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ABSTRACT 

The subject of switching transients in polyphase induction motors and synchro- 
nous machines has been studied in very great detail by several investigators in the past, 
but no published factual data exist dealing with the analysis of the problem of switch- 
ing transients in a three-phase induction motor run as a Capacitor Motor on single 
phase supply. This particular problem has been studied in this paper in detail by 
applying the Laplace Transform in a slightly modified form. 

It is shown that the developed electrical torque and the voltage across the con- 
denser do not exhibit any abnormal values during the first few cycles after the closing 
of the switch, whether switching is done at the maximum value or zero value of the 
applied voltage. This result is in striking contrast with the results obtained earlier 
with a plain general purpose Capacitor Motor. 

INTRODUCTION 

Single phase opetation of three-phase motors has been a subject of very great 
interest in the past to both the design and operating engineers. Quite a large 
amount of literature exists dealing with the analysis of this problem by the method 
of Symmetrical Components. In a recent publication' the method of Dyadic 
Circuit Analysis, has been applied to this problem and analytical expressions 
have been obtained with the aid of which it is possible to determine the per- 
formance characteristics of the motor from standstill to synchronous speed. 

It is a well-known fact that auxiliary impedances could be used to shift the 
phase currents and terminal voltages of a polyphase motor in order to operate 
it on single phase supply. The two standard methods are the Series Impedance 
Method and the Shunt Impedance Method. By a judicious choice of the circuit 
elements it is possible to have reasonably good balancing both as regards phase 
and magnitude of the currents and voltages. A three-phase motor run on single 
phase supply as a Capacitor Motor is by far the most important case of the Shunt 
Impedance Method of operation. In the paper referred to above, expressions 
for the line current and torques have been derived for this case as well. 
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In a very recent paper. Habermann w  has made a comprehensive study of this 

problem by applying the method of symmetrical components and come to the con- 
clusion that it would be far more economical to use a plain single phase motor, 
rather than a combination of a three-phase motor and a phase converter. He 
has shown that a three-phase motor in conjunction with a phase converter has an 
appreciably lower breakdown torque than the motor operating singly, supplied 
with balanced three-phase power. The performance results and the formulation 
from which they have been derived by Habermann, indicate clearly that for the 
motor to give normal performance when operated on single phase supply with a 
phase converter, it would be very necessary to use an oversized three-phase motor. 

This paper deals with the problem of Switching Transients in a three-phase 
motor operated on single phase supply with a phase converter. This is an exten- 
sion of the work described in a paper by the author entitled Switching Transients 
in Single Phase Induction Motors,' published in the 1956 Transactions of the 

A.I.E.E.f The analysis of this problem has been carried out with the help of 
the Laplace Transform in a slightly modified form. This facilitates the easily 

determined machine constants to be used directly in the formulx, for quick 

computation of the results. 

ASSUMPTIONS 

In accordance with the well-known limitations of the performance equations 

for induction motors the following simplifying assumptions are made in this stiidy. 

(I) The electrical switching is accomplished in zero time. 

(2) Both the rotor and stator have symmetrical windings. 

(3) The rotor is perfectly smooth and the self-inductances of the windings 

are independent of the rotor position. 

(4) The effect of magnetic saturation, hysteresis and eddy current losses are 
completely disregarded. 

(5) The resistances and inductances are considered to be unaffected by the 
absolute frequencies, of the currents in the stator and rotor. 

(bi In the low frequency transients encountered in induction motor studies, 
the effects of inter-turn capacitances of the windings are neglected. 

THEORY 

Fig. 1 shows the phase converter with a motor having delta connected stator 
winding. An auto-transformer could also be use( to obtain more satisfactory 
operating characteristics. The converter consists if two capacitors of unequal 

t Paper  in 56-517 A.I.E.E. Transaction 1956 October Issue of "Power Apparatus and 
systems". 
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ratings, with a voltage sensitive relay 
nects the smaller one to the circuit at 
assumed to have a resistance 5 per ce 
lent circuit at standstill developed by 
is given in Fig. 2. 

that cuts out the larger condenser and con- 
the correct speed. The running capacitor is 

nt. of its reactance magnitude. The equiva- 
Habermann in the paper referred to earlier 

FIG. 1. Converter and three-phase motor on single phase supply. 
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FIG. 2. Equivalent circuit of' three-phase motor with converter on a single phase supply. 

The mesh equations of Fig. 2 can be written down by inspection, as follows: 

di 	d • 
Riia;  +Xs 	+ X -- I  R, Oaf iab) Xe (i i  — 	= V (0 

dt 	'" d 	 0 
(1) 

Rxiab 	
dip) 

Xa diab 	Xps 	Re (i ab 	al) + X 0 
 o
f ciao — icy) -= V, 0) 

dt 	dt 
(2)  
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X yts  -di  + R2 j ig/ 	Xfi 
dig! =.7.. 0  
dt 

(3) 

(4) 
diab  
dt + R2 lin Xfl  

By taking the Laplace Transform, on both sides, and rearranging 

the following four equations are obtained. 

X 
Iat 	 sXa 	se} 	Iab 	R, 	)(se} 

igt SX,, + ip b  . 	Vf (5) 

la! 	Rc 	
X i. 1 I { R 	R 	sXci  X r 
S a" c 

. 0 + ;Eh SX,„ V b  (S) 

T a t . 0 + Iab  . SX m  + Ip f  . 0 + ' fib (R2 + SXp) = 

terms suitably, 

(5) 

(6) 

(7) 

(8) 

In all the equations given above, the independent variable is taken as (t) = time in 

radians or to = 2il times the time in seconds = ad'. This facilitates the induct- 

ances being replaced. by the better known values of reactances',. measured at the 

power supply frequency. The differential operator didt in the integro-differential 

equations, 1 to 4, is thus rendered dimensionless in character, since ad is a pure 

ratio of two quantities having the same dimensional value. The roots of the 
characteristic equation are also dimensionless and are usually expressed as complex 
fractions of the angular frequency at which the reactances are given. An addi- 
tional advantage accruing from this particular choice of the independent variable 
is, that, on actual oscillograms of voltages and currents ootained experimentally 
the time scale can usually be determined by a proper timing wave. 

The equations, (5) to (8), can be rewritten in the following way by making 
the simplifying substitutions indicated here. 

Let 
X„ 

A = + R, + sXa s 

s 

C = sX,„ 

D = R 2  + SX13 

Therefore, 

(9) 

+ Bl ab  + ap t  + 0 . 
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In matrix notation : 

105 

ABCO 

B AOC 

CODO 

 

1 
= T 

OC OD 

(13) 

pet A = AB CO 

B AOC 

CODO 
	= {C2  D (A — 13)} (C2  — D (A 4- B)) 

OCOD 

Vf B CO 

Vb AOC 

OODO 

OCOD 
(AD2 	

- 
C2D) VbBD2  

Igo 	 = 	 (14) 
Det A  

Det 

A Vt  CO 

. 	13 Vb 0 C 

C00 0 

0 00 D 
V1BD 2  Vi o  (AD 2  C2 D) 

Tab =4 	 Det 	
(15) 

Det 
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A B 	V, 0 

B 	A 	V, C 

	

,C0 	
00 

OCOD 

Det 

V, (C3 — ACID/ 	
V,BCD 

Det 
_ 	

(16) 

A B C VI 

B A 0 V, 

CODO 

. 0 C 0 0 

V/ BCD Vb (C 3  — ACD) 
Det 	

(17) 

Det 

In the equivalent circuit shown in Fig. 2, the two voltages V t  and Vb  can be 

written down as follows, on the assumption that the applied voltage EA is passing 
through its zero value at the time of closing the switch. 

(t) = vEA3  sin (t — 30) 

EA iV, 	
il3

s n (t + 30) 

The Laplace Transform of the above functions can be written down as: 

, EA p/3 	I 	 S 1 (18) se V, = ks) = iv3  - 2 	s2) 2 Tisii 

EA [ 	1 	_L  Vb (1) Vb (S) 	v3 2 -0 	sz) 	2 0 4-3  S2)] 	
(19) 

Substituting these expressions in equation (14) and rearranging terms 
suitably, 

EA sD 	
1(20) 41  2 (1 + s2) [tD (A + B) — C 21 + Ni 3 {C 2  - D (A — B)) 
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Substitution of the values of A, B, C and D gives the following expression for 
la/ 

EA 	[ 	 R2 	/3 sX 
2 (1 + s2) (R2 + sX0 (R1 + sX,i) s2X 2  

1 	 s (R2  + sx g) -- 	  
s2X„,2  — (R2  + sX4 	+ 2R, ± sXa 2Xed s 

This can be further simplified to the following form: 

EA I 	 S  ± Kfi 
2aX a  

(1 + s2) { s2 + ,.. Ka + KR) / ka Kin 
a 	if 	-r- 	0 	} 

. 

    

s 2  (s'+ 

 

       

       

       

A/3(l +s2) {s 3 	s 2  ac 	+ s. 	± Kg1Cael 	) 
a 	 a 

(21) 

Similarly it can be shown that the expression for la b is given by: 

EA [

2aXa 

 

s 	Kfl 

(1 + s 2) { 3.2 	s 	Kt3) 	Ka Kg 
cr 	a 

s 2  (s + Kg) 

V3 (I + s) tss s2 (Kg Kac) s  (X,' 	!WC,' 

(22) 

The only difference between the above two equations (21) and (22) is in the 

sign of the second term. 	 • 

The current in phase A, being the sum of L, and L ab , can be expressei in the 

following form: 

EA 	  (S 1(6) 	le—CH K + (s) aXa [(1 + 	Is2  + s (a a 	
a 

EAKR 	 1 + as 

aXa MP2 ( 1 	s 2) 	-1- T1s)(1 	T2s) 
(23) 

where a = l JKp, T, and T2 
are the reciprocals of the two roots of the characteristic 

equation. By taking the inverse Laplace Transform the following general c\- 

pression is obtained for the currcnt in phasc A Ps P function of ' (1, 
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EA r 	± K5 2 _ 	. sin (t— 0) 
iA 	aXa 	Pi9(1 

 ± P22) 	 Ks — P2 	• e-Pi t  

	

Kfl 	• e-Pl. (pi — P2) 	+ P29 ( I„ 	p i ) 	-I- pi 2) 

where 
1 	1 

0=-- tan-1 1 + tan- i 	— tan-1 K 
. 

Pi 	P2 	g  
For the usual values of the constants of three-phase induction motors, K

fl  C I 

and p2  is negligible compared with pi  and 1. The above expression can therefore 

be simplified to the following form : 

EA nin (t — 0) 	-P g 1 	P2 ,p 1 
jA (I) = 	L - -5===---  ---- 	

f 	
- .e x 	 (24) 

aXa V 1  ± P12  0 +p12) Pi 

Detailed computation of 1 A  (t) is given in Appendix A. The current in phase 

A consists of two decaying D.C. terms in addition to the steady state A.C. term. 
Out of the two transient D.C. terms one is extremely weak in magnitude but 

has a large time constant. 

Rotor Currents. The currents in the forward and backward fields of the rotor 

are given below. 

EA 	 C 	 1 	 SC 

- 2 	 -- 	— 	— ^ 	-- - -- 
2 (1 + s ) 1C 2  — D (A + B)} V3 {C 2  — D (A — B))] IP/ = 	

(25) 

EA  
C 	 1 	sC 

-- IA -t--  - 2 ( + 52) [tc2 —D -- -- - - + — 	 (A + B)) A/3 (C 2  — D (A — BPI] 	
(26) 

Substituting the values of A, B, C and D in the above equations and simpli- 
fying the expressions, in the manner indicated earlier, the following equations 
are obtained for the rotor currents : 

EAX„, 	 — s 	 1 
t3 1 (s) = 	. 	  

2aXaXR 
	 _ I 	 . ± 

r- il + s2) I sz + s  (Ka + Kg) 	Ka Kel 	‘ 3 
+ a 	 a 

ss 
Kg) + (KgK ao  X;) KgX,' 

(1 + s 2) ts 3  s2 (K at a+  a 	a 
(27) 

EAX,n 	 — s 	 1 I ii b  (s) t---- _ 2aXaXp 0  _i__ s2)  I s2  + s  (Ka ± Kg) + KaKel . 	A/ 3  
a 	 a ) 

x 	 s 3 

(1 + s 2) 1s3 + s2 (K 	Kg) + s  (K$K ac  -1- ;) 1  irirCe,  1 
q 	 a 	-r 	a) 

(28) 
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The first term in the bracket gives rise to two decaying D.C. components in 
addition to the steady state value. The second term in the bracket gives rise to an 
extremely weak D.C. component, a damped oscillatory term and a steady state 
A.C. term. The frequency of the oscillatory term is, in general, higher than the 
base frequency. The general expression for the rotor current will, therefore, be 
of the following form: 

EA [Ai COS (i - 	+ A2  COS (t 	 + B2 r' 
± B3 e-agg  + C1  6.'4' sin (b t 	03)] 

where Al l  A2, etc., are constants, the values of which depend on the machine para- 
meters. 	A detailed computation of ifi t  is given in Appendix B. 

Condenser Voltage. The voltage across the condenser is given in the following 
form, as a function of ' s', the Laplacean parameter. 

V, = (R, 	?Cs e) (Li — Iab) 	 (29) 

For the purpose of estimating V, (t) it is necessary to multiply Re  by the values 
of Oaf — lab) at various instants of time and this gives the first part of the above 
expression. To obtain the second part of the above expression the expression 
V al  - iv)) is integrated with respect to t and then multiplied by X,. 

The final expression for V, is given in Appendix A and the variation of V, 
during the first few cycles is shown in Fig. 5. 

Developed Electrical Torque. From the Double Revolving Field theory of 

the induction motor, the developed electrical torque is given as: 

To  = K 	ifl f 	ifla • led 
	

(30) 

It is a well-known fact that transient asymmetrical fluxes and currents are produced 
whenever a highly inductive circuit is switched on to a source of A.C. voltage, 
The magnitude and phase of these transient terms would obviously depend on the 
value of the voltage at which electrical switching is accomplished. Detailed com- 
putation of the developed electrical torque is given in Appendix C. It should be 
clearly noted that all the expressions given earlier are for standstill condition; 
the actual case of the motor rapidly coming up to speed becomes extremely compli- 

cated. In general, however, the peak value of the shaft torque occurs within the 
first few cycles during which time the rotor will not have attained any measurable 
speed. There is, thus, perfect justification for disregarding the effect of rotation 

on the switching transients. 

Equation (30) gives the instantaneous developed electrical torque 
which acts 

on the rotor. The actual magnitude of the shaft torque, however, depends on this, 

PS well as the flexibility of the shaft, the damping and moment of inertia. If the 
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motor is connected to a mechanical load with a gear ratio of' 
n ', the reflected values 

of moment of inertia, etc., have to be added to the corresponding quantities of the 
rotor. If the natural frequency of the mechanical system happens to be very close, 
to the supply frequency, the peak value of the torque may exceed the normal value 
of the developed electrical torgque, due to resonance effects. In the event of the 
enertia of the directly driven mechanical load, being appreciably smaller than the 
inertia of the rotor, then a pronounced reduction in shaft torque could be expected. 
If the coupling has a backlash or non-linear torque-angle characteristics, sometimes, 
deliberately adjusted, an appreciable increase in shaft torque, due to impacts, will 

be produced. 

In the large majority of cases of practical interest, the motor is mechanically 
coupled to a heavy inertia load by a flexible coupling; in all such cases the equi- 
valent mechanical system could be represented by the scheme shown in Fig. 3. 
In this mass represents rotor inertia, etc., spring represents the effect of flexible 

coupling and B represents friction. 

LON. 	 K.0„, = (t) 

M m 

Fro. 3. Mechanical Rotational System. 

With an extremely long expression for T, (t) it is not possible to solve the above 
equation by the simple and well-known methods; it is however possible to solve 
this equation with the aid of an Electronic Differential Analyzer. 

The effect of closing the switch when the applied voltage passes through its 
maximum value is discussed in Appendix D. 

CONCLUSIONS 

From the detailed computation carried out, for a typical three-phase motor 
it is shown that the exp:ession for torque contains, in addition to the s.ieady state 
component, a very large number of transient oscillatory terms. As is to be expect- 
ed in single phase operation there is a double frequency torque pulsation the 
like of which does not appear in the case of a Capacitor Motor, since in the latter 
case the operation at standstill corresponds to a fair degree of approximation 
to that of a two-phase motor :  The timc constants of the transient terms are large 
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with the result that the developed electrical torque attains its final steady state 
value after about one cycle. It is interesting to note that, whether the electrical 
switching is performed at the maximum value or zero value of the applied A.C. 
potential all the transient terms in the expression for torque vanish by the end of 
the very first cycle. This is in sharp contrast with the results obtained in the 
case of a well designed, general purpose Capacitor Motor. It can, therefore, be 
concluded that even if starts and stops are unusually frequent fatigue due to 
repeated switching will not normally occur. 

It is welt known that single phase motors have a fairly large double frequency 
pulsating torque at no load as well as under normal loading conditions, so that it 
is very necessary to design the shaft coupling and rotor supports to handle these 
torques safely. It has therefore become the normal practice to make the natural 
frequency in torsion of the rotor and connected load well above twice the line fre- 
quency and also to make the shaft adequately strong to carry high pulsating 
torques. As the three-phase motor run as a Capacitor Motor on single phase 
supply is, usally under-rated, trouble due to mechanical failure caused by 
transient and double frequency torques are very rare. 

The effect of varying the capacitive reactance, on the transient terms in the 
expression for torque is not very pronounced, as shown at the end of Appendix D. 

SYMBOLS 

Single phase supply voltage. 

V / 	Voltagc cprlicd to the forward field in the equivalent circuit. 

Vb — Voltage applied to the backward field in the equivalent circuit. 

V,------ Voltage across the starting condenser. 

10, r Stator current in the forward field as a function of 1. 

lab = Stator current, in the backward field as a function of I. 

Ica = Stator current in the forward field as a function of 's'. 

Lb = Stator current in the backward field as a function of 4 .5 1 . 

i j  --= Rotor current in the forward field as a function of I. 

= Rotor current in the backward field as a function of t. 

Ifif = Rotor current in the forward field as a function of 
's'. 

lab = Rotor current in the backward field as a function of `s'. 

S = Laplacian parameter of complex character. 

R 1 	Resistance of the stator winding (ohms/phase Li). 

R t 	Resistance of the rotor winding (ohms/phase 
a). 

Re 	Equivalent series resistance of the starting condenser. 

r- Leakage reattance of a stator winding (ohms/phase A). 

=- Leakage reactance of rotor winding (ohms/phase A). 
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X„, = Magnetising Reactance (ohms/phase A). 

X, 	Capacitive reactance of starting condenser. 

X a 	X1 + Xifl• 

V2 

Xa  XI; 

Xfl 	X2 Xm. 

2X, 
X ' , 

Xa  

r' = time in seconds. 

Kfl 

± 2R, 
K a c 

t = 2wf times time in seconds 7=-- 

= Moment of interia of rotor, etc., and connected load. 

= Friction constant. 

= Spring constant of the coupling system. 

0„, = Angular twist of shaft coupling system between motor and load. 

f = power-supply frequency at which the motor is designed to operate. 

T, = developed electrical torque. 

A1 , A2 , B 1 , 82 , etc., are arbitrary constants. 
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APPENDIX A 

The value of the current in phase A has been computed for a typical three- 
phase motor, the constants of which are taken from Ref. 10. 

5 H.P., 3-Phase, 220 Volt Motor. 

= 1-65 

R2 = 1•35 

= X 2  = 1.71 

By estimation we get 

Ka  = 2-151 x 10-2  

K ti = 1-759 x 10-2  

a 	= 441x 10-2  

X. = 75 
	

All the values are given in ohms 

----- 0.15 ohm per phase A 

X, = 3 ohm 

K a, = 2.542 x 10-2  

X,' 	=7821 x 10-2  

The roots of the characteristic equation 

S2  + 08862 S + 10-2  X 0 '8579 = 0 

are 

Api = 0•8763 

P2 = 0.0098 

The final expression for current in phase A is given below. 

zr--  EA [0.22256 sin (1-0) +0-1658 ej.87834+ 10-3  X 2.659 e-"°88 '] 

where 

= tan-1  1.1411 + tan-1  102.09 — tan-1  56-85 = 49 0  18'. 

Fig. 4 shows the variation of i A  (t) during the first few cycles. 

The expression for 1 a1  and iab  as a function of time are given below. 

jai ( 1) = EA [0-1112 sin (t — 49° 18') + 0-0693 sin (t — 51 2') 

± 0-0829 e-8'8783 ' + 10-8  x 0.147 e- e°177 ' ± 10-4  

x 13-297e-w 0088 ' 	e-86478781  {0-00131 sin (1-24 t — 143° 23') 

— 0.09873 sin (1-24 t — 2120  18')}] 

iah (I) 	EA [0'1112 sin (t 	49° 18') — 0-0693 sin (t — 51° 2') 

± 0-0829 er°' 8783 	10-4  X 13.297 e-in"" — 10-8  

X 0 ' 147 e-"177 '-f- e4.47878  { 0 - 001 31 sin (1.24 t — 143' 23') 

— 0.098 sin (1.24 t 	212° 18'))) 	
113 
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Voltage across the Condenser.—From the values of itif  and lc, it is possib le 

to determine the voltage across the condenser, which is given by the following 

equation. 

R, (iaf  — lab) ± Xer 	gat 	lab) dt =-7 \lc 
0 

By substituting the values of R„ X„ iat  and iab  the following equation is 

derived for V,: 

V, = EA [0.416 sin (t — 138'7') — e-"782  (0.446) sin (1-24 t — 143° 23') 

— 10-7  x 4.98 e- e°171 ' ± 10-2 e  —0.478 t {0.586 sin (1.24 t 

— 74° 28') + 2.96 sin (1.24 t 	212°  18')}] 

Fig. 5 shows the condenser voltage as a function of' t' during the first cycle. 
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For the 	machine for which the 	constants are 	given in Appendix 	A, 	the 
characteristic cubic equation is given below. 

+ 0.9752 s2  x 1.7836 s + !0 2 x 3.1195 = 0 

The roots of the above equations as determined by synthetic division are: 

= 0.478 +J  1.24 

P2 ?  = 0.478 — j 1.24 

P3 1  =-- 0.0177 

The final expressions for ifl f  (t) and g b  (0 are as follows: 

fp/ 	= — EA 1+ 0-1085 cos (1 — 138' 16') + 0.0677 cos (t 1401 

+ 0.0825 e-0.8763 t 	10-2  X 0.163 cosmos ! + 0.0965 e-0•4787t 

x sin (1.24 1 — 212° 18') + 10-6  X 0.2611 e-"177 q 

igb (0 = 	EA 101085 cos (1 — 138°16') — 0.677 cos (t — 140°) 

+ 0.08256 e--th 8763 t -10-2 x 0.16324 e-°' m98  — 0.0965 e-6* 47875 ' 

x sin (1.24 t — 212° 18') — 10-6  x 0-2611 e-43 "774 1 

The transients in the rotor current consists of three decaying D.C. terms and 
one damped oscillatory term of frequency 1.24 times the base frequency. One of 
the three D.C. terms is of extremely small magnitude. 
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APPENDIX C 

The developed electrical torque is given in symbolic form by the following 

expression. 

T, =-- KR2 	if ,— ipb • ifid 

For the machine under study, the torques due 
fields as calculated by the above formula, are given 

to the forward and backward 
below: 

10-2EA2 r5.69 cos2  (t 	1391 	5.448 e-°68783 ' cos (1 — 1391 
Tronvard = 1 . 35  

+ 6.198 e-°* 478" cos (t — 139°) sin (1-24 it 	Mr' 18') 

— 0.1048 e-"98 ' cos (t — 139°) -1- 1 311 r4°7526  

+ 1.697 r°695761  sin 2  (1-24 t 	212° 18') + 10-4  

X 4.857 e-"in g  + 2-984 e-1-355 t  sin (1.24 t-212°  18')-1Cr- 

X 0.504 e-18861  —10-1 x • 5742 er"885 t  sin (1.24 t-212°  18')] 

10-2EA 2  
Tbackward 	1 , 35 	 [0.3036 cos2  (t — 139 0) + 1.26 en763 t  cos — 1391 

— 1-4358 C-1"787/  cos — 139 °) sin (1 • 24 t 	212" 18')— 10-1  

X 0.242 e-""8' cos (t — 139° ) 	1.311 e-1 ' 7 '62: + 1.697 e-(1-9575t  

X sin (1-24 t —212°18 1 )+10-4  X 4.885 e-96.— 29838r13 ' 

X sin (1.24 t — 212°18') — 10 -1  X 0-5046 e-43.88611  ± 

X 0.5744 e-"88" sin (1.24 t — 212°18')]. 

The nett torque in the direction of rotation is therefore equal to 

Te  = EA 2  [7.932 x 10-9 [1 + cos 20] + 1.564 e-°° 8762 ' cos 0 

+ 2-86 e-""t cos sin (1.24 t 	212 18') 

+ 2.228 C1.355 t  sin (1 .24 t — 212'18') — 0.03 

x cos 0 — 0-0428 e-"885  sin (124 1— 212' 18')] 

where 

0 	(t 	139°). 

The last two items are extremely small in magnitude and could therefore be dis- 
regarded in the computation of T e  as a function of 1. There are thus three tran- 
sient terms all of which vanish by the end of the very first cycle. The frequency 
of some of the components is 1.24 times the base frequency. 
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APPENDIX D 
The effect of closing the switch, when the applied potential passes through 

its maximum positive value has been investigated by taking 
EA v, as 	{cos (t 	30°)} 

A  V. as E  {cos (t 	30°)} 
Av 3  

The approximate values of 1 A (t),  "4  (1), etc., computed for this particular case, 
are as follows : 

iA (t) = EA [0.222 cos (1 -49° 181-0.145 e-4' .8783  • — 10-4  x 0.2606 er"98 q 
V e  (t) c EA [0.416 sin (t — 48°) + e- ' 47 " {0.023 sin (1 • 24 t —143° 23') 

— 0.335 sin (1 -24 x — 212° 1811] 

Te. 	= — E
A

21
—" 

135 	
[5-356 sin 2  (1 — 139°) + 3.57 e—"743  • sin 0 — 139°) 

.  
5-76 e—m47875  sin (1-139 ° ) sin (1.24 t 143° 231-3.832 er ' .333 ' 

x sin (1 • 24 t 	143°23')] 

Variation of 1A , \lc  and Te  as functions of t is shown in Figs. 4, 5, and 6 
respectively. 
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no. 4. Current in Phase A during the First Cycle. 
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FIG. 5. Voltage across the Starting Condenser during the First Cycle. 
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Variation of X, on the transient terms: 

It is obvious that the life of the transient terms depends on the roots of the 
characteristic cubic equation, referred to in Appendix B. 

The following table gives the characteristic equation and its roots for various 
values of X,. 

X o  I 	R o 	1 	 Characteristic equation 	 Roots 

2•0 0.100 s 3 +0.944 32 +1.19 34-10-2 X 2.077 —0.017; —0•463±j 	.979 

2-5 0.125 32 +0.958 32 +1.485 3+10-2  x 2.596 —0.017; —0471 ±j 1-117 

3-0 0•150 32 +0-974 32 +1.781 3+10-2  x 3.11 —0.017; —0478±j 1.240 

3.5 0•175 $2 +0•987 3 2 +2.078 3+10-2 x 3.637 —0.017; —0485±j1455 

4.0 0.200 33 +1•00 32 +2.374 :+10 2 x4•155 —0.017, — 0.493 ± i 1-454 

4.5 0.225 32 +1.017 32 +2.871 :+10 2 X467 —0.017; —0-504 ± /1-554 

5.0 0•250 3 3 +1•033 32 +2.963 3+10-2  x 5.192 —0-017; —0-508 ±j 1-653 

From the roots of the characteristic equation, it is easily seen that the damping 
factors for both the D.C. term and the oscillatory term remain practically constant 
over a small and permissible range of variation of X,. The variation of the 
frequency, however, of the oscillatory term, changes appreciably with X,. 
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