323-27) which consists in maximizing
an integral of the form

IWy=~ [/ [(VW)2-——41c . +4r]dxdy; 4.1)

W is always a harmonic function and may be chosen with advantage to be
a polynomial in x and y consisting of only odd powers in x as well as y.

We take

W =k, xy (4.2)
and
Wo=1/ xy + L (x3y — xy? (4.3)
for first and second approximations and have
(W) = — ¥028 (k2 _ 4k, cos?0 + 4 cos? 6) (4-4)
and o
J(Wo)=— ¢ h%a (sin 26) — g ly%a® (sin 26) (10 — 7 sin® 26)
% /2a® (cos 26) (sin 29) + 3 La' (sin 26) (cos*ﬁ)
+ 125 la® (sin 26) (cos® 6) (2 cos® § — sin? 6) —

X (sin 26) (00529)'*
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The conditions for maximum of J(W,) and J(W,) yield
2

k — 2
and 1= 2 cos?%0 (4.6)
— 28 (sin 26)?
L= s o 28 (sin 26)*cos 26
1= 200870~ g + 7 (sin 26)2 ° ,
- T0Gin26)* 1 @.7)
2= 384+ 7 (sin 26)* a®
writing

—uI (W) =D, —pJ (W) =D,’
we have D < D,’. D, of which the better result is
D < D, fmm
In the case of a rhombus with acute angle equal to 60°, we note '
D, = (0-09022) pa*, D,’ = (0-1082) ua’,
D, = (0-09093) ua', D, = (0:0951) pa’.
Combining (3.10) and (4.8) we have
(0-09093) pa' < D < (0-0951) pa', (1)

5 Saint-Venant had observed (1856) that of all cross-sections with
a given area, the circle has the maximum torsional rigidity though the result

was proved 1n 2 snathematical sense only recently (Ref. 6, p. 121). This can
be expressed by the inequality

In DK pA® 5.hH

where A 1S the area of the cross-section. In the present case, A = g?sin 260

so that wet have

D < _(5231391? _ 01592 pa* (sin 26)* (5.2)

- rid

in the case of the rhombus with 76 = 60°, W€ have »
(5.3)

D < (0-1194) pd'.

6. We may obtain another upper bountd for f o oshon
symmetrizing the given cross-section and using the fact t 'ah e 2
r?gidity thereby increases.’ Symmetrizing the _rhombus yil erwll:ose s
'perpendicular to one of 118 sides, we change !

are a, a sin 20. Using the value of the torsion
(Ref. 1, P 148), we have for the rhombus,
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o0

 (sin 20)°  64ua® (sin 26)" t 2 i
D.g':u"“r (5';' b o IR ﬂ(r!a “4) Z g?h(;._f!—!_]) 2fiosec 26
' e ¢ )
(6-1)
When 26=60°, we note that |
D < (0.1051) p af 6.2)

Since by repeated symmetrization a rhombus is convertible into a square,

we also note
D < (0.1406) na* (sin 26)2 (6.3)

In the case of 280=60° this is
D < (0-10545) u at (6.4)
though (6.2) gives a better estimate,

7. Recently Weinberger’ has proved an inequality connecting the
torsional rigidities of two (or more) disjoint regions and of the union of the
regions. The result can be stated in the form

Dis..n=2D; 4+ Do+ .... + D, (7.1)

where D; is the torsional rigidity of the i-th region R; and D,,. .., is that
of the union R=R; + R; + .... + R,. The proof of this result uses
an equation of the type

gg ds =— 2A (r) and can be easily shown to be applicable in our problem.
As the region ABCD (Fig. 1) is the union of the triangular regions ABD,

BCD we have

Daasepy 2 Danny  + Den (7.2)
When 260 =60°, ABD and BCD are equilateral triangles so that we have
. 3
DHHC“} = 2 DMBI}) = 40 pa
l.e.,
D > (0.0433) pat (7.3)

This is not satisfactory in view of (I); however it is of some interest. It IS
observed in (Ref. 7) that (7.1) reduces to an equality relation when q'nd only
when the common boundary lines of the regions R; are level lines of o fOl'
the composite region. Comparison of (I) and (7. 3) leaves no room for equality
in the latter, thus forcing the conclusion that the shorter diagonal of a rhombus
of acute angle 60° cannot be a level line of 7.
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Comparing the several inequaliti
| al inequalities for D, we
'] - * L] ’ nOte .
estimates for the torsional rigidity of a rhombus of acutzheanzzt g;SSlble

(0-0909) pa* < D < (0-0951) uar'.

PART B

& We now take up the numerical solution of the problem of torsio
qf 2 rhombus of acute angle 60°, using the relaxation technique. The funcn-
tion to be determined is ¥ and is governed by the conditions st;ued in (2.1
and (2.2!. To have a non-dimensional equation, we write Y

hen v=a¢, y=ay, ¥=a*X(§ ) 8.1)
h 32X X
Yt A o =— 2 (8.2)
and the stresses arc given by
Tye =pad 2)( T, = — padq s (8.3)
N/ 2E
and the torsional rigidity 1s .

D=2uat [ [X(& ) dEdn 8.9

suggests the use of a triangular net. If d

is a pure number). Equation (8.2) is
pations of the form®

The cross-sectional shape
s the side of the mesh, put d=al
now replaced by finite difference €4

%(x1+x2+x3+x4+x5 5

where 1, 2, 3, 4, 5, 6 are the nodal point
' lar net of side d=", so that

net (a pure aumber). We start with the triangu

[=1]/3.
The values of X at the nodal points on the boundary arc sero. I @y, b

c,, dy are the internal nodes, bY symmetry X (a,)=

From (8.5) we are led to the equations
2___}5'](01)'"5)((171)“{"‘}:-'0} | 8.6)
3X (ay) — X (by) —~ 4 =0

giving | . " &
X (a)=X(e) = T’ X (b) =X ()= 39°
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FiG. 2

We may now proceed to a finer net (hexagonal) of mesh length d =—3f;3

so that / = 3\1/3. The corresponding finite difference equations take the

form
(% + Xa + Xg) = o + 15 =0, (8.8)

Due to symmetry of the region, we may confine our attention to a fourth
of the rhombus, which will be a 30°, 60°, 90° triangle. From (8.7) and
(8.8) the X-values for the new nodes are determined (Fig. 2). Advancing

now to a still finer (triangular) net of mesh length & =g (1 =;) we note the

corresponding finite difference equation to be

Xy 4 Xy + Xy 4+ X4 + Xy 4+ Xg — 6X, 2-'7=0. (8.9)

[ g

The X-values at these nodes are determined by using the values calcu!zited
above in (8.9). Starting with these initial values we proceed to liquidate
the residuals. The final X-values after relaxation are given in Fig. 3
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o

Multiplier 702

FiG. 3.

Going now to the four-stage advance to a finer (hexagonal) net of mesh

lengthd = we use the finite difference equation

B
943

I
Xy + Xg 4 Xy — 3% + 25 =0 (8.10)

to obtain the X-values at the nodes. These values are now taken as starting

assumptions for a triangular net of mesh side d = 5y /3 and the residuals (Ry)

are obtained by using the relation

|
Ro=X; + X3 + X3 + Xy + X5 + Xg — 6Xy + g7 (8.11)

167
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The initial values (with multiplier 6318) and the resulting residuals are indi-
cated to the left and right of the nodal points in Fig. 4.
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We may now proceed to liquidate the residuals. Symmetry of the
region and irregular stars necessitate the use of several relaxation patterns
in addition to the standard one (see Fig. 5).
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The accepted solution is shown in Fig. 6.
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FIG. 6.
We need [ [ Xdédn for the determination of the torsional rigidity (8.4).
For the triangular mesh, the contribution of a single traingle is seen to be
; .
[§xdgdg = (Ye£XptXe L LYy V3 pe (8.12)
Actual evaluation gives
D=0-09121na.

This compares favourably with the limits given at the end of Part A.

The best thanks of the authors are due to Professor N. S. Govinda Rao
for his interest in this paper as well as encouragement. y
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