
PROBLEMS CONNECTED WITH THE RHOMBUS 

I. Elastic Torsion 

BY S. K. LA KSH M ANA RAO AND K. T. SUNDA RA RAjA IYENGAR 
(Civil and Hydraulic Engineering Section, Indian hatitute of Science, Bangalore-3, India) 

Received August 9, 1954 

I . INTRODUCTION 

Since the time of Saint-Venant the problem of elastic torsion of pris- 
matical bars has been engaging the attention of numerous investigators. The 
semi-inverse method of solution for this problem initiated by Saint-Venant 
himself has yielded exact solutions for several important cross-sections. 
Quite a number of cross-sections have also been successfully dealt with by 
the method of conformal mapping," where one transforms the region of 
the given cross-section onto the inside of a unit circle. However, in many 
cases it is impossible to obtain exact solutions and one has to depend on 
approximate techniques among which the variational, numerical and graphical 
ones are important. 3  Synge' has given a new method of approximation 
for problems in elasticity, based on the method of the hypercircle in function 
space developed by himself and Prager. 5  These and other methods provide 
upper and lower bounds for the solution. 

The present paper deals with the problem of elastic torsion of a uni- 
form, isotropic bar whose cross-section is a rhombus. In Part A below, 
we use the method of Rayleigh-Ritz to obtain an approximate solution of 
the problem and also notice bounds for the torsional rigidity by some other 
methods. We use the technique of relaxation in Part B to obtain a numerical 

solution of the problem taking the acute angle of the rhombus equal to 60 0 . 

2. STATEMENT OF THE PROBLEM 

The problem of torsion consists in 
function (x, y) which is harmonic in the 
prescribed normal derivative on the bout 
conjugate of ifr (x, y), we have 

vct (x, y)=---- 0 at all interior points 

and 	 \\ 

# (x, 	=--4 (x 2  y9 	constani‘...& 

the determination 
region of the cros: 

%citify. 	If # (x, y) 

of the region, 

on the boundary. 

of the warping 
;-section and has 
is the harmonic 
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Writing 
sy) = (x, y) 	.} (x2  + y 2) 

the problem is equivalent to the determination of (the stress function) Yi 
such that 

V 2 	± 2 .= 0 	at interior points 	 (2.1) 
and 

W= Constant 	on the boundary 	 (2.2) 

The constant may be taken equal to zero for a simply connected region. 
The stresses are, with the usual notation of (Ref. 1). 

bW 	 bW 
rzx = Pia 	7 lazy 	/la (2.3) 

and the torsional rigidity is 

Dz2p ffW dxav 	 (2.4) 

PART A 

We are concerned with the bar whose cross-section is the rhombus 

(side a, acute angle 20) bounded by the lines 

cos 0 
- 	 =±a 	(Fig. 1) 
stn 0 
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3. To obtain an approximate solution of the problem by the Rayleigh- 
Ritz method which consists in minimizing an "Energy Integral" of the 
form 

1  f = f Rv f ) 2  - 4./ dxt 	 (3.1) 
f assuming the same boundary values as the wanted function W, we take 
(for a first approximation) 

ri  x 	 y y a2] -  (3.2) 
4. 	\ 2  a21 

A (xs )1)=-- 	cos- o 	sin 	L‘cos 0 	sin u 

this obviously vanishes on the boundary of the region. The condition of 
minimization of (3.1), viz., 

c1  ff1 (x, 	2f1  (x, y) derdy = — 2 f 1f  (x, y) dxdy 	(3.3) 
giN es 

5 (sin 29) 2  
i2 

The corresponding approximate torsional rigidity is 

5 	• 
131  =-- 2p,c, f 	(x, y) dxdy = 	p. (sin 20) 3  . 	 (3.4) 

To have a better approximation for the solution, we take 
2 

] X \
2 

a2 [(_, 	-„) --- a 2] 

	

COS 0 	sin u 
f2 Cy' == Rcoesv  9 	sin 01 

\ 2 	x 	Y ) 2 1 
x 	y-- 	c3 kcos e x 	c2 \cos 	sin 0 

(3-5) 

Clg] (xl 	C2g2 	y) 	c3g3  (x, y). 

CI, 621  c3 which are to be obtained from the minimization conditions, viz., 

E ci  f f v 2ga dxdy= — 2 f fg, dxdy 	 (3.6) 

J=3. 
C . 	1, 2, 3) 

are solutions of the linear equations 

8 	4
7
8 nie 	48 ffi c.3 . sin 20 cos 20, 

a2c1 	1 3" 2 	5 17 15 

	

, 152 a1/4. 	aic3 	31  sin 20 cos 20, 16 aec, --r -  315 	- 	it" 35 
1 . 2n 	20.  31 _At. 	152, 	(is = 3 	u cos 

	

3175 a2r1 + 210 " 2 	313  

(3.7) 

• 
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Employing Kramer's rule, we have 

5 	19079 (sin20) 2 	15 	631 	(sin 20) 2  
(11  == 32 20033 	a2, ' C2  16 20033 	-az, 

15 	593 	(sin 20) 2  
(3 .8) 20033 	a 2  

The approximate stress function is then given by (3.5) and (3.8); and the. 
torsional rigidity is 

D2 	f f (cigi + c2g2 	c3g3 ) dxdy (O. 1400) pa' (sin 20) 3. 	(3.9) 

it is well known that the approximate torsional rigidity found by the Ray- 
leigh-Ritz method falls short of the exact value. Denoting the latter by D, 
we have then D > D 1 , D2 of which the bettei result is 

D > (0.1400)1244  (sin 20)3.. 	 (3.10) 

4. An upper bound for the torsional rigidity will now be obtained by 
a method due to Friedrichs (Ref. 1, pp. 323-27) which consists in maximizing 
an integral of the form 

b (W)= —If [(vW) 2 — 4x — 
W 
 x2i dxdy; 	(4.1) 

W is always a harmonic function and may be chosen with advantage to be 
a polynomial in x and y consisting of only odd powers in x as well as y. 

We take 
W l =k1  xy 

and 
w2 =11 xy 12 (x5' xy3) 

for first and second approximations and have 

..1 (WI) = — sin 20  (k21  — 4k1  cos20 + 4 cos 2  0) al, 6  
4 

and 

(4.2) 

(4.3) 

(4 •4) 

1 
(W2) 	2414  (sin 20) 	/

2 
2a8  (sin 20) (10 — 7 sin 2  20) 6 	 -0  

2 	 2 — —15 /1 I2a6  (cos 20) (sin 20) 	4a' (sin 20) (cos 20) 
. 	3  

2 -  - ha° (sin 20) (cos 2  0) (2 cos 2  0 - sin 2  - 
3 

2 a' 
15 - 

x (sin 20) (cos20). 



Problems Connected with the Rhombus —I 	 163 

The conditions for maximum of J (W 1) and J (W 2) yield 

= 2 cos20 	 (4.6) 
and 

28 (sin 20) 2  cos 20 
= 2 cos2  0 — 38 ci-cs-in 20) 2  ' (4.7) 

70 (sin 20) 2 	1 
/2= 38 + 7 (sin 20) 2  62 

Writing 

_MJ (Wl) =D1 1, — (W2) = D2' 

we have D < 	13 2' of which the better result is 

< D21. 	 (4.8) 

In the case of a rhombus with acute angle equal to 60°, we note 

Di = (0 . 09022) pars, D i ` (0 . 1082) lati, 

D2 (O .  09093) p,a4 , D21  = (00951) pa4 . 

(1) 

5. Saint-Venant had observed (1856) that of all cross-sections with 
a given area, the circle has the maximum torsional rigidity though the result 
was proved in a mathematical sense only recently (Ref. 6, p. 121). This can 

be expressed by the inequality 

In the present case, A= a 2  sin 20 

where A is the area 
so that we have 

D < 
_4(Sin 20)2 

27T- 

In the case of the rhombus with 20= 60°, we have 

DC (0-1194)11a'. 	
(5.3) 

6. We may obtain another upper bound for the torsional rigidity by 
symmetrizing the given cross-section and using the fact that the torsional 
rigidity thereby increases.6 Symmetrizing the rhombus with respect to a 
perpendicular to one of its sides, we change it into a rectangle whose sides 
are a, a sin 20. Using the value of the torsional rigidity of this rectangle 

(Ref. I, p. 148), we have for the rhombus, 

Combining (3.10) and (4.8) we have 

(0 . 09093) 	< D < . 0951) pal. 

2.7r D <1.1,A z  

of the cross-section. 

(5. I) 

0.1592 1.4ce (sin 20) 2 . 
	 (5.2) 
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cc 

al (sin 20) 3 	64pa4  (sin 29) E  
D < 	3 	 5 .77 

n=0 

When 20= 60 0, we note that 

D <(0.1051) au as  

tanh (2n + 1) 7-2  cosec 20 
- 	(2n + 05 	-

(6 •1) 

(6 . 2) 

Since by repeated symmetrization a rhombus is convertible into a square, 

we also note 
D < (0.1406) pa4  (sin 20)2. 	 (6.3) 

In the case of 20= 60 0  this is 

D < (0-10545) /A tz4 	 (6.4) 

though (6.2) gives a better estimate. 

7. Recently Weinberger 7  has proved an inequality connecting the 
torsional rigidities of two (or more) disjoint regions and of the union of the 
regions. The result can be stated in the form 

• 	

(7.1) 

where Di is the torsional rigidity of the isth region Ri and D12. . .71 is that 
of the union R= R 1  ± R2 	. . . . 	R. The proof of this result uses 
an equation of the type 

—
bn 

ds 	2A (r) and can be easily shown to be applicable in our problem. 

As the region ABCD (Fig. 1) is the union of the triangular regions ADD, 
BCD we have 

D(ABCD) 	DCARD) 	D (8(21)) 
	 (7.2) 

When 29= 60', ABD and BCD are equilateral triangles so that we have 

D(ABCD) „„>„) 2 Dom 	 n
))  = 40  raw 

D 	(0.0433) /cal 
	

(7 . 3) 

This is not satisfactory in view of (1) ; however it is of some interest. It is 
observed in (Ref. 7) that (7.1) reduces to an equality relation when and only 
when the common boundary lines of the regions Ri are level lines of for 
the composite region. Comparison of (I) and (7.3) leaves no room for equality 
in the latter, thus forcing the conclusion that the shorter diagonal of a rhombus 
of acute angle 60° cannot be a level line of W. 

• 



and the 
n) de this 

The cross-sectional 
is the side of the mesh, 
now replaced by finite 

A x ± X 2  + 

where 1, 2, 3, 4, 5,6 are 

net (a pure number). 

torsional rigidity is 

J J 

shape suggests the use of a triangular net. If d 

put d= al (I is 
a pure number). Equation (8.2) is 

difference equations of the form s  
(8 . 5) 

the nodal points around zero and 1 is the side of the 

We start with the triangular net of side 
d= 	that 

(8.4) 
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Comparing the several inequalities for 13, we note the best possible 
estimates for the torsional rigidity of a rhombus of acute angle 60°. 

(0 . 0909) iha4  < D < (0 . 0951) pd. 

PART B 

8. We now take up the numerical solution of the problem of torsion 
of a rhombus of acute angle 60', using the relaxation technique. The func- 
tion to be determined is W and is governed by the conditions stated in (2.1) 

and (2.2). To have a non-dimensional equation, we write 
12 II 

• 

ae, iv= an, W= az x (t, 

? 2X 	b2X = — 2 Sp. 	bri 2 

given by 

Then 

and the stresses are 

Tzx =Time 	TzD 	may st  

(8.2) 

(8.3) 

The values of X at the 

(.1, ells  are the internal n 
venrn 18.5) we are led 

nodal points on the boundary are zero. • If 
a 1 , b„ 

odes, by symmetry x (a 1 ) 7= X (4) and X (b) = X (dd. 

to the equations 

(8.6) 

(a 1) — 
 

a 

giving 	
4 

	

\ 	7  x ) X (di ) w 
X (al) 	(co 

(8.7) 



166 
	

S. K. LAKSHMANA RAO AND K. T. SUNDASA RAJA 1YENGAR 

FIG. 2. 

a We may now proceed to a finer net (hexagonal) of mesh length d= 
3'/3 

1  
so that / =• The corresponding finite difference equations take the 

form 

(X l  + X 2  + X 3) - 3X0 + 18 — ft 
	

(8.8) 

Due to symmetry of the region, we may confine our attention to a fourth 
of the rhombus, which will be a 30 0, 60 0, 90 0  triangle. From (8.7) and 
(8.8) the X-values for the new nodes are determined (Fig. 2). Advancing 

a 
now to a still finer (triangular) net of mesh length d =9  (1 = 9 ) we note the 

corresponding finite difference equation to be 

1 
± X2 + X3 + X4 + X& + X6 6X0 + 	=02  

(8.9) 
• 

The x-values at these nodes are determined by using the values calculated 
above in (8.9). Starting with these initial values we proceed to liquidate 
the residuals. The final X-values after relaxation are given in Fig. 3. 
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Multipiltr 702  

FIG. 3. 

Going now to the four-stage advance to a finer (hexagonal) net of mesh 

length d 
a t=2 

9A/3 
we use the finite difference equation 

to obtain the X-values at the nodes. 

1 (8.10) 

These values are now taken as starting 
a 

assumptions for a triangular net of mesh side d =-- co  and the residuals (R4 ) 

are obtained by using the relation 

1 
R0 =-- ± X 2  ± X3  + X 4  -4-- X5 + X6 - 6X0 	 (8.11) 
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The initial values (with multiplier 6318) and the resulting residuals are indi- 
cated to the left and right of the nodal points in Fig. 4. 

flu if /Mgr 6318 

Fm. 4. 

We may now proceed to liquidate the residuals. Symmetry of the 
region and irregular stars necessitate the use of several relaxation patterns 
in addition to the standard one (see Fig. 5). 
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Pattern for A ye stern For C 

Pattern 4r2  

1St 

Pattern for  a &norm for  

77‘ 

Pattern FOr r 
	

A7starn for 
	 Anton.: liar a 

deJift_ti_LA2ICSI 

o 
o 0 

0 

E 
Pj 	r_ 	2 fr Vt 

Flo. 5. Relaxation Patterns. 



170 	S. K. LAKSHMANA RAO AND K. T. SUNDARA RAJA IYENGAR 

The accepted solution is shown in Fig. 6. 

ulig ;pi; sr 6310 

FIG. 6. 

We need f .1 Xded-ri for the determination of the torsional rigidity (8.4). 
For the triangular mesh, the contribution of a single traingle is seen to be 

Ca 	Xb 	Xc 	/2 ) V3 /2 	 (8.12) f xde d7/ = 	— 3  + 6 ) 4 
Actual evaluation gives 

D = 0.09121/lat. 

This compares favourably with the limits given at the end of Part A. 

The best thanks of the authors are due to Professor N. S. Govinda Rao 
for his interest in 	this paper as well as encouragement. 	 • 
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