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ABSTRACT

The subject of switching transients in polyphase induction motors and synchro-
nous machines has been studied in very great detail by several investigaters in the past,
but no published factual data exist dealing with the analysis of the problem of switch-
ing transients in a three-phase induction motor run as a Capacitor Motor on single
phase supply. This particular problem has been studied in this paper in detail by
applying the Laplace Transform in a slightly modified form.

It is shown that the developed electrical torque and the voltage across the con-
denser do not exhibit any abnormal values during the first few cycles after the closin g
of the switch, whether switching is done at the maximum value or zero value of the
applied voltage. This result is in striking contrast with the results obtained earlier
with a plain general purpose Capacitor Motor.

INTRODUCTION

Single phase operation of three-phase motors has been a subject of very great
interest in the past to both the design and operating engineers. Quite a large
amount of literature exists dealing with the analysis of this problem by the method
of Symmetrical Components. In a recent publication’ the method of Dy_adic
Circuit Analysis, has been applied to this problem and analytical expressions
have been obtained with the aid of which it is possible to determine the per-
formance characteristics of the motor from standstill to synchronous speed.

It is a well-known fact that auxiliary impedances could be used to shift the
phase currents and terminal voltages of a polyphase motor in orc!er to operate
it on single phase supply. The two standard method{; are the Senes Impec}anqe
Method and the Shunt Impedance Method. By a judlfzmus choice of the circuit
elements it is possible to have reasonably good balancing both as regards Rhu?e
and magnitude of the currents and voltages. A three-_-phase motor ru? ﬁn ;E’lge
phase supply as a Capacitor Motor Is by far the most important case of the Shunt
Impedance Method of operation. In the paper referred to above, expressions
for the line current and torques have been derived for this case as well.
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In a very recent paper. Haberman

problem by applying the method of symmetrica -and
clusion that it would be far more economical to use a plain single phase motor,

cather than a combination of 2 three-phase motor and a phase converter. He
has shown that a three-phase motor in conjunction with a phase converter has an

bly lower breakdown torque than the motor operating singly, suppl.ied
The performance results and the formulation

by Habermann, indicate clearly that for the

hen operated on single phase supply with a
versized three-phase motor.

n!® has made a comprehensive study of this
| components and come to the con-

apprecia
with balanced three-phase poWwer.
from which they have been derived

motor to give normal performance w
phase converter, it would be very necessary to us¢ an O

r deals with the problem of Switching Transients in a three-phase
y with a phase converter. This is an exten-

sion of the work described in a paper by the author entitled ¢ Switching Transients
in Single Phase Induction Motors,” published in the 1956 Transactions of the
A.l.E.E.¥ The analysis of this problem has been carried out with the help of
the Laplace Transform in a slightly modified form. This facilitates the easily

determined machine constants to be used directly in the formulz, for quick
computation of the results.

This pape
motor operated on single phase suppl

ASSUMPTIONS

In accordance with the well-known limitations of the performance equations
-or induction motors the following simplifying assumptions are made in thts study.

(1) The electrical switching 1Is accomplished in zero time.

(2) Both the rotor and stator have symmetrical windings.

(3) The rotor Is perfectly smooth and the self-inductances of the windings
are independent of the rotor position.

(4) The effect of magnetic saturation, hysteresis and eddy current losses are
completely disregarded.

(5) The resistances and inductances are considered to be unaffected by the
absolute frequencies, of the currents in the stator and rotor.

(6) In the low frequciency transients encountered in induction motor studies,
the effects of inter-turn capacitances of the windings are neglected.

THEORY

| dF1g. i shows the phase converter with a motor having delta connected stator
winding. An auto-_trz%nsformer could also be used to obtain more satisfactory
operating characteristics. The converter consists of two capacitors of unequal

t Paper in 56-517 A 4i
systems”. A.EE. Transaction 1956 October Issue of ‘“Power Apparatus and
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out the larger cond
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nects the smaller one to the circuit at the correct speed. The runningSl::rapa:a:l1 qt -
citor is

assum'ed to have a resistance 5 per cent. of its reactance magnitude
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Fic. 2. Equivalent circuit of three-phase motor with converter on a single phase supply.

The mesh equations of Fig.2 can be writien down by inspection, as follows:

Rlinf + Xq, d;:! + xm Ei;fr + Ru (fu.f - fﬂb) + xdﬂj. (fu! - fﬂb) dt = vf (I)

(1)

Ryfas + Xo o0 14 X, Y80 4 R, s = ia) + X, f as = i dt = Vo 0
@)
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di. _ digy _ 3
X gl + Raier + X gp = ‘
: dig 4
X,,%‘;—'?—]—Rlﬁb'l‘xﬁ‘df"'o ()

By taking the Laplace Transform, on both sides, and rearranging terms suitably,

the following four equations are obtained.

Xc X".
qu {Rl + R, 4 §XKg T+ S} - Iub {'_ R, — ‘-S}

-+ Igy sXm + Igs - O =V, (s) (5)
X
fo { R =5} # Lo {Ri R+ X “l
+ Iﬂj’ . O + Iﬁb . SXm e Vb (S) (6)
Lo - X + las - O+ Iﬂ,r (R; + SXB) + Iﬂh .0=0 (7)
Iﬂf.o-{'lﬂb.Sxm+lﬁ;-0+l,€b(R2+sxf3)=o . (8)

[n all the equations given above, the independent variable 1s taken as (f) = time In
radians or @ = 2nf times the time in seconds = wt’. This facilitates the induct-
ances being replaced. by the better known values of reactances,. measured at the
power supply frequency. The differential operator d/dt in the integro-differential
equations, 1 to 4, 1s thus rendered dimensionless in character, since wt' 1sa pure
ratio of two quantities having the same dimensional value. The roots of the
characteristic equation are also dimensionless and are asually expressed as complex
fractions of the angular frequency at which the reactances are given. An addi-
tional advantage accruing from this particular choice of the independent variable
is, that, on actual oscillograms of voltages and currents ootained experimentally
the time scale can usually be determined by a proper timing wave.

The equations, (5) to (8), can be rewritten in the following way by making
the simplifying substitutions indicated here.

Let
X,
A:R1+Ra+5xn+ S.
B~ —{R,+ x,}
)
C = sX,,
D= R2 -+ 5X3
Therefore,

Vf == A[uf + B]uu -+ C[‘g, 4+ O . Iﬁb (9)
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V. =BIl;, 4 AL, 4+ 0O . g, + Clﬁb

O =Clyy + 0.1, + Dlg, + 0. T, t:(:;
O0=0.1Iy+Cl,, + 0, Ig, + DIy, (12)
In matrix notation:
-
LV, A B CO .
v, [ BAOC >
O C ODO Ig, !
O O C OD Ig,
V=A- 1 (13)
DetA=] A B C O
B A O C
Eano ={C? -~ D(A — B)}{C2— D (A + B)}
| O C OD
'V, B C O
' V, A O C
! O O D O
O C OD .
L, = _ Vi (AD? *thzz) — V,BD* (14)
Det A
AV, CO
B VvV, O C
C O D O
O O O D |

_ — V,BD? -V, (AD® - C*D)
L e Det A

Det 4

(15)

I
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vV, O

v, C |
o O |
O D

C 0O @ »
O O » =

= =" haA

Det A

C v,
0V,
D O
0O O

cC O W »
O © » w

__V,BCD + V,(C* — ACD)
Igy = - Det A ()

Det A

In the equivalent circuit shown in Fig. 2, the two voltages V, and V, can be
written down as follows, on the assumption that the applied voltage E, is passing

through its zero value at the time of closing the switch.

vV, (1) = V3 sin (f — 30)
V, () = :/3 sin (¢ + 30)

The Laplace Transform of the above functions can be written down as:
V0=V = A% 5w ~ 20 F) -
MO =% = AT et ay ) L%

S ti;:bstltutlng these expressions in equation (14) and rearranging terms
uitably,

D sD

e —— e e,

I £ owm
20+ 59 [{p (A + B) — C¥ + v3{C®- D(A - B)}] -
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Substitution of the values of A, B, C and ' :
oy n¢ D gives the following expression for

N EA _ R2 ‘{'L SXB
2(1+ 5 | (Ry F 5Xg) (R, ¥ sX,) — 1,2
N {;1/_3 5 (Ry + 5% g) |
S*X,2 — (R, + sx,g)( Ry + 2R, + 5X, + %)
hY

This can be further simplified to the following form:

-.E’f i} s 4+ Kg
IoX, — -
7 (1+.c2){sﬂ+sK“*;Kﬂ)+KaK.e}

o
— | s* (s + Kg)
V3 (1 + 52) {s’ e (Kac':- Kjg) 4 ‘;_(X,'_ +HK3K:T+ Kﬁ:;}]
(21)
Similarly it can be shown that the expression for I, is given by:
Ea [ s+ Kpg
20X, [(l + 52) {52 1 s (Ka + Kg) + Kﬂl_(ﬂ}
o o
. s* (s + Kg) _
V3 + 57 oo + 58 SRR L T Kﬂf}]
(22)

The only difference between the above two equations (21) and (22) is in the
sign of the second term.

The current in phase A, being the sum of I, and I,, can be expressed in the
following form:

L (s) = Ea . (3+KB)K —
i O'Xa_ [(1 +52) {SE_*_S (Kﬂ—: ﬁ)+ a E}

o

E.K;g - l+ae (23)
o aXaP1P2 (1 + s+ T;5) (1 + Ta)

where ¢ = 1/Kg, T, and T, are the reciprocals of the two roots of t!1e characteristic
equation. By ﬁt;ikilng the inverse Laplace Transform the following general €X-

. . f § 1'
pressiop is obtained for the currgnt 1n phas¢ A as @ function of *{
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P ()= oA [ C VI+Kg L sin(e— O

A (0= X Ly F ) (1 P2

KB — P1 . % S Kﬂ — P2 ] e—”.,‘
B (ps — po) (I + 71 A (py — p2) (1 + P2%)

where

§= tan™! ] 5 fan> 1 _ tan™! 1

- P1 P2 Kﬁ

“stants of three-phase induction motors, K< 1

For the usual values of the co !
The above expression can therefore

and p; 1S negligible compared with p, and 1.
be simplified to the following form:

. . 9 'l’li
= B[S0y S e ] .

Vit (+pd P
Detailed computation of is (¢) is given In Appendix A. The current in phase

A consists of two decaying D.C. terms in addition to the steady state A.C. term.
Out of the two transient D.C. terms one is extremely weak in magnitude but

has a large time constant.
r Currents—The currents in the forward and backward fields of the rotor

a

Roto
are given below.

{s, = . Eé [_ o C S __.__1,__,_ __39_
Br=2( +s?)L{C*—-D(A + B)} \/3{C2-——D(A—B)}]
I == i __E{'#_ — [____.“ . _(_:ﬂ__ . ,__1_ — sC
B =9 +55L{C*—D(AFB)} ' 43{C*—D (A"Z‘B)}] (26)
| Substituting t‘hc values of A, B, C and D in the above equations and simpli-
fying the expressions, in the manner indicated earlier, the following equations

are obtained for the rotor currents:

(25)

E, X
Ig, (s) = e il e 1
20 i |
XaXg [(l + 5%) {sz + 5 (Ko + Kg) . KqKﬁ} v 3
o c
* s
| 2 3 (Kﬂn . Kﬁ) . (K Km, LX',,,'r KgX,’
(4t foo - e TR0 4 (BoBee T8 B
(27)
Igy () = 25;)(),(,, ;e 1
TRl sy s+ s (Kot RKe) KaKs} V'3
o (4 2

% . 5°
K 7 7
(1 + 5%) {33 + 32(-- s :_ Kﬁ) + S(KBK‘FF 'I'__)_(e'_) 4 KBX{I ]
) 3 [ 3 j
(28)
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The first term in the bracket gives rise to two deca

2o ying D.C. ¢ ;
addition to the steady state value. The second term in the bracket g‘;:;ts’orril:;tti ;n
n

extremely weak D.C. component, a damped oscillato
. ry term and a st
A.C. term. The frequency of the oscillatory term 18, in general, highere atc}?;nSttaI:z

base frequency. The general expression for the rotor current wi
. will
of the following form: I, therefore, be

iy (1) = Ep [Aycos (t — 6,) + Ay cos (f — 0,) 4 B, et 4 B, o
+ By e~ + C, e sin (b 1 — 6,)]

where A,, A, etc., are constants, the values of which depend on the machine para-
meters. A detailed computation of ig, is given in Appendix B.

Condenser Voltage—The voltage across the condenser is given in the following
form, as a function of ‘s°, the Laplacean parameter. ‘

Ve = (R.-. -+ ):) (Tay — Tas) (29)

For the purpose of estimating V, (f) it is necessary to multiply R, by the values
of (iy, — i,;) at various instants of time and this gives the first part of the above
expression. To obtain the second part of the above expression the expression
(iqy — iqp) is integrated with respect to ¢ and then multiplied by X..

The final expression for V, is given in Appendix A and the variation of V,
during the first few cycles is shown in Fig. 5.

Developed Electrical Torque.—From the Double Revolving Field theory of
the induction motor, the developed electrical torque is given as:

T, — K [Eﬁf . iﬁf — fﬁb . iﬁb] (30)

It is a well-known fact that transient asymmetrical fluxes and currents are produced
whenever a highly inductive circuit 1s switched on to a source of A.C. voltage,
The magnitude and phase of these transient terms would ob?lously deper}d on the
value of the voltage at which electrical switching 1s 'accompllsh‘ed. Detailed com-
putation of the developed electrical torque 18 giw.:.n in Appendix C. | It sho:'lc'l be:-
clearly noted that all the expressions given earlier are for standstill con ltlo? ;
the actual case of the motor rapidly coming up to speed becomes extremeb{ c:?mp -
cated. In general, however, the peak value qf the shaft torque Occurs within :J];e
first few cycles during which time the rotor will not have attained ﬂz-my n}eas*Ltl;z:i ::
speed. There is, thus, perfect justification for disregarding the eilect of rotatio

on the switching transients.

Equation (30) gives the instantan€ous developed electrical to;que g?:c: :;:;;S
on the rotor. The actual magnitude of the shaft torque, however, depends O ,

) inertia, If the
as well as the flexibility of the shaft, the damping and moment of inertia. 1
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of ¢ n°, the reflected values

o a mechanical load with a gear ratio . ct
have to be added to the corresponding quantities of the

f the mechanical system happens to be very close,

to the supply frequency, the peak value of the torque may exceed the normal value

of the developed electrical torgque, due to resonance effects: In the event of the
enertia of the directly driven mechanical load, being appreciably smaller than the

inertia of the rotor, then a pronounced reduction in shaft torque could be expected.
If the coupling has a backlash or non-linear torque-angle characteristics, sometimes,
deliberately adjusted, an appreciable increase in shaft torque, due to impacts, will

be produced.

motor 1§ connected
of moment of inertia, etc..
rotor. If the natural frequency O

In the large majority of cases of practical interest, the motor is mechanically
coupled to a heavy inertia load by a flexible coupling; in all such cases the equi-
valent mechanical system could be represented by the scheme shown in Fig. 3.
In this mass represents rotor inertia, etc., spring represents the effect of flexible

coupling and B represents friction.

Im‘i"m -+ Bm‘ﬁ'n + Kn?sm = Ta (t)

T o
Bm

Tm:f(or) 9

il
T

Fic. 3. Mechanical Rotational System.

V}!ith an extremely long expression for T, (¢) it is not possible to solve the above
e}r;l_uatlon l::y the 'SImp}'e a::id well-known methods; it is however possible to solve
this equation with the aid of an Electronic Differential Analyzer

The eflect of closing the switch wh '
: _ en the applied : :
maximum value 1s discussed in Appendix D. pplied voltage passes through its

CONCLUSIONS

F - - .
- s;zﬁntl:ﬁa?iﬁlzi ?omPutatlon carried out, for a typical three-phase motor
component, a very lar 1:655101;1 for torque contains, in addition to the steady state
ed In single phase ogﬂrzrim i tr?nswm oscillatory terms. As is to be expect.
like of which does nof; ef:m }here s a double frequency torque pulsation the
soe, 1hes syt w8 St]ﬂ)}:dzi‘illlnc;lze(;:soengi sti Cap?c_itor Motor, since in the latter

s to a fair (—
fo that of 4 two-phase motor, The time constants of thdee%::?lsi:rft tifslrsozlr??z?:;i
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with the result that the developed electrical torque attains its final

value after about one cycle. It is interesting to note that wheﬂ?e ts;ltea?y state
switching is performed at the maximum value or zero vah;e of thera elt:: thncal
potential all the transient terms in the expression for torque vanish bpfhle ,;;Cf
the very first cycle. This is in sharp contrast with the results othine:l ein ll?
case of a well designed, general purpose Capacitor Motor. n the
concluded that even if starts and stops are unusuall
repeated switching will not normally occur.

111

It can, therefore, be
Y frequent fatigue due to

It 1s well known that single phase motors have a fairly large double frequency
pulsating torque at no load as well as under normal loading conditions, so that it
is very necessary to design the shaft coupling and rotor supports to handle these
torques safely. It has therefore become the normal practice to make the natural
frequency in torsion of the rotor and connected load well above twice the line fre-
quency and also to make the shaft adequately strong to carry high pulsating
torques. As the three-phase motor run as a Capacitor Motor on single phase
supply 1s, uscally under-rated, trouble due to mechanical failure caused by
transient and double frequency torques are very rare.

The effect of varying the capacitive reactance. on the transient terms in the
expression for torque is not very pronounced, as shown at the end of Appendix D.

SYMBOLS

E, — Single phase supply voltage.
V, = Volage cprlicd to the forward field in the equivalent circuit.
V, = Voltage applied to the backward field in the equivalent circuit.
V, = Voltage across the starting condenser.
igqy = Stator current in the forward field as a function of 1.
i,y = Stator current, in the backward field as a function of 1.
I,, = Stator current in the forward field as a function of “s’.
I,, = Stator current in the backward field as a function of ‘s’
fﬁ, — Rotor current in the forward field as a function of 1.
igr = Rotor current in the backward field as a funt::tion of‘ r
Ig; = Rotor current in the forward field as a funcnofl of si.‘
[gs = Rotor current in the backward field as a function of ‘s’.

s = Laplacian parameter of complex character.

R, = Resistance of the stator winding (ohms/phase A)-
rotor winding (ohms/phase A).

1 1 nser.
R. = Equivalent series resistance of the starting conde

X, = Leakage reactance of a stator winding (ohms/phase A).
(ohms/phase A}

R, = Resistance of the

Xy = lLeakage reactance of rotor winding
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X = Magnetising Reactance (ohm?/phased[_\.). r
X, = Capacitive reactance of starting c::)r::l enser. iy
— : g = [ —
Xa = XJ_ *§' Xm- Kﬂ. xu xu . Xﬁ
Ry
Xﬁ = X2 + Xm. Kﬁ e xﬁ
R, + 2R,
X _ e Kge = l.x,_
[ x“ .

- time in seconds.
¢ = 2x f times time in seconds = w/’.
Moment of interia of rotor, €iC., and connected load.

e
|

Iw =
B, = Friction constant.
K,, = Spring constant of the coupling system.
9. = Angular twist of shaft coupling system between motor and load.
f = power-supply frequency at which the motor is designed to operate.

T, = developed electrical torque.

A;, A, B,, Bg, etc., are arbitrary constants.
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APPENDIX A

The value of the current in phase A has been computed for a typical three-
phasc motor, the constants of which are taken from Ref. 10.

5 H.P., 3-Phase, 220 Volt Motor.

R, =165 X =15 All the values are given in ohms
R, =1-35 R, == 0-150hm per phase A
X=X, =17 X, =30ohm
By estimation we get
Ke =2-151 x 102 Ke, = 2542 X 102
Kg=1-759 X 10-* X, =T7-821 x 102
¢ =4-4]1 X 10-2

The roots of the characteristic equation
52 4 0-8862s + 10-% X 0:8579 =0
are
p; = 0-8763
p, = 0-0098
The final expression for current in phase A is given below.
in (f) = Ea4 [6-22256 sin (1—6) + 0-1658 e~08783¢ 4 [0-3x 2-659 okt
where
¢ = tan~! 1-1411 + tan? 102-09 — tan~! 56-85 = 49° 18".
Fig. 4 shows the variation of i, (f) during the first few cycles.
The expression for igy and ig, as a function of time are given below.
iay (1) = E5 [0-1112 sin (r — 49" 18) + 0-0693 sin (t — 51° 2)
4 0-0829 e 0873+ + 108 X 0-147 %" + 104
% 13:297-00008¢ _ o~047875 ¢ {(3-00131 sin (1-24 1 — 143° 23")
— 0-09873 sin (1-24 t — 212° 18')}]
iy, (1) = E5 [0-1112sin (¢ —49° 18') — 0-0693 sin (¢t — 51° 2')
4 0-0829 e—08763 ¢ 4 10~ X 13-297 g~ 000t _ ]()-8
% 0-147 e-00177 44 g—04778 £ {(-00131 sin (1-24 ¢ — 143° 23°)

— 0-098 sin (1-24 ¢ — 212° 18")}] 13
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Voltage across the Condenser —From the values of iq and i, it is possible
‘o determine the voltage across the condenser, which is given by the following

equation.
4
Rc (fa.f - fab) + xa _r (faf - fab) dt = Vr:
0
By substituting the values of R,, X,, iay and i, the following equation is

derived for V,:
V, = E, [0:416sin (t — 138°7') — 047 ¢ (0-446) sin (1-24 t— 143° 23’)

— 1077 X 4-98 e=077¢ L 10~2 - ¢~04%¢ {(}-586 sin (1-24 ¢
— 74° 28") + 2:96 sin (1-24 ¢t — 212° 18')}]

Fig. 5 shows the condenser voltage as a function of ¢ ¢’ during the first cycle.



APPENDIX B

For the machine for which the constants are

o : ; given in Append;
characteristic cubic equation is given below. ppendix A, the

§% 4 0-9752 5% x 1-7836 5 4 10~2 x 3-1195 = 0

The roots of the above equations as determined by synthetic division are:
py =0478 +j1-24
ps =0-478 —j1-24
ps =0:0177
The final expressions for ig, (f) and ig, (f) are as follows:
ig) (1) = — Ex [+ 0-1085 cos (¢ — 138° 16) 4+ 0-0677 cos (¢t — 140°)
+ 0-0825 ¢~ 08763 ¢ _ 10-2 X 0-163 ¢ 0008 L (-(0965 0477t
X sin(1:24 ¢t — 212° 18") 4+ 10 X 0:2611 ¢-%0177 ]
igy (f) = — E4 [0-1085 cos (+ — 138°16") — 0677 cos (¢ — 140°)
0:08256 e~ 287638 _1(0—2¢0-16324 ¢ 0008 ¢t _ (). (0965 ¢~ 47875
X sin(1:-24 ¢t — 212° 18") — 1078 X 0-2611 ¢ 00177 ¢]

The transients in the rotor current consists of three decaying D.C. terms and
one damped oscillatory term of frequency 1-24 times the base frequency. One of
the three D.C. terms is of extremely small magnitude.
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APPENDIX C

The developed electrical torque is given 1n symbolic form by the following

expression.
T, = KRE [iﬁf . iﬁf T ‘ﬁb . Iﬁ'b]
For the machine under study, the torques due to the forward and backward
fields as calculated by the above formula, are given below:
Trorwsra = 1(;-23%‘2 [5-69 cos? (1 — 139°) + 5.448 0883 ¢ cos (1 — 1397)
1 6-198 ¢ 4% fcos (f — 139°) sin (1-24 ¢ — 212° i18)

4 1697 e~"95%¢ 5in? (1-24 ¢t — 212° 18°) + 10*
W 4-857 e~0-01981 4 2-984 e-1°355¢ gin (1-24 t—212° 18)—10~
x 0-504 ¢—'8881% —1071X .5742 04885 ¢ gin (124 t—212° 18)]

10—-2EA2 2 0 —0-8763 ¢ L 3
Tyaxrsrs = "1-35 [0-3036 cos® (t — 139°) + 1.26 cos (¢ — 139°)

_ 1-4358 ¢4 cos (t — 139°) sin (1-24 1 — 212¢18°)— 10~
< 0-242 e 008t cos (r—139°) + 1-311 g-1'7562 | | 697 097
% sin (1-24 t—212°18")+1074x 4-885 g—"01988__ 2 .QR3B g~1° 3%
% sin (1-24 ¢t — 212°18") — 107! X 0-5046 ¢~08881f L 101

x 0-5744 e~0438t gin (1-24 ¢ — 212°18’)].

The nett torque in the direction of rotation is therefore equal to
T, = E,2[7-932 X 10-2][1 + cos 26] + 1-564 ¢~0%73 cos 6
+ 2:-86 48 cos Bsin (1-24 + — 2127 18')
12228 ¢-1°3655 ¢ gin (1+24 t — 212°18') — 0-03 =0 00¥
X cos § — 0-0428 e~0485 ¢ gip (1:24 1— 212° 18")]
where
8 = (1 — 139°).

Thf.:, 1;151’. two items are ex:tremely small in magnitude and could therefore be dis-
regar ed in the comp"utatlon. of T,as a function of t. There are thus three trdan-
sient terms all of which vanish by the end of the very first cycle. The frequency

?{Gsome of the components is 1:24 times the base frequency.



APPENDIX D

The effect of closing the switch, when the applied potential passes through
its maximum positive value has been investigated by taking

EA o
V, as 3 {cos (r — 30°)}

V, as EAX {cos (1 + 30°)
§ Vi

The approximate values of i, (7). V. (1), etc., computed for this particular case,
are as follows:

ia (1) = Ea[0-222 cos (1—49° 18')—0- 145 09763 ¢ _[0~4 x 02606 ¢~9%% 1]
V. (1) = Ea [0-416sin (¢ — 48%) 4 e~ #7751 {0023 sin (1-24 1 —143° 23')
— 0-335sin (1-24 1 — 212° 18")}]
_ — E%107
1-35
—5-76 &~09%75 t gin (1—139°) sin (124 — 143° 23")—3-832 1353
5 sin (124 1 — 143° 23")]

Variation of i,, V. and T, as functions of ¢ is shown in Figs. 4, 5, and 6
respectively.

T, [5-356 sin® (t — 139°) + 3-57 7583 ¢ gin (¢t — 139°)
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Varnation of X, on the transient terms:

It is obvious that the life of the transient terms depends on the roots of the
characteristic cubic equation, referred to in Appendix B.

The following table gives the characteristic equation and its roots for various
values of X..

X, R, Characteristic equation Roots

2.0 0-100 |  s340-044 s2+1-19 s+10-2x2.077 —-0-017; -0-463+; -979
2.5 0-125 $2+0-958 s2+1.486 s-+10~2x 2-596 -0-017; -0-471%71-117
3-0 0-150 ! s21+0-974 s241-78% s+1072x3-11 -0-017, —0-4781;1-240
3:5 0-176 } s24+0-987 s2+2.078 s+1072 x 3-637 -0-017, -0-485+£71-355
4-0 0-200 | 34100 5s24+2.374 s+10"2x4-1565 —0.017;, -0-493%71-454
4:5 0-22b s84+1:017 s24+2-671 s+10"2x 467 -0-017; —~0-504%;1-554
50 0-250 s34+1-033 524+2.963 4102 x5-192 -0:017; —0-5C8%;1-653

From the roots of the characteristic equation, it is easily seen that the damping
factors for both the D.C. term and the oscillatory term remain practically constant
over a small and permissible range of variation of X,. The variation of the
frequency, however, of the oscillatory term, changes appreciably with X,.
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