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Abstract
In this article the shuffling of cards is studied by using the concept of a group action. We use some fundamental
results in Elementary Number Theory to obtain formulas for the orders of some special shufflings, namely the Faro
and Monge shufflings and give necessary and sufficient conditions for the Monge shuffling to be a cycle. In the final
section we extend the considerations to the shuffling of multisets.

Introduction

In this (expository) article the shuffling of cards is used as a motivation for introducing
the concept of a group action. It combines the concept of an abstract group with the
original idea of a group as a transformation group and is fundamental in almost all parts
of mathematics and its applications in physical sciences. In Section 1 we discuss besides
basic properties and constructions several examples from various branches of mathematics
demonstrating the ubiquity of group operations. We want to demonstrate that the use of
group actions very often clarifies and simplifies the modeling in mathematics and other
domains and may lead to new and interesting questions. The applications to some special
shuffling methods in Sections 3 and 4 require certain fundamental results in Elementary
Number Theory. In order to make this article self-contained, in Section 2 we give a
rather thorough exposition (including proofs) on Elementary Number Theory. The main
topics there are (General) Chinese Remainder Theorem, Prime Residue Class Groups
and their structure, Quadratic Residues and (some examples of) Diophantine Equations.
The exponentiation maps in groups including the discrete logarithm problems are also
discussed. Results in Section 1 and Section 2 are standard but our approach to some
of them is different and many of them are not found together in a single reference. In
Section 3 we deal with some special shufflings, namely the Faro and Monge shufflings,
again with many examples. In Theorem 3.4 and Theorem 3.6 we obtain formulas for
the orders of the Faro and Monge shufflings, respectively, which are partially already
mentioned in the books [1] and [2]. In Corollary 3.9 we give necessary and sufficient
conditions for the Monge shuffling to be a cycle. In Section 4 we consider the shuffling
of multisets which leads canonically to the study of cosets and double cosets as elements
of the respective orbit spaces.

∗This article is an extended version of a lecture entitled “Applications of Number Theory – Shuffling of Cards” given by the
second author on invitation by Professor Dr. R. Ravindran at the Atria Institute of Technology, Bangalore, on February 23, 2008, while
visiting the Department of Mathematics, Indian Institute of Science, Bangalore 560 012. Both authors thank DAAD for financial
support.



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in2

§1 Operations of Groups – Shuffling and other Examples

1.1 Shuffling Let C denote a set of n playing cards, n ∈N∗ := {1,2, . . .}. From this set
one forms a p a c k or a s t a c k by arranging the cards of C in a sequence (c1, . . . ,cn)
in which every card occurs exactly once. In other words a pack is a bijective map
c : [1,n]→C from [1,n] := {1, . . . ,n} onto C. We set ci := c(i) for i = 1, . . . ,n and write
c := (c1, . . . ,cn). We illustrate such a pack c by a pile with c1 as the t o p c a r d and cn
as the b o t t o m c a r d.

The set of all packs is denoted by P=PC. It is a finite set of cardinality #P= n!= (#C)!.
It simplifies the investigation to distinguish carefully the set C of cards and the set [1,n]
of the possible positions of a card in a stack. One reason for this is that a priori no fixed
order for C is given. Even, if there is such a canonical order then it depends on the rules
of the game you are playing.

A shuffling is a re-arrangement of the cards in a pack c = (c1, . . . ,cn) ∈ PC. Such a
shuffling can be described with a permutation of the set [1,n], i. e. with an element of the
permutation group S([1,n]) =Sn, under the following two view points:

(1) The shuffling brings the card ci from the i-th place to the σ(i)-th place, i = 1, . . . ,n.
This defines a permutation σ ∈Sn.

(2) After shuffling the card at the i-th place is the card cτ(i), i = 1, . . . ,n. This defines
also a permutation τ ∈Sn.

In case (1) the new pack is cσ−1 = c ◦σ−1 and in case (2) it is cτ = c ◦ τ .1 Since
c : [1,n]→C is also bijective, it follows that σ−1 = τ or σ = τ−1. We have to decide and
do this in such a way that we consider a shuffling always under view point (1) and call

σ ∗ c := cσ−1

the s t a c k o b t a i n e d from c ∈PC by s h u f f l i n g w i t h t h e p e r m u t a t i o n
σ ∈Sn.

1We emphasize that we always perform the compositions of maps from right to left and this is also done for permutations

of a set. Therefore, for ϕ,ψ ∈Sn, in ϕ ψ = ϕ ◦ψ first we apply ψ and then ϕ , for example,


1 2 3
2 1 3


◦


1 2 3
1 3 2


=


1 2 3
2 3 1


and


1 2 3
1 3 2


◦


1 2 3
2 1 3


=


1 2 3
3 1 2


.
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1.1.1 Example From a given pack c by shifting the bottom card cn of c to the top the new stack

is γn ∗c = cγ−1
n with γn :=


1 2 . . . n−1 n
2 3 . . . n 1


. On the other hand, the pack γ−1

n ∗c = cγn is

obtained from c by shifting the top card c1 to the bottom which is different from the former one

if n > 2. Note that γ−1
n =


1 2 . . . n−1 n
n 1 . . . n−2 n−1


.

Altogether, we get a map

Sn×PC →PC ,(σ ,c) → σ ∗ c := cσ−1 ,

which is a simply transitive operation of the permutation group Sn on the set PC of stacks
of C. We shall explain these concepts in the next subsection.

1.2 Operations of groups on sets Let us recall the important concept of operation of
an (arbitrary) group on an (arbitrary) set. Let G be a (multiplicatively written) group with
the identity element e := eG. An o p e r a t i o n or an a c t i o n o f G ( a s a g r o u p )
o n a s e t X 2 is a map G×X → X ,(g,x) → gx , with the following properties:

(1) (gh)x = g(hx) for all g,h ∈ G and all x ∈ X .
(2) ex = x for all x ∈ X .

More precisely, an operation of G on X as described above is an o p e r a t i o n f r o m
t h e l e f t or a l e f t o p e r a t i o n. An o p e r a t i o n f r o m t h e r i g h t or a r i g h t
o p e r a t i o n is a map X ×G → G ,(x,g) → xg, with x(gh) = (xg)h and xe = x for all
g,h ∈ G and all x ∈ X . If (x,g) → xg is an operation from the right then (g,x) → gx :=
xg−1 is an operation from the left, and conversely. Therefore, in principle, left and right
operations are interchangeable.

Let G×X → X be an operation (from the left). The o p e r a t i o n o f g on X is the
map ϑg : X → X ,x → gx. Then, the above conditions (1) and (2) are equivalent to
(1) ϑgh = ϑgϑh and (2) ϑe = idX . In particular, ϑg is a permutation of X with inverse
(ϑg)

−1 =ϑg−1 . Therefore the map ϑ : G→S(X) ,ϑ(g) :=ϑg, is a group homomorphism.
Conversely, if ϑ : G→S(X) is a group homomorphism, then the map G×X → X defined
by (g,x) → gx := ϑ(g)(x) is an operation of G on X .

A set X with an operation of a group G (from the left) is called a G-s e t or a G-s p a c e
and the group homomorphism ϑ : G → S(X) belonging to it is called the a c t i o n
h o m o m o r p h i s m of the G-set X .3

The kernel of ϑ , i. e. the set of g ∈G with ϑg = idX or with gx = x for all x ∈ X , is called
the k e r n e l o f t h e o p e r a t i o n. If this kernel is trivial, then the action is called
f a i t h f u l or e f f e c t i v e. If this kernel is the whole group G, i. e. if gx = x for all
g ∈ G and all x ∈ X , then the action is the so-called t r i v i a l a c t i o n.

2The study of sets with group operation was initiated by Felix Klein in his famous E r l a n g e r p r o g r a m “Vergleichende
Betrachtungen über neuere geometrische Forschungen” from 1872, whereby Klein considered only transformation groups (see also
Footnote 5), especially Lie groups occurring as transformation groups. His main examples were derived from projective groups
and their subgroups operating canonically on projective spaces. The more general concept we introduce here goes back basically to
Hermann Weyl. Some special cases occurred already in 1854 in the work of Arthur Cayley on abstract group theory.

3For a right operation X ×G → X the action homomorphism g → (ηg : x → xg) is an anti-homomorphism η : G →S(X) of
groups: η(gh) = ηgh = ηh ◦ηg = η(h)η(g) for all g,h ∈G, i. e. a homomorphism Gop →S(X) from the o p p o s i t e g r o u p Gop

(with binary operation gh := hg) in S(X). Therefore, a right operation of G is the same as a left operation of Gop (and conversely).
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The operation of G on X defines in a natural way an equivalence relation ∼G on X .
Elements x,y ∈ X are related if y is obtained from x by the operation ϑg of a suitable
element g ∈ G, i. e.

x∼G y ⇐⇒ there exists g ∈ G with y = gx .

That this is indeed an equivalence relation is easily checked by using the conditions (1)
and (2) for a group operation.

The equivalence class

Gx := {gx | g ∈ G}
of an element x ∈ X is called the (G-) o r b i t o f x. The o r b i t s p a c e of X (with
respect to the given operation), i. e. the set of all orbits Gx, x ∈ X , is denoted by

X\G .

Many authors denote the quotient set X\G by G\X . For a right operation the set of all
orbits xG := {xg | g ∈ G}, x ∈ X , is denoted by X/G.

To understand an orbit Gx one considers the i s o t r o p y g r o u p or the s t a b i l i z e r
of x ∈ X . This is the subgroup Gx := {g ∈G | gx = x} of those elements g ∈G for which
x is a fixed point of ϑg. The point x ∈ X is a f i x e d p o i n t of the operation if and only
if Gx = G. The set of all fixed points is denoted by

FixGX (or XG) .

Obviously, in any case the fibres of the canonical surjective map fx : G → Gx, g → gx,
are the left-cosets of Gx in G, i. e.

f−1
x (gx) = {h ∈ G | hx = gx}= {h ∈ G | g−1hx = x}= gGx .

This proves the following important theorem, which is used very often:

1.3 Theorem ( O r b i t - S t a b i l i z e r T h e o r e m ) Let X be a G-set. The cardinality
#Gx of the orbit Gx of x is the index [G : Gx] := #(G/Gx) of the stabilizer Gx of x in G,
i.e.

#Gx = [G : Gx] .

In particular, if G is finite, then the cardinality #Gx of Gx divides the order #G of G. –
Furthermore, the stabilizers of the elements in the same orbit are conjugate subgroups,
more precisely,

Ggx = gGx g−1 , g ∈ G , x ∈ X .

We remark that #Gx divides #G in case G is finite follows from the general equality

[G : H] ·#H = #G

for any subgroup H of a finite group G which again is a consequence of the following:
All cosets gH have the same cardinality as H, since the maps h → gh from H to gH
are bijective. Furthermore, one obtains L a g r a n g e ’s T h e o r e m: The order of a
subgroup of a finite group divides the order of the group.4

4While Lagrange did not have the group concept – not even that of a group of permutations – he was the first to realize the
significance of the study of permutations of the roots for the theory of equations. Moreover, his work on the theory of equations
published in 1770 stimulated the later work of Cauchy and Galois and contained in essence the proof of what we call now Lagrange’s
Theorem.
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If X is finite and if we count the elements of X with the help of orbits of a G-operation on
X , then we get the so-called c l a s s e q u a t i o n:

1.4 Theorem ( C l a s s E q u a t i o n ) Let G be a finite group and let X be a finite G-set.
Then

#X = ∑
Gx∈X\G

#Gx = ∑
Gx∈X\G

[G : Gx] = #FixGX + ∑
Gx∈X\G,
Gx ={x}

[G : Gx] .

A group operation G×X → X is called t r a n s i t i v e if it has exactly one orbit, i. e. if
X = /0 and if Gx = X for one x ∈ X and hence for all x ∈ X . Equivalently, G operates
transitively on X if X = /0 and if for arbitrary x,y ∈ X there exists g ∈ G with y = gx.

The last assertion in Theorem 1.3 implies that the stabilizers Gx of the elements x ∈ X
with respect to a transitive operation of G on X form a full conjugacy class of subgroups
of G.

A G-space with a transitive operation of the group G is called a h o m o g e n e o u s
G-s p a c e, see also Example 1.10.

A group operation G×X → X is called s i m p l y t r a n s i t i v e if it is transitive and
if one and hence all stabilizers Gx, x ∈ X , are trivial. Equivalently, G operates simply
transitively on X if X = /0 and if for arbitrary x,y ∈ X there exists exactly one g ∈ G with
y = gx.

If all isotropy groups are trivial, i. e. if G operates simply transitively on each orbit of the
operation, then the operation is called f r e e.

1.5 Examples Let G be a group.

(1) (L e f t r e g u l a r or t h e C a y l e y o p e r a t i o n) The multipication G×G → G in the
group G is the most natural simply transitive operation of G onto itself. The corresponding
action homomorphism ϑ : G→S(G) maps g to the left multiplication Lg : G→G, x → gx.
This operation is called the ( l e f t ) r e g u l a r o p e r a t i o n or the C a y l e y o p e r a t i o n
of G on itself.

(2) (C o n j u g a t i o n o p e r a t i o n) A somewhat less canonical example of an operation of
G onto itself is the c o n j u g a t i o n o p e r a t i o n: (g,x) → gxg−1, g ∈ G, x ∈ G. The
corresponding action homomorphism is K : G → Aut G ⊆ S(G), g → Kg ∈ Aut G, where
Kg : G → G is the i n n e r a u t o m o r p h i s m x → gxg−1 of G by g. The orbits of this
operation on G are called the c o n j u g a c y c l a s s e s in G and the fixed point set FixG G
is the c e n t e r Z(G) := {x ∈ G | gx = xg for all g ∈ G} of G, which is also the kernel of
this action, i. e. kerK = Z(G). Moreover, if G is finite, then the class equation of G is:

#G = #Z(G)+
r

∑
i=1

#Ci ,

where C1, . . . ,Cr denote the distinct conjugacy classes with cardinality > 1. If xi ∈Ci, then
#Ci = [G : CG(xi)], where, for x ∈ G, CG(x) = {g ∈ G | gx = xg} is the subgroup of those
elements of G which commute with x; it is called the c e n t r a l i z e r of x in G. Note that
the numbers #Z(G) and #Ci, i = 1, . . . ,r, are all divisors of the order #G of the group. The
number of all conjugacy classes, i. e. #Z(G)+ r is called the c l a s s n u m b e r of G.

As an application we note the following: If G is a non-trivial finite p-group, i. e. #G = pm

with p prime and m ∈N∗, then G has a non-trivial center. For a proof note that, since #G is
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a power of a prime number p, in the above class equation of G of the order #G as well as all
other terms #Ci are divisible by p and hence p divides #Z(G).

More generally, from the class equation in 1.4 it follows that: If a finite p-group G operates
on a finite set X, then the congruence #X ≡ # FixG X mod p holds.

(3) (C a u c h y ’s T h e o r e m) Let G be a finite group of order n and let p be a prime num-
ber. On the set G p of p-tuples of G, the cyclic group Zp operates by (a,(x1, . . . ,xp)) →
(x1+a, . . .xp+a), where the sum with a and the indices 1, . . . , p is the addition in the group
Zp. The fixed points of this operation are the constant tuples (x, . . . ,x). If x1 · · ·xp =
(x1 · · ·xr)(xr+1 · · ·xp) = e, we also have (xr+1 · · ·xp)(x1 · · ·xr) = e for all r = 1, . . . , p− 1
and hence the subset X := {(x1, . . . ,xp) ∈ Gp | x1 · · ·xp = e} of G p is Zp-invariant, From
the class equation of the Zp-set X , we get np−1 = #X ≡ # FixZp X mod p. Therefore, if p
divides n, then p also divides # FixZp X . In particular, there exists x ∈ G, x = e such that
xp = e. This proves the following well-known T h e o r e m o f C a u c h y: A finite group G
contains an element of order p for every prime divisor p of #G. Furthermore, if p does not
divide n, then FixZp X = {(e,e, . . . ,e)} by Lagrange’s Theorem and hence the well-known
congruence np−1 ≡ 1 mod p (F e r m a t ’ s L i t t l e T h e o r e m).

Maps between G-sets which are compatible with the operation of G are called G-h o m o -
m o r p h i s m s. More precisely: Let X and Y be G-sets with the operations G×X → X
and G×Y → Y . Then a G-h o m o m o r p h i s m or just a G-m o r p h i s m from X to Y
is a map f : X → Y with f (gx) = g f (x) for all x ∈ X and g ∈ G, i. e. the diagram

G×X −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− X

id× f


f


G×Y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Y

is commutative. Such a G-morphism induces the map f : X/G→ Y/G, f (Gx) = G f (x),
x ∈ X , of the corresponding orbit spaces. The concept of G-morphism can be generalized
in the following way: Let ϕ : G→G be a group homomorphism. Furthermore, let X and
X  be a G-set and a G -set respectively. Then a map f : X → X  is called a ϕ-m o r p h i s m
from X to X  if the diagram

G×X −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− X

ϕ× f


f


G  ×X  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− X 

is commutative, i. e. if f (gx) = ϕ(g) f (x) for all x ∈ X , g ∈ G.

By an i s o m o r p h i s m between a G-set X and a G -set X , we always mean a bijective
map f : X → X  which is a ϕ-morphism for some group isomorphism ϕ : G → G. In
this case, the diagram

G −−−−−−−−−−−−−−−−
ϑ
−−−−−−−−−−−−−−−−− S(X)

ϕ


K f


G  −−−−−−−−−−−−−−−−
ϑ 

−−−−−−−−−−−−−−−−− S(X )

is commutative, i. e. ϑ =K f ϑϕ−1, where K f :S(X)→S(X ) denote the “conjugation”
σ → fσ f−1.
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We illustrate the above concepts by some examples from various branches of mathematics.
Group operations allow to handle entities of very different mathematical origins in a
flexible way, while retaining essential structural aspects of many objects in abstract
algebra and beyond.

1.6 Examples ( I n d u c e d o p e r a t i o n s ) From given group operations new operations can
be constructed in many ways.

(1) An operation G×X →X of the group G on a set X can be restricted to every subgroup H ⊆G.
An element h ∈ H operates in the same way as the given operation as an element of G. The
operation map H×X → X is the restriction of the given operation map G×X → X to H×X ,
and the isotropy group is the intersection of H with the isotropy group Gx of x, i. e. Hx =
H ∩Gx. The action homomorphism H →S(X) is simply the restriction of the given action
homomorphism ϑ : G → S(X). More generally, if ϕ : F → G is a group homomorphism,
then the given operation of G on X induces an operation of F on X by f x := ϕ( f )x for
f ∈ F , x ∈ X , with action homomorphism ϑ ◦ϕ : F → S(X). In principle, every group
action can be obtained in this way by the canonical action S(X)× X → X , σx := σ(x),
σ ∈ S(X),x ∈ X , of the full permutation group S(X) on X . The action homomorphism
ϑ : G→S(X) induces the given operation G×X → X . The identity of X is a ϑ -morphism.
The trivial homomorphism ε : G → S(X) (with ε(g) = idX ) gives the trivial action of G
on X . For any subgroup G ⊆S(X), G operates faithfully on X by restricting the canonical
operation S(X)×X → X . If not mentioned otherwise we consider this canonical operation
for every given subgroup G⊆S(X). If X is finite then G⊆S(X) operates transitively on X
if and only if G∩S(X \{x}) has index #X in G for one (and hence all) x ∈ X .

Any faithful operation can be identified with the canonical operation of a subgroup of a per-
mutation group. An arbitrary operation of G with action homomorphism ϑ induces canon-
ically a faithful operation of G/kerϑ . Note that the kernel kerϑ of the operation is the
intersection of all stabilizers Gx,x ∈ X .5

(2) A given group operation G×X → X can be restricted to G-invariant subsets. A subset Y ⊆ X
is called G-i n v a r i a n t if gy ∈ Y for all g ∈ G and all y ∈ Y . For such a G-invariant subset
Y ⊆ X the operation map G×X → X maps G×Y into Y and defines an operation G×Y →Y
of G on Y . Besides the empty set the smallest G-invariant subsets are the G-orbits. Therefore,
a subset Y ⊆ X is G-invariant if and only if it is a union of G-orbits.

(3) An operation G×X → X of G on X induces an operation of G on the power set P(X) of X by
gA := {gx | x ∈ A} ,g ∈ G ,A ∈P(X) . The set Pα(X) of subsets of X of a given cardinality
α (which is also denoted by

�X
α

) is a G-invariant subset of P(X). If X is finite, then the

Pα(X) ,α ≤ #X , are the orbits of the canonical operation of S(X) on P(X) (induced by the
canonical operation of S(X) on X). If X is infinite, then the subsets Pα(X) ,α < #X , are
again full orbits of the canonical operation of S(X) on P(X) (because of the well-known
equality α+β = Max(α,β ) for cardinalities α,β with β infinite, see for instance [5, Teil 1,
§ 7]), but P#X(X) decomposes into more than one orbit. (For each cardinality β ≤ #X , there
is exactly one such orbit, namely the set {Y ⊆ X | #Y = #X ,#(X \Y ) = β}.) In general, the
stabilizer of a subset Y ⊆ X is the group of permutations σ ∈ S(X) with σ(Y ) = Y . Then
σ(X \Y ) = X \Y too, and the stabilizer is the product group S(Y )×S(X \Y ) identified
canonically with a subgroup of S(X). In particular, for a finite set X with n := #X and a

5Historically, by definition groups were t r a n s f o r m a t i o n g r o u p s, i. e. subgroups of permutation groups of sets with
their canonical operations. In particular, s y m m e t r y g r o u p s were considered as such transformation groups operating on the
structures under consideration. Such symmetry groups, particularly the continuous Lie groups, play an important role in many
academic disciplines, for example, can be used to understand fundamental physical laws underlying special relativity and symmetry
phenomena in molecular chemistry. – The axioms for group operations are derived from these concrete examples. Abstract groups
were introduced only in the late 19th century, for instance by Dyck (1882) and Weber (1882, 1895).
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subset Y ⊆ X with #Y := m≤ n, it follows from Theorem 1.3 that
n
m


:= #Pm(X) = #S(X)Y = [S(X) : (S(Y )×S(X \Y ))] =

n!
m!(n−m)!

.

More generally, if X is a G-set and Y is an H-set, then the set Map(X ,Y ) = Y X of all maps

from X to Y is a G×H-set in a canonical way: (g,h) f (x) = h f (g−1x) ,(g,h) ∈ G×H , f ∈
Y X,x ∈ X , i. e. ϑ(g,h) f = ϑh fϑg−1 . The operation of G on P(X) as described above is
obtained by identifying P(X) with {0,1}X and adding the (trivial) operation of the trivial
group H = {eH} on {0,1}.

The set of bijective maps X → Y is an G×H- invariant subset of Y X and therefore carries
an induced G×H-operation. In particular, if X = {1, . . . ,n} and Y =C is a set of cards with
n elements, then the set PC of packs carries the canonical (S(X) =Sn)-operation induced
by the canonical operation of Sn and the operation of the trivial group {idC} on C. This is
exactly the operation we introduced in Subsection 1.1. But, on C the full permutation group
S(C) also operates canonically. Together with the canonical operation of Sn on {1, . . . ,n}
this gives the operation

(ρ,σ)∗ c = ρ cσ−1

of S(C)×Sn on PC which extends the above operation of Sn = {idC}×Sn on PC and
which will also be used later. The operation of Sn = {id}×Sn and of S(C) =S(C)×{id}
are obviously simply transitive. For n > 1, the operation of the product S(C)×Sn is only
transitive but not simply transitive. For a pack c : [1,n]→C the stabilizer is the subgroup

{(ρ,σ) ∈S(C)×Sn | ρ cσ−1 = c}= {(ρ,σ) ∈S(C)×Sn | σ = c−1ρ c}
which is isomorphic to S(C). It is the graph of the conjugation ρ → c−1ρ c which is a group
isomorphism S(C)→Sn.

(4) (C o n j u g a t i o n o p e r a t i o n o n P(G)) Let G be a group. Then the conjugation opera-
tion of G on G, cf. Example 1.5 (2), induces an operation of G on the power set P(G) of G.
For a subset A of G, the isotropy group GA = {g ∈ G | gAg−1 = A} is called the n o r m a l -
i z e r o f A i n G and is usually denoted by NG(A). For x ∈ G, NG(x) := NG({x}) =
CG(x) is (see Example 1.5 (2)) the centralizer of x in G. The subgroup NG(A) is the biggest
subgroup of G which operates on A by conjugation. The kernel of this operation of NG(A)
on A is the so-called c e n t r a l i z e r CG(A) =


a∈A CG(a) of A. In particular, CG(A) is

a normal subgroup of NG(A). The index of NG(A) in G is the cardinality of the orbit of A
which is the set of subsets of G which are conjugate to A. A subset A of G is called n o r m a l
if NG(A) = G, or equivalently, if A is invariant under all conjugations of G. For subgroups
this definition is the usual definition of normality. Since conjugates of a subgroup in G are
again subgroups in G, we have: The normalizer NG(H) of a subgroup H in a group G is
the biggest subgroup in G which contain H such that H is normal in NG(H). The index
[G : NG(H)] is the number of conjugate subgroups of H in G and it divides the index [G : H]
of H in G if it is finite.

(5) (S y l o w ’s T h e o r e m s) As an application of the concept of an induced operation we
prove the following theorems which were proved for the first time by P. L. M. Sylow in
1872. The following proof has been suggested by H. Wielandt.

1.6.1 Theorem (T h e o r e m s o f S y l o w) Let p be a prime number and let G be a finite
group of order n = pαq with GCD(p,q) = 1. Further, let β ∈N with β ≤ α . Then:

(i) The number of subgroups of order pβ in G is congruent to 1 modulo p. In particular,
there are subgroups in G of order pβ .

(ii) Let H be a subgroup of order pα in G and let H  be a subgroup of order pβ in G. Then
there exists an element g ∈ G such that H  ⊆ gHg−1. In particular, all subgroups of
order pα in G are conjugate.
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(iii) The number of subgroups of order pα in G divides q.

For the proof consider the operation of G on the set Ppβ (G) of all subsets of G of cardinality
pβ induced by the left regular operation of G on G (see Example 1.5 (1) and 1.6 (3) above).
Put γ := α −β . For an m ∈ N∗ we denote by vp(m) the exponent of the highest p-power
which divides m. Then, for the orbit GX of an X ∈Ppβ (G) , the following statements are
equivalent:

a) vp(#GX)≤ γ . b) #GX = pγq. c) GX contains exactly one subgroup (of order pβ ).

To prove these equivalences, we consider the isotropy group GX of X . Then #GX · #GX =
#G = pαq and hence a) implies that vp(#GX) ≥ β , i. e. pβ divides #GX . For an x ∈ X , the
right coset GX x is contained in X and hence #GX = #GX x ≤ #X = pβ . Altogether, we get
#GX = pβ and #GX = pγq. For the proof of implication b) ⇒ c) note that #GX = pβ by b)
and GX x = X for every x ∈ X . Therefore x−1GX x = x−1X is a subgroup contained in GX .
Since the orbit of a subgroup H is precisely the set G/H = {xH | x ∈ G}, any orbit GX can
contain at most one subgroup. This proves c). The implication c) ⇒ a) follows from the fact
that the orbit of a subgroup H of order pβ consists of the pγq left cosets G/H = {xH | x∈G}
of H. Let d be the number of subgroups of order pβ in G. Then, by the equivalence of c) and
b), d is the number of orbits of G in Ppβ (G) of cardinality pγq. Further, by the equivalence
of a) and b), the number of elements in each of the remaining orbits is divisible by pγ+1.
Therefore, from the class equation we get

pαq
pβ


= #Ppβ (G) = d · pγq+ rpγ+1 with r ∈N .

We now apply this result to the special case of a cyclic group of order pαq, in which there is
exactly one subgroup of order pβ (i. e. d = 1) and hence

pαq
pβ


= pγq+ spγ+1 with s ∈N .

Both the above equations together (by canceling pγ ) imply that

dq = q+(s− r)p .

But GCD(p,q) = 1 and hence d ≡ 1 mod p. This proves (i). For a proof of (ii) consider the
left translation operation of G on the set G/H of the set of left-cosets of H in G. We restrict
this operation to the subgroup H . Since q = #G/H ≡ # FixH  G/H mod p by the class
equation, # FixH  G/H = 0. Therefore there exists a left coset xH which is invariant under
the left translations by the elements of H , i. e. H  ⊆ xHx−1. For a proof of (iii), by (i) there
is a subgroup H of order pα in G and by (ii) all subgroups of the order pα are conjugates of
H in G. Now, the assertion (iii) follows immediately from the last assertion in Example (4)
above.
Note that in the proof of (i) above, we proved the following result on binomial coefficients:
Let p be a prime number and let q ∈N∗ be not divisible by p, then for arbitrary β ,γ ∈N,
we have: 

pβ+γq
pβ


≡ pγq mod pγ+1 .

We further remark that (i) contains as a special case (β = 1) the Theorem of Cauchy which
is also proved in Example 1.5 (3).

1.7 Example ( T h e c y c l e d e c o m p o s i t i o n o f a p e r m u t a t i o n) ) Let X be a finite
set and let σ ∈S(X) be a permutation of X . To describe σ perspicuously one uses the canonical
operation on X of the cyclic group H(σ)⊆S(X) generated by σ . For an x ∈ X , the orbit H(σ)x ,
which we call the o r b i t o f x u n d e r σ , is the set {x = x0 = σ0x,x1 = σx, . . . ,xm−1 =
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σm−1x}, where m is the index of the stabilizer H(σ)x of x in H(σ), i. e. the smallest m ∈ N∗

with xm = σ mx = x = x0. Therefore the operation of σ on this orbit may be written as the c y -
c l e x0,x1, . . . ,xm−1, where x0,x1, . . . ,xm−1 are pairwise distinct elements of X with xi+1 = σxi
for i = 0, . . . ,m− 2 and σxm−1 = x0. It is always considered as an element of S(X) and has
order m. If we choose a system of representatives x(1), . . . ,x(r) of the orbits of H(σ), then σ is
the composition σ1 · · ·σr of the cycles σρ = x(ρ),σx(ρ), . . . ,σmρ−1x(ρ), where mρ is the index
[H(σ) : H(σ)x(ρ) ] , ρ = 1, . . . ,r. Observe that these cycles commute pairwise. The cycle of each
fixed point is the identity and can be ignored. If X is totally ordered (e.g. X = {1, . . . ,n}), then
this cycle decomposition can be normalized in the following way: x(1) is the smallest element in
X , x(2) is the smallest element in X \H(σ)x(1) and so on.

The t y p e ν(σ)= (νi(σ))i∈N∗ of σ characterizes the partition of #X given by the cardinalities of
the orbits of σ : For an i∈N∗, it assigns the number νi = νi(σ) of orbits of cardinality i. Of course
νi = 0 for i > #X . The partition itself is written as 1ν12ν2 . . .nνn := (1, . . . ,1,2, . . . ,2, . . . ,n, . . . ,n),
where each i = 1, . . . ,n occurs νi times. The types of two permutations σ and τ coincide if and
only if σ and τ are conjugates in S(X). This is a consequence of the following general result:

1.8 Proposition Let ϕ : X → Y be a bijective map of sets and let σ ∈S(X). Then the orbits of
the “conjugate” permutation ϕ σϕ−1 ∈S(Y ) are the sets Yρ := ϕ(Xρ) , where Xρ , ρ = 1, . . . ,r,
are the orbits of σ . More precisely, ϕx0, . . . ,xm−1ϕ−1 = ϕ(x0), . . . ,ϕ(xm−1). In particular,
σ and ϕ σϕ−1 are of the same type.

The permutations of a given type (νi)i∈N∗ in the group S(X) with #X = n ∈N form a conjugacy
class of the group S(X), i. e. an orbit of the conjugation operation K: (τ,σ) → τστ−1 of S(X)
on S(X). Let σ ∈S(X) be a permutation of type (νi)i∈N∗ with cycle decomposition σ1 · · ·σr and,
for i ∈N∗, let Xi be the set of orbits of σ of cardinality i. Then each τ ∈S(X) with σ = τστ−1

induces a permutation of each Xi which defines an obviously surjective group homomorphism
S(X)σ → ∏n

i=1S(Xi). The reader easily checks that its kernel is the subgroup H(σ1)× ·· · ×
H(σr)⊆S(X)σ generated by the cycles σ1, . . . ,σr. Therefore #S(X)σ = ∏n

i=1 iνi ·∏n
i=1 νi! and,

by 1.3, the number of permutations of X of type (νi)i∈N∗ is

[S(X) : S(X)σ ] =
#S(X)

#S(X)σ
=

n!
1ν1ν1!2ν2ν2! · · ·nνnνn!

.

Since σm = σ m
1 · · ·σm

r , the order6 of σ is the LCM of the orders of the cycles σ1, . . . ,σr:

ord σ = LCM(ord σ1, . . . ,ord σr) = LCM(i | νi(σ)> 0)
= LCM(i | i≥ 2, νi(σ)> 0) = LCM(1ν12ν2 . . .nνn) .

Following an idea of A. Cauchy, the cycle decomposition yields a convenient method to compute
the s i g n signσ of a permutation σ ∈ S(X). Since a cycle x0,x1, . . . ,xm−1 of length m is
the product x0,x1x1,x2 · · · xm−2,xm−1 of m−1 transpositions, its sign is (−1)m−1, hence a
permutation σ of type (νi)i∈N∗ has sign

signσ = (−1)∑i∈N∗ νi(i−1) = (−1)n−r = (−1)s ,

where r = ∑νi is the number of all orbits of σ and s := ∑ν2i the number of orbits of even
cardinality. The sign function sign : S(X)→ {±1}, σ → signσ , is a group homomorphism.
Its kernel is the a l t e r n a t i n g g r o u p A(X) , which is of index 2 in S(X) if #X > 1. By
definition, the elements of A(X) are called the e v e n p e r m u t a t i o n s of X .

6 Let us recall that the o r d e r ord a of an element a in a group G is the unique non-negative generator of the kernel of the
exponential homomorphism Z→ G, n → an. This order is 0 if and only if this group homomorphism is injective, in this case many
authors say that a is of infinite order. Otherwise ord a is the order of the subgroup H(a) of G generated by a, i. e. the image of the
exponential map.
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1.9 Example ( S i m p l y t r a n s i t i v e o p e r a t i o n s ) The most natural simply transitive
operation of a group G is the operation of G on G by left translations. The operation map
G×G→G is the multiplication in the group G and the action homomorphism G→S(G) maps g
to the left multiplication Lg : G→G, x → gx. This operation is called the r e g u l a r or C a y l e y
o p e r a t i o n of G, cf. Example 1.5 (1). The action homomorphism identifies G with a subgroup
of the permutation group S(G) and realizes G as a transformation group, see Footnote 5. Up to
isomorphism the Cayley operation of G is the only simply transitive operation of G: If G×X →
X is simply transitive and if x0 ∈ X is an arbitrary point in X, then G → X, g → gx0, is a
bijective G-morphism if G operates on G regularly.

The most classical examples of simply transitive group operations are given by the affine spaces.
By definition an a f f i n e s p a c e is a set E with a simply transitive operation of the additive
group of a vector space V (over a field K). Usually this operation is also written additively:
(v,P) → v+P, v ∈V , P ∈ E. This definition of affine spaces goes back to Hermann Weyl, see his
famous book “Space, Time, Matter”. The unique vector v ∈V which transforms the point P ∈ E
to the point Q ∈ E is denoted by

−→
PQ, i. e.

−→
PQ+P = Q. Since the group V is commutative we can

change to the more appealing notation P+
−→
PQ = Q.

With these examples in mind, any G-space X with a simply transitive operation of a group G
is called a G- a f f i n e s p a c e. For x,y ∈ X , the unique element g ∈ G with y = gx is denoted
by −→xy and G is called the group of translations. As mentioned above a G-affine space X can be
identified with the group G of translations if an origin x0 ∈ X is chosen. (This choice is arbitrary
but not canonical. A group has an exceptional element, namely its identity element eG, but an
affine space does not have such an element.) The set PC of packs of 1.1 is an Sn-affine space,
n := #C.

The right multiplications Rg : G→ G, x → xg, define the r e g u l a r r i g h t o p e r a t i o n of G
on G. To transform it into a left operation one has to use the action homomorphism g → Rg−1

from G → S(G). Put together, both regular operations give the (left) operation of the product
group G×G on G by ((g,h),x) → gxh−1. At the end of Example 1.6(3), if we identify S(C) with
Sn (which is not canonical and we do not like to do this), then the operation there is isomorphic
to the operation of Sn×Sn on Sn considered here.

1.10 Example ( T r a n s i t i v e o p e r a t i o n s ) For every subgroup H ⊆ G, the (left) Cayley
operation of a group G on itself induces a transitive operation on the set G/H of left cosets of H
in G (which, by the way, is the set of orbits of the canonical operation of H on G from the right),
i. e. G/H is the orbit of H of the operation of G on P(G) induced by the Cayley operation,
see Example 1.6 (3). The stabilizer of H = eGH is the group H itself and hence the stabilizer
of gH ∈ G/H is the conjugate group gHg−1 ,g ∈ G, see 1.3. From the view point of group
operations the special coset H cannot be distinguished from any other left coset gH, i. e. only the
conjugacy class of H is an invariant as the set of isotropy groups of this operation.

More generally, let X be a homogeneous G-space and let x0 ∈ X be an arbitrary chosen point of X
(as an origin) with stabilizer H ⊆G. Then gH → gx0 is a well-defined bijective map from G/H to
X . Indeed, it is even a G-isomorphism, where G/H carries the canonical G-operation mentioned
above. If we make another choice y0 = g0x0 for the origin, then we have to replace H by the
conjugate g0Hg−1

0 . We call the conjugacy class of H also the s t a b i l i z e r of the homogeneous
G-space X . The kernel of the operation of G on G/H is the intersection KG(H) :=


g∈G gHg−1

of the conjugates of H. It is the biggest normal subgroup of G contained in H. The operation of
G induces a faithful operation of G/KG(H) on G/H. In particular, the operation of G on G/H is
faithful if and only if KG(H) = {eG} and, in general, G/KG(H) is isomorphic to a subgroup of
S(G/H). Especially, if H is of finite index in G, then KG(H) is of finite index too. If G = {eG}
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itself is finite and if, moreover, #(G/H) = p is the smallest prime divisor of #G, then H =KG(H)
is necessarily normal.

We summarize these considerations in the following theorem:

1.11 Theorem Up to isomorphism the homogeneous G-spaces are given by the G-spaces G/H,
H subgroup of G, with the canonical G-operations. The kernel of the operation of G on G/H is
KG(H) =


g∈G gHg−1. – Two such homogeneous spaces G/H ,G/H  are G-isomorphic if and

only if H and H  are conjugate subgroups in G. More generally, for a given ϕ ∈ Aut G, there
exists a ϕ-isomorphism G/H → G/H  if and only if ϕ(H) and H  are conjugate subgroups in G.

The conjugation in G is an operation of the group G on the set G, indeed it is the restriction of the
Cayley operation of the product group G×G on G by left and right translations (see the end of
Example 1.9) to the diagonal subgroup ∆G = {(g,g) | g∈G}⊆G×G. It induces the conjugation
on the set of subgroups of G. Theorem 1.11 says that the orbits of the last operations are in one-
to-one correspondence to the isomorphism classes of homogeneous G-spaces. Therefore, an
arbitrary G-space is up to isomorphism characterized by its t y p e or B u r n s i d e f u n c t i o n.
This function assigns to each conjugacy class of subgroups of G the number of those orbits which
have the given class as their stabilizer. See also the article On the Burnside Algebra of a Finite
Group, Dilip P Patil and Anshoo Tandon, pp 103-120, in this Journal.

To determine the G-automorphisms of a homogeneous G-space G/H, let f : G/H → G/H be
such a G-automorphism and let f (H) = g0H for some g0 ∈ G. Then f (gH) = g f (H) = gg0H
for all g ∈ G. In particular, g0H = f (H) = f (hH) = h f (H) = hg0H for all h ∈ H and hence
H ⊆ g0Hg−1

0 , since g0Hg−1
0 is the stabilizer of g0H ∈ G/H. The inverse f−1 : G/H → G/H

maps g0H to H and hence H = g−1
0 (g0H) to g−1

0 H which implies H ⊆ g−1
0 Hg0. Altogether we

have the equality H = g0Hg−1
0 . Conversely, if g0 ∈ G is an element with H = g0Hg−1

0 , then,
obviously, the map fg0 : gH → gg0H is well-defined and a G-automorphism of G/H. The map
g0 → fg0 is a surjective anti-homomorphism from NG(H) := {g0 ∈ G | g0Hg−1

0 = H} to the
group AutG(G/H) of G-automorphisms of G/H. The kernel of this anti-homomorphism is H
and hence the groups AutG(G/H) and NG(H)/H are anti-isomorphic (and hence isomorphic).
The subgroup NG(H)⊆ G is called the n o r m a l i z e r o f H i n G. It is the biggest subgroup
of G such that H is normal in NG(H) and occured already in Example 1.6 (4). If H is already
normal in G, then NG(H) = G and AutG(G/H)∼= (G/H)op (∼= G/H). In particular, if H = {eG},
i. e. if the operation is simply transitive, then AutG(G)∼=Gop. Particularly, the G-automorphisms
of G are the right translations Rg0 of G, g0 ∈ G.

1.12 Example ( A f f i n e G r o u p s ) An a f f i n e a u t o m o r p h i s m of an affine space E
over a K-vector space V is, by definition, a ϕ-automorphism for some ϕ ∈ GLK(V ) . The group
AffK(E) of these automorphisms is called the a f f i n e g r o u p of the affine space E. The V -
automorphisms, i. e. the idV -automorphisms, are the translations ϑv of E, v ∈ V . They form a
normal subgroup T(E) of AffK(E), which is isomorphic to the additive group of V . The map
AffK(E)→ GLK(V ) which maps a ϕ-automorphism of E to the K-linear automorphism ϕ of
V is surjective with kernel T(E), i. e. AffK(E)/T(E) ∼= GLK(V ). Every affine automorphism
of E is a collineation of E, where, by definition, a c o l l i n e a t i o n of the affine space E is
a bijective map E → E which maps affine lines in E onto affine lines in E. Since, obviously,
the inverse of a collineation is also a collineation, the set CollK(E) of all collineations of E is a
subgroup of the permutation group S(E). For example, CollK(E) =S(E) if DimK E = 1. By
the following theorem collineations and affine automorphisms coincide in important cases:

1.12.1 Theorem (F u n d a m e n t a l T h e o r e m o f A f f i n e G e o m e t r y) If the automor-
phism group Aut K of the field K is trivial, i. e. the identity idK is the only automorphism of the
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field K, and if DimK E = DimK V ≥ 2 , then every collineation of the affine space E over K is
an affine automorphism, i. e. CollK(E) = AffK(E).

For example, for a prime field Q , respectively Fp(∼=Zp =Z/Zp), p a prime number, as well as
for the field R of real numbers, the automorphism group is trivial and hence the above theorem
holds. For K = R and DimR E = 3, this was already known to Euler. – More generally,
if DimK E ≥ 2, then the group AffK(E) is a normal subgroup of the group CollK(E) with
residue class group CollK(E)/AffK(E) ∼= Aut K . For a proof see for instance [5, Teil 1, § 43,
Theorem 43.8].

In the spirit of the last discussion, the a f f i n e a u t o m o r p h i s m s of an arbitrary G-affine
space X are, by definition, the ϕ-automorphisms of X , where ϕ runs through the full group Aut G
of group automorphisms of G. The ϕ-automorphism f : X → X has by definition the property
f (x) = f (−→x0x · x0) = ϕ(−→x0x) · f (x0) or

−−−−−−→
f (x0) f (x) = ϕ(−→x0x) for arbitrary x,x0 ∈ X . Conversely,

given an arbitrary point y0 (= f (x0)) ∈ X , the map x → ϕ(−→x0x)y0 is a ϕ-automorphism f of X
with x0 → y0 which is uniquely determined by ϕ and the image y0 = f (x0) of a single point
x0 ∈ X .

The surjective map Aff(X)→ Aut G of the group Aff(X) of affine automorphisms of X onto
the automorphism group Aut G which maps an affine automorphism f ∈ Aff(X) to the group
automorphism ϕ ∈ Aut G as described above is a group homomorphism with the group T(X) of
G-automorphisms of X (which are also called the t r a n s l a t i o n s of X) as kernel. The group
T(X) is isomorphic to Gop (∼= G), cf. the end of Example 1.10.

For a fixed point x0 ∈ X , chosen as origin, the subgroup Affx0(X) ⊆ Aff(X) of affine automor-
phisms with fixed point x0 maps isomorphically to Aut G. In particular, the exact sequence

1→ T(X)→ Aff(X)→ Aut G→ 1

of groups splits (weakly), i. e. Aff(X) is a semidirect product T(X)Aut G. The operation of
Aut(G) = Aut(Gop) on T(X) in this semidirect product is the natural one given by the identifica-
tion T(X) = Gop (depending on the chosen origin x0): For ϕ ∈Aut G, the corresponding element
f0 ∈Affx0(X) is x → ϕ(−→x0x)x0. The translation Tg corresponding to g∈Gop is x → (−→x0x)gx0, and
hence f0Tg f−1

0 = Tϕ(g), since ( f0Tg)(x0) = f0(gx0) = ϕ(g) f (x0) = (Tϕ(g) f0)(x0).

An ( a b s t r a c t ) s e m i d i r e c t p r o d u c t is constructed from an operation of a group H on
a group G by group automorphisms, i. e. the image of the action homomorphism ϑ : H →S(G)
is contained in Aut G. Then G×H with the binary operation

(g,h) · (g,h) := (g(ϑhg),hh)

is a group GH = Gϑ H and {(g,eH) | g ∈ G} is a normal subgroup identified with G and
{(eG,h) | h ∈ H} is a subgroup identified with H. The projection map (g,h) → h is a surjective
group homomorphism Gϑ H → H with kernel G. Hence, there is a canonical exact sequence

1→ G→ Gϑ H → H → 1

which splits (weakly) and the conjugation hgh−1 = ϑh(g), g ∈G,h ∈H, of H on G in the semidi-
rect product Gϑ H is the given operation ϑ .

In the special case where X is the canonical G-affine space G with the Cayley operation, the
affine group Aff(G)⊆S(G) is called the ( f u l l ) h o l o m o r p h Hol(G) of G. It is generated
by the right translations Rg ,g ∈ G, and the automorphisms of G. Because of Lg ◦R−1

g = Kg ∈
Aut G, where Kg : G → G is the conjugation with g, Hol(G) contains also the left translations
Lg ,g ∈ G, of G and Hol(G) = Hol(Gop). Hol(G) is the semidirect product GAut G with
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respect to the canonical operation of Aut G on G. The map (g,ϕ) → Lg ◦ϕ is an isomorphism
GAut G→ Hol(G). If one allows for the automorphisms ϕ ∈ Aut G only elements of a given
subgroup Φ⊆ Aut G, one obtains a subgroup HolΦ(G) of the full holomorph Hol(G) which is
canonically isomorphic to GΦ. This is already done for the affine spaces over K-vector spaces
V , where ϕ is restricted to the K-linear automorphisms of V . Therefore AffK(V ) =HolGLK(V )(V )
is a subgroup of the full holomorph Hol(V ) of the additive group V . If K is a prime field then
AffK(V ) = Hol(V ) .

1.13 Example Very often the determination of the orbit space X\G of a G-space X can be con-
sidered as a c l a s s i f i c a t i o n p r o b l e m: Two objects x,y ∈ X are considered as equivalent
(or isomorphic or indistinguishable or of the same structure or . . .) if y = gx for some g ∈ G, i. e.
if they belong to the same orbit. We consider two examples.

First, consider the (K-linear) endomorphisms f of a K-vector space V of finite dimension n.
If one chooses a basis v = (v1, . . . ,vn) of V , then f is uniquely determined by its matrix A =
(ai j)1≤i, j≤n with respect to the basis v which is defined by the equations f (v j) = ∑n

i=1 ai jvi for
j = 1, . . . ,n. Change of the basis to w = (w1, . . . ,wn) transfers the matrix into the conjugated
matrix B = GAG−1, where G = (gi j) ∈ GLn(K) describes the base change: v j = ∑n

i=1 gi jwi,
j = 1, . . . ,n. Therefore, to classify the endomorphisms of V means to describe in a simple way the
orbits of Mn(K) under the conjugation operation of the group GLn(K). In case K is algebraically
closed this is done by the well-known J o r d a n b l o c k m a t r i c e s (which can be generalized
suitably to arbitrary fields).

Secondly, let M be a nice topological space, for instance, a connected topological manifold.
The connected covering spaces p : M → M correspond up to isomorphism to the homogeneous
π(M)op-spaces, where π(M) = π(M,P) is the fundamental group of M with respect to an ar-
bitrary base point P ∈ M: The canonical operation of the group π(M) from the right on the
fibre p−1(P) ⊆ M over P is transitive (since M is connected) and characterizes M up to iso-
morphism. Therefore, by Theorem 1.11, the connected covering spaces of M are classified
by the orbits of the subgroups of π(M)op or π(M) under conjugation. If a given covering
p : M → M corresponds to the conjugacy class of Hop ⊆ π(M)op, then the automorphism group
Deck( M, p) = {F : M → M | F continuouswith p◦F = p} (which is called the d e c k t r a n s -
f o r m a t i o n g r o u p of the covering p) can be identified with the π(M)op-automorphism group
of the homogeneous space π(M)op/Hop, which is, by the end of Example 1.10, isomorphic to
Nπ(M)op(Hop)/Hop = (Nπ(M)(H)/H)op ∼= Nπ(M)(H)/H. If H is a normal subgroup of π(M), then
this group is (π(M)/H)op ∼= π(M)/H (and the deck transformation group operates transitively
on the fibres of the covering).

1.14 Example ( G a l o i s o p e r a t i o n s ) Let K be a field and let F ∈ K[X ] be a monic irre-
ducible and separable polynomial of degree n with coefficients in K. By a classical result of
Kronecker, there exists a finite field extension L of K such that the polynomial F splits into linear
factors over L, i. e. in L[X ] one has F = (X−α1) · · ·(X−αn) with pairwise distinct α1, . . . ,αn ∈ L
(since F is separable). We may assume that L = K[α1, . . . ,αn] is generated over K by the zeros
α1, . . . ,αn of F . Then L is called the ( m i n i m a l ) s p l i t t i n g f i e l d of F over K. It is a
so-called G a l o i s e x t e n s i o n and uniquely determined by F up to K-algebra isomorphism.
The group G(L|K) of K-algebra automorphisms of L is called the G a l o i s g r o u p GalK(F)
of the polynomial F over K. Since the image ϕ(α) of any zero α of F under a K-algebra homo-
morphism ϕ is again a zero of F , the canonical operation of GalK(F) on L induces an operation
of GalK(F) on the finite set V(F) = {α1, . . . ,αn}. Since any K-algebra homomorphism of L
is uniquely determined by the images of the K-generators α1, . . . ,αn, this induced operation of
GalK(F) is also faithful. Furthermore, it is transitive which is a consequence of the irreducibility
of F . Therefore the Galois group of F is a group G which operates transitively and faithfully
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on a finite set X of n elements, i. e. GalK(F) is isomorphic to a subgroup of the permutation
group Sn for which the canonical operation on {1, . . . ,n} is transitive. This identification of
GalK(F) as a subgroup of Sn determines GalK(F) only up to conjugation in Sn. Therefore, the
classification of the Galois operations defined by irreducible separable polynomials of degree n
is equivalent to the classification of the conjugacy classes of the transitive subgroups of Sn.

By Galois theory, the order of GalK(F) = G(L|K) is the degree [L : K] = DimK L of the splitting
field L of F over K. It divides n! = (degF)! and is divisible by n. The quotient n!/# GalK(F),
i. e. the index of GalK(F) in S(V(F)) ∼= Sn , is called the a f f e c t of F . If the affect is 1,
i. e. if GalK(F) ∼= Sn, then the polynomial F is called a f f e c t l e s s or w i t h o u t a f f e c t.
On the other hand, the order of GalK(F) is n = deg(F) if and only if GalK(F) operates simply
transitively on V(F), or, equivalently, L = K[α1]∼= K[X ]/(F), i. e. if F splits already over K[α1]
into linear factors. In this case F is called a G a l o i s p o l y n o m i a l. For instance, if GalK(F)
is abelian, then F is necessarily a Galois polynomial. The splitting field L is always generated by
one element over K, i. e. L=K[α] for some α ∈ L. This is a special case of the primitive element
theorem. Such a generator α , is called a ( G a l o i s ) r e s o l v e n t of the polynomial F and its
minimal polynomial R ∈ K[X ] which is of degree # GalK(F) is called the r e s o l v e n t ( G a -
l o i s ) p o l y n o m i a l corresponding to the chosen resolvent α . The resolvent polynomial R
splits completely over the field L into linear factors. Hence R is a Galois polynomial with Galois
group GalK(R), which is isomorphic to GalK(F). But the representation in Sm, m := # GalK(F),
is now simply transitive.

Instead of looking for representations of Galois groups in permutation groups, one can ask for a
given finite group G, what the possible degrees of separable irreducible polynomials with Galois
group (isomorphic to) G are. By Theorem 1.11, these are exactly the indices [G : H] of those
subgroups H ⊆ G for which KG(H) =


g∈G gHg−1 = {eG}, where two such subgroups H,H 

have to be identified if there is an automorphism (not necessarily an inner automorphism) ψ :
G→ G with ψ(H) = H .

For 1 ≤ n ≤ 5, the conjugacy classes of transitive subgroups G of Sn are represented by the
following groups (as one can check more or less straightforwardly, we put γn := 1,2, . . . ,n):

n = 1: {γ1}=S1.
n = 2: S2.
n = 3: S3, A3 = H(γ3).

n = 4: S4, A4, D4=H(γ4,2,4), V4={id4,1,23,4,1,32,4,1,42,3},
Z4=H(γ4). (The classes of D4 and Z4 contain 3 conjugate subgroups each.)

n = 5: S5, A5, Hol (Z5)=H(γ5,1,2,4,3), D5=Hol{±1}(Z5)=H(γ5,1,42,3),
Z5=H(γ5). (The classes of Hol(Z5), D5 and Z5 contain 6 conjugate subgroups each
For the holomorph of groups see Example 1.12.)

For non-commutative groups G up to order 8 , the homogeneous spaces G/H with faithful action
homomorphism are represented by the following groups7:

G =S3 ∼= D3 = Hol (Z3) = Z3 {±1} : H = {(0,±1)} , H = {(0,1)} ,
G = D4 = Hol (Z4) = Z4 {±1} : H = {(0,±1)} , H = {(0,1)} ,

7Note that, for an abelian group G, the only faithful transitive operation is (up to isomorphism) the simply transitive Cayley
operation of Example 1.5 (1).
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(Note that all subgroups H ⊆D4 of order 2 for which D4 acts faithfully on D4/H are equivalent
with respect to Aut D4 but they form two conjugacy classes.)

G = Q(= Q2 ∼=H(Z)× = {±1,±i,±j,±k}) : H = {1}.

(The group Q is the q u a t e r n i o n g r o u p of order 8 . It is non-commutative, but all its sub-
groups are normal. All separable irreducible polynomials with Galois group Q are necessarily
Galois polynomials (of degree 8).)

In general, for a dihedral group Dn =Hol{±1}(Zn)=Zn{±1} , n≥ 3, the subgroups {(0,±1)}
and {(0,1)} represent the Aut Dn -equivalence classes of subgroups H with a faithful canonical
operation of Dn on Dn/H. In particular, a separable irreducible polynomial with Galois group
Dn, n≥ 3, has degree n or 2n. For n = 1,2, the degree is necessarily 2n. (Note that D1 ∼= Z2 and
D2 ∼= Z2×Z2 are commutative.)

We remark that there are isomorphic transitive subgroups G,G ⊆Sn which are not conjugates
in Sn . The above list shows that in this case n is necessarily > 5. To construct a simple ex-
ample consider the subgroups H := H(1,2) and H  := H(1,23,4) in S4 which are not
conjugates. The group S4 acts transitively on S4/H and S4/H  . By Theorem 1.11, these two
homogeneous spaces of cardinality 12 are not isomorphic. (Observe that all automorphisms of
S4 are inner!) Identifying both sets S4/H and S4/H  with {1,2, . . . ,12} , we get transitive
and faithful actions of S4 on {1,2, . . . ,12}. The images of the corresponding action homo-
morphisms are subgroups G , G ⊆S12 which are both isomorphic to S4, but not conjugates in
S12.

Finally, we note that any transitive subgroup G ⊆ Sn can be realized as the Galois action on
the set of zeros of an irreducible separable polynomial F over an appropriate field K. For this
start with any polynomial P of degree n without affect over a field k (for instance, with the
monic generic polynomial P := Xn +U1Xn−1 + · · ·+Un−1X +Un over a rational function field
k := k0(U1, . . . ,Un), where U1, . . . ,Un are indeterminates over an arbitrary field k0). Let L be the
splitting field of P over k and let α1, . . . ,αn be the zeroes of P in L. With this enumeration of
the zeros of P, the Galois group Galk(P) = G(L|k) can be identified with Sn. Then K := FixG L
and P considered as a polynomial in K[X ]⊇ k[X ] is a realization of G∼= GalK(P) = G(L|K) as a
Galois group for an irreducible separable polynomial of degree n. This is a simple consequence
of the basics of Galois theory.

Usually, it is a difficult problem to decide which Galois groups can be realized over a given field
K – or a bit stronger – which transitive and faithful operations of finite groups can be realized,
up to isomorphism, as Galois operations on the zeros of an irreducible and separable polynomial
over K (as described in the beginning of this example). Problems of this kind belong to the so-
called I n v e r s e G a l o i s T h e o r y. For example, it is an unsolved problem whether or not
every finite group is isomorphic to the Galois group of a finite Galois extension of Q. – For the
rational function field C(t), t an indeterminate over the field of complex numbers C , each finite
group G occurs up to isomorphism as a Galois group of a finite extension of C(t) even in the
strong sense that a transitive and faithful operation of G can be prescribed. This follows easily
from the theory of compact Riemann surfaces by interpreting C(t) as the field of meromorphic
functions of the Riemann sphere P1(C) and by using the theory of covering spaces as described
in the second part of Example 1.13. (See for instance [7, Bd. 4, Example 16.A.4].) – Over a
finite field K a finite group G can be realized up to isomorphism as a Galois group of a finite
extension L of K if and only if G is cyclic. The Galois group G(L|K) has even a canonical
generator, namely the Frobenius automorphism x → xq of L, q := #K.
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§2 Elementary Number Theory

In this section we collect some results from elementary number theory which will be used
later. The most important objects, which are studied in elementary number theory are the
residue class rings Zm := Z/Zm , m ∈N . Integers a,b ∈ Z which represent the same
element in Zm, i. e. with m divides b−a, are called c o n g r u e n t m o d u l o m . This is
denoted by a≡ b mod m. For m= 0 the ring Zm is Z itself. For m> 0 the residue classes
[a]m ∈ Zm, a ∈ Z , have the canonical system of representatives 0,1, . . . ,m−1 given by
the classical Euclidean division algorithm for integers. In particular, #Zm = m for m > 0.
For an arbitrary ring A , the map a → a ·1A is the only ring homomorphism χA : Z→ A .
Its kernel is generated uniquely by the non-negative integer m := CharA := ord 1A (= the
order of 1A in the additive group of A) and its image, which is isomorphic to the quotient
ring ZCharA , is the smallest subring of A. Hence Zm , m ∈N , is up to isomorphism the
smallest ring of characteristic m ∈N . Therefore it is also called the p r i m e r i n g of
characteristic m.8 For every multiple n ∈N of m, the surjective ring homomorphism
χ : Z→ Zm induces a surjective ring homomorphism χ : Zn → Zm, [a]n → [a]m , with
kernel Zm/Zn.

The additive group of Zm is easily described. It is a cyclic group Zm which is infinite for
m = 0 and of order m for m > 0 and which is generated by [1]m or, more generally, by
any element [a]m , a ∈ Z , with GCD(a,m) = 1. These elements are precisely the units
in the ring Zm and are called the p r i m e r e s i d u e c l a s s e s modulo m. They form
the (multiplicative) group

Z×m

of units in Zm. For m = 0, the group Z×0 = Z× = {±1} is cyclic of order 2. For m > 0,
the order of the group Z×m is

ϕ(m) := #Z×m = #{a ∈N | 0≤ a < m , GCD(a,m) = 1} .

The function ϕ : N∗ → N, m → ϕ(m) , is called the E u l e r f u n c t i o n. From La-
grange’s Theorem, it follows

E u l e r ’ s E q u a t i o n : [a]ϕ(m)
m = [1]m , i. e. aϕ(m)≡ 1 mod m , if GCD(a,m) = 1.

In particular, for a prime number p,

ap−1 ≡ 1 mod p if GCD(a, p) = 1 ,

which is known as F e r m a t ’ s L i t t l e T h e o r e m. For a more precise description of
the unit group Z×m the so called C h i n e s e R e m a i n d e r T h e o r e m is useful.

2.1 Chinese Remainder Theorem Let m1, . . . ,mr be pairwise relatively prime positive
integers and let m := m1 · · ·mr. Then for every r-tuple (a1, . . . ,ar) ∈ Zr of integers, the

8Note the difference between Zm denoting a cyclic group of order m if m > 0 and of infinite order if m = 0, and Zm denoting a
prime ring of characteristic m . – For an integer a ∈Z , we also write a for the element a ·1A in a ring A , in particular, we also write
a for [a]m in Zm.
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simultaneous congruences

x≡ a1 mod m1 , . . . , x≡ ar mod mr

have a solution in Z . Moreover, a solution is uniquely determined modulo m.

One can reformulate the Chinese Remainder Theorem in terms of ring homomorphisms
as:

2.2 Corollary Let m1, . . . ,mr be pairwise relatively prime positive integers and let
m := m1 · · ·mr. Then the canonical ring homomorphism

χ : Zm −−−−−−−∼−−−−−−−− Zm1 ×·· ·×Zmr , [a]m → ([a]m1 , . . . , [a]mr) ,

is an isomorphism.

In this formulation the Chinese Remainder Theorem is rather obvious: For arbitrary
positive integers m1, . . . ,mr , the characteristic of the product ring Zm1 ×·· ·×Zmr is the
order

ord ([1]m1 , . . . , [1]mr)=LCM(ord [1]m1 , . . . ,ord [1]mr)=LCM(m1, . . . ,mr).

In case the integers m1, . . . ,mr are pairwise relatively prime, their LCM is the product
m and, since also # (Zm1 ×·· ·×Zmr) = m , the homomorphism χ has to be bijective.
For computational reasons it is important to describe the inverse of the isomorphism χ
of Corollary 2.2 conveniently.9 This can be done by using the Euclidean algorithm in
the following way: Let nρ := m/mρ , ρ = 1, . . . ,r. Then GCD(n1, . . . ,nr)=1 and there
exists a representation of the unit 1=b1n1+ · · ·+brnr with b1, . . . ,br ∈Z and the inverse
of χ is the map

([a1]m1 , . . . , [ar]mr) → [a1b1n1 + · · ·+arbrnr]m .

The Chinese Remainder Theorem can be formulated and proved without using any ring
structure in the following way: The product group G1×·· ·×Gr of finite groups is cyclic
if and only if every factor G1, . . . ,Gr is cyclic and the orders #G1, . . . ,#Gr are pairwise
relatively prime. This is (by induction on r) an immediate consequence of the following
simple observation: If g,h are commuting elements of positive orders in a group G , then
ord gh = ord g ·ord h if and only if ord g and ord h are relatively prime.

The isomorphism χ of Corollary 2.2 induces an isomorphism of the groups of units:

2.3 Corollary Let m1, . . . ,mr be pairwise relatively prime positive integers and let
m := m1 · · ·mr. Then the canonical group homomorphism

χ× : Z×m −−−−−−−∼−−−−−−−− Z×m1
×·· ·×Z×mr

is an isomorphism. In particular, ϕ(m) = ϕ(m1) · · ·ϕ(mr) .

The finest decomposition of a positive integer m into pairwise relatively prime factors
is the prime factorization m := pα1

1 · · · pαr
r with pairwise distinct primes p1, . . . , pr and

9To give an example we mention the following method for the computation of the product of big integers b,c . If the absolute
value of their product is ≤ n, then one chooses (comparatively small) pairwise relatively prime positive integers (e. g. distinct prime
numbers) m1, . . . ,mr with m := m1 · · ·mr ≥ 2n+ 1 and computes the product bc modulo each of the single numbers m1, . . . ,mr .
Then by using Chinese Remainder Theorem we get the product bc modulo m, and hence bc itself, since |bc| ≤ n.
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positive exponents α1, . . . ,αr. From this it follows

Z×m −−−∼−−−− Z×
pα1

1
×·· ·×Z×pαr

r

and

ϕ(m) = ϕ(pα1
1 ) · · ·ϕ(pαr

r ) = pα1−1
1 (p1−1) · · · pαr−1

r (pr−1) .

Further, it follows that for a multiple n of m the canonical group homomorphism
Z×n → Z×m induced by the canonical (surjective) ring homomorphism Zn → Zm is also
surjective, since this is trivially true for prime powers n = pβ .

To determine the structure of the group of units Z×m for m ∈N∗, it is sufficient to consider
the case that m = pα is a power of a prime number p . For m = p , the prime ring Zp is
a field and the group Z×p is cyclic of order ϕ(p) = p−1. This is a special case of the
following general theorem:

2.4 Theorem Any finite subgroup of the multiplicative group K× of a field K is cyclic.

To prove 2.4, let G ⊆ K× be a finite subgroup of order m = m1 · · ·mr with mρ = pαρ
ρ ,

αρ > 0, p1, . . . , pr pairwise distinct prime numbers, and let nρ :=m/mρ . Then 1= b1n1+

· · ·+ brnr for some integers b1, . . . ,br. For every x ∈ G, one has x = xb1n1 · · ·xbrnr =
x1 · · ·xr with factors xρ := xbρ nρ ∈ G for which xmρ

ρ = xbρ m = 1, ρ = 1, . . . ,r. Since the
polynomial Xmρ −1 has at most mρ zeros in the field K, the group G contains at most
and hence exactly mρ elements x with xmρ = 1, otherwise G would contain less than
m1 · · ·mr = m elements. Moreover, since Xmρ/pρ −1 has at most mρ/pρ solutions, there

exists necessarily an element yρ ∈ G with ymρ
ρ = 1, but ymρ/pρ

ρ = 1. Then ord yρ = mρ
and ord y1 · · ·yr = m1 · · ·mr = m, i. e. y1 · · ·yr generates the group G.

For a prime power pα with α ≥ 2 and an odd prime p , we consider the exact sequence

1−−−−−−− U −−−−−−−−−−−−−−− Z×pα −−−−−−−
χ×
−−−−−−−− Z×p −−−−−−− 1 ,

where U is the kernel of the surjective group homomorphism χ× induced by the canonical
ring homomorphism χ : Zpα → Zp . The group U has order pα−1 and is cyclic with
generator 1+ p , since (1+ p)pα−2 ≡ 1+ pα−1 ≡ 1 mod pα , which follows directly by
induction on α . Since χ× is surjective and since Z×p is cyclic of order p−1, there is an
element z ∈ Z×pα of order p−1, too. Then (1+ p)z has order pα−1(p−1) = #Z×pα and
hence generates this group. Altogether:

2.5 Theorem For an odd prime number p and any α ≥ 1, the group Z×pα is cyclic of
order pα−1(p−1).

The group Z×8 is isomorphic to Z2×Z2 and hence not cyclic. It follows that all the
groups Z×2α of order 2α−1 are not cyclic for α ≥ 3. Indeed, as one can easily check by
using 52α−3≡ 1+2α−1 ≡ ±1 mod 2α for α ≥ 3:

2.6 Theorem For any α ≥ 3, the group Z×2α is isomorphic to Z2α−2 ×Z2 . More
precisely, the residue class [5] is an element of order 2α−2 in Z×2α and −[1] is an
element of order 2 which does not belong to the subgroup generated by [5].
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For an arbitrary m = pα1
1 · · · pαr

r , p1 < · · ·< pr primes, α1, . . . ,αr > 0, in the decompo-
sition Z×m

∼= Z×
pα1

1
×·· ·×Z×pαr

r
according to Corollary 2.3, all non-trivial factors are of

even order, hence Z×m is not cyclic if at least two such factors occur. It follows:

2.7 Theorem ( G a u s s ) Let m ∈N∗. Then the group Z×m is cyclic if and only if m is of
the form m = 1, 2 , 4 , pα , 2pα , where p is an arbitrary odd prime number and α ∈N∗

is arbitrary.

If Z×m is cyclic, then any generator of the group Z×m is called a p r i m i t i v e p r i m e
r e s id u e c l a s s modulo m.

2.8 Example For a given m ∈N∗ and a given a ∈Z , it is easy to decide whether [a]m belongs
to the group Z×

m of units in Zm: one has to compute GCD(a,m). This is done by using Euclidean
algorithm, which even yields a representation

d := GCD(a,m) = ab+mr with b,r ∈Z .

Then [a]m is a unit if and only if d = 1 and, in this case, the equation [1]m = [a]m[b]m shows that
[b]m = [a]−1

m is the inverse of [a]m in Z×
m . Now, assume [a]m ∈Z×

m . To compute the order

ord m a := ord [a]m

of [a]m in the group Z×
m , Euler’s equation [a]ϕ(m)

m = [1]m shows that ord m a is a divisor of ϕ(m)

(and, by the way, [a]−1
m = [a]ϕ(m)−1

m ). From the prime factorization m = pα1
1 · · · pαr

r of m one gets,
by Corollary 2.3,

ϕ(m) = ϕ(pα1
1 ) · · ·ϕ(pαr

r ) = pα1−1
1 · · · pαr−1

r (p1−1) · · ·(pr−1)

and

ord m a = LCM(ord pα1
1

a, . . . ,ord pαr
r

a) ,

which reduces the problem to the case that m = pα is a prime power > 1 and ϕ(m) = pα−1(p−
1) . To assess the divisors of ϕ(m) in this case, in addition the prime factorization of p− 1 is
required. If all these data are given, then we have an equation [a]nm = 1 for an n∈N∗ with known
prime factorization n = qβ1

1 · · · q
βs
s . In this situation the order of [a]m is rather easy to compute.

The following method can be used in any group G . The powers at , t ∈N, of an element a ∈ G ,
are quickly calculated by the m e t h o d o f r a p i d p o w e r s.10 Now, assume that an = eG

with n as above and let nσ := n/qβσ
σ , σ = 1, . . . ,s. If γσ (≤ βσ ) is the smallest non-negative

integer with (anσ )qγσ
σ = eG , σ = 1, . . . ,s, then the order of a is

ord a = qγ1
1 · · · q

γs
s .

For the proof observe that, by construction, for all σ = 1, . . . ,s, ord a divides nσ qγσ
σ and hence

also divides GCD(n1qγ1
1 , . . . ,nsq

γs
s ) = qγ1

1 · · · q
γs
s . On the other hand, for every proper divisor t of

qγ1
1 · · · q

γs
s one has at = eG by the minimality of γσ , σ = 1, . . . ,s .

The inverse of the exponentiation map a → at in the group G leads to discrete logarithms. To
describe them, let y be a further element of G. The d i s c r e t e l o g a r i t h m p r o b l e m (DLP)
for the data (G;a,y) asks for the existence of an exponent x∈Z with y= ax. Moreover, if x exists

10Let t = ∑
i=0 ti2i with ti ∈ {0,1} be the dual-expansion of t . Compute ai := a2i

recursively by a0 = a, ai+1 = a2
i . Then at is the

product of those ai for which ti = 1. – The power at is also the last element b0 in the sequence b+1, . . . ,b0 recursively constructed
by b+1 = 1, b2

i = b2
i+1ati for i = , . . . ,0.
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one should compute such an exponent. If a solution x exists it is unique only modulo the order of
a. In particular, if n := ord a is positive, then there is a smallest x ∈N with x < n and ax = y if
the given DLP is solvable. This x is called the l o g a r i t h m o f y w i t h r e s p e c t t o t h e
b a s e a and is denoted by

loga y .

In general a DLP is considered to be a difficult problem. But, using an idea of Pohlig and
Hellmann, it is rather easy to solve if n := ord a > 0 is known and if, moreover, a decomposition
n = n1 · · ·nr into “small” (not necessarily distinct) factors n1, . . . ,nr ∈N∗ is given, for instance,
if the prime factors q1, . . . ,qs from above are “small”.11 For the proof of this, one writes the
potential solution

x = x0 + x1n1 + x2n1n2 + · · ·+ xr−1n1 · · ·nr−1

with “digits” x0, . . . ,xr−1 , 0 ≤ x0 < n1 , . . . ,0 ≤ xr−1 < nr. To compute x0, one has to solve the
equation

y = ax0ax1n1+···+xr−1n1···nr−1 or yn2···nr = (an2···nr)x0 .

(Note that ord a = n1(n2 · · ·nr).) Since ord an2···nr = n1 and since n1 is “small” by assumption this
DLP can be solved by checking step by step computing successively the powers of an2···nr (or by
any other method). If there is no solution, then the original DLP has no solution. Otherwise, we
have now to solve the equation

ya−x0 = (an1)x1+x2n2+···+xr−1n2···nr−1 ,

which is the DLP for the data (G;an1 ,ya−x0) with ord an1 = n2 · · ·nr . Now, one proceeds for the
computation of x1 by solving a DLP with data (G;an1n3···nr−1 ,(ya−x0)n3···nr−1).

The discrete logarithm problems for the groups Z×
m are already difficult enough to use them in

cryptography and security systems. For instance, one takes m = p a prime number for which
p−1 has a “huge” prime factor q and for the base a ∈ Z×

p of the discrete logarithm an element
of order q. – In this connection the S o p h i e G e r m a i n p a i r s (q, p = 2q+ 1) of primes
q, p are of interest.12

The power maps for the groups Z×
m are also involved in the R S A - c o d e s.13 The background

of these codes is the following simple observation: Let G be any finite group of order n. For any
integer r ∈Z, the power map G→G , x → xr, is bijective if and only if GCD(r,n) = 1.14 In this
case the inverse is also a power map. More precisely, the power map x → xs is inverse to x → xr if
and only if xrs = x or, equivalently, xrs−1 = eG for every x∈G , i. e. rs≡ 1 mod Exp G.15 Now, a
(secret) message is interpreted as an element x ∈G and encoded as y = xr with r ∈N∗ relatively
prime to n := # G. To recover x from y one needs the inverse [s] of [r] in the group Z×

Exp G .
Of course, it would be enough to find the inverse of [r] in Z×

n . This gives a cryptosystem if one
can compute the powers in G easily without knowing # G or Exp G. Then the e n c i p h e r i n g

11As before one assumes that the multiplication in G and, in particular, exponentiation can be performed easily and, in addition, that
the memory of the computer allows to solve DLP’s (G;b,z) for elements b of orders n1, . . . ,nr in a reasonable time.

12For instance, (q,2q+1) with q := 183027 ·2265440−1 is such a pair of primes found in March 2010.

13These codes were proposed by R. Rivest, A. Shamir and L. Adleman in 1977.

14This follows from the T h e o r e m o f C a u c h y, see Example 1.5 (3). For an abelian group this is very simple to prove. As
already remarked, the general case is also a consequence of the Theorem 1.6.1 (i) of Sylow.

15The e x p o n e n t Exp G of a group G is, by definition, the unique non-negative generator of the subgroup {t ∈ Z | xt =
eG for all x ∈ G} ⊆Z. If G is finite, then Exp G divides # G and, by the Theorem of Cauchy, Exp G and # G have the same prime
divisors. If G is finite and abelian, then there exists an element g ∈ G with ord g = Exp G .
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e x p o n e n t r (together with the group G) is the public key and the private d e c i p h e r i n g
e x p o n e n t s is only known to those who know # G or Exp G.

In the special case of RSA-codes the group G is Z×
m , where m = pq is a product of two large

distinct primes p,q (of comparable order). The knowledge of the order #Z×
m = (p− 1)(q− 1)

is equivalent with the knowledge of the factors p,q of m .16 For instance, one might pick distinct
random primes p and q with about 200 digits each, so that m has roughly 400 digits. Its security
depends on the assumption that in the current state of computer technology, the factorization of
composite numbers with large prime factors is prohibitively time consuming. For computations
in Z×

m only the knowledge of m is required, so the public key consists of a pair (m = pq,r) ,
where r ∈N∗ is relatively prime to ϕ(m) = (p− 1)(q− 1) and the message to encode is given
by an x ∈N∗ with 0 < x < m and GCD(x,m) = 1.17

2.9 Example ( A f f i n e g r o u p o f Zm ) Let m ∈ N. The group Z×
m of units operates

canonically by group automorphisms on the additive group Zm of the ring Zm by multiplica-
tion Z×

m ×Zm → Zm, ([b], [x]) → [b][x] = [bx] . The action homomorphism ϑ : Z×
m → AutZm

is obviously bijective. Hence, the automorphism group of a cyclic group Zm can be identi-
fied canonically with the group Z×

m and the semidirect product Zm Z×
m is the full holomorph

Hol(Zm) of Zm . The group Zm Z×
m(= Hol (Zm)) is also called the a f f i n e g r o u p of the

ring Zm .18 An element ([a], [b]) ∈ Zm Z×
m , a,b ∈ Z , GCD(b,m) = 1, is identified with the

a f f i n e t r a n s f o r m a t i o n

([a], [b]) = (a,b) = (a,b)m : Zm →Zm , x → a+bx .

(Recall the convention of Footnote 8.) For b ∈ Z×
m , (0,b)m = ϑb is the homothecy with b , i. e.

the multiplication by b in Zm. The homothecies are exactly those affine transformations which
have 0 ∈ Zm as a fixed point. 0 is the only fixed point of ϑb if and only if besides b also
1−b is a unit in Zm . Moreover, in this case every transformation (a,b)m has exactly one fixed
point, namely a/(1−b) . If x0 is any fixed point of (a,b)m (not necessarily the only one), then
(a,b)m = (x0,1)m(0,b)m(−x0,1)m is a conjugate of the homothecy ϑb = (0,b)m and, in particular,
ord (a,b)m = ord (0,b)m = ord mb .

For m = 0, the group ZZ× is isomorphic to the infinite dihedral group D0 = Hol(Z0) and is
generated, for example, by the two reflections (1,−1) and (0,−1), the product of which is the
translation (1,1) = (x → 1+ x) of order 0 .

Now, let m ∈ N∗. Then the orbits of the canonical action Z×
m ×Zm → Zm are precisely the

subsets Xd := {x ∈ Zm | ord Zmx = d} of cardinality ϕ(d), where d is a divisor of m.19 This
follows directly from the surjectivity of the canonical group homomorphism Z×

m →Z×
d induced

by the ring homomorphism Zm →Zd , d|m , see the remark after Corollary 2.3.

It follows from the Chinese Remainder Theorem 2.1 that for m = m1 · · ·mr with pairwise rela-

16Note that Exp Z×
m = LCM (p−1,q−1). Thus, in choosing p,q one should also think of GCD (p−1,q−1).

17If one chooses incidentally a message x with 0 < x < m and GCD(x,m) = 1, then GCD(x,m) ∈ {p,q} and the factorization
of m would be known which makes the code useless. But, this happens very rarely with probability (p+ q− 2)/(m− 1) and is,
moreover, irrelevant for the algorithm itself, because the power map x → xr is also a permutation of Zm (and not only of Z×

m )
with inverse x → xs. – If one knows the order t := ordm xr = ordm x of xr or x in Z×

m then one also knows the message, namely
x = (xr)u, where ru≡ 1 mod t. If, moreover, t is even and xt/2 ≡ −1 mod m, then 0 = xt −1 = (xt/2−1)(xt/2 +1) in Zm and hence
GCD(xt/2−1,m) ∈ {p,q} provides now the factorization of m. Quantum computers will allow to compute t in a reasonable time (in
the future).

18More generally, for an arbitrary ring A , the a f f i n e g r o u p of A is the group AA× = HolA× (A) , where A× operates
canonically on the additive group of A by left multiplication.

19In this case the class equation yields the well known formula m = # Zm = ∑d|m # Xd = ∑d|mϕ(d) .
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tively prime positive integers m1, . . . ,mr , the canonical group homomorphism

Zm Z×
m −−−−−−−−−−−−−−−−− (Zm1 Z×

m1
)×·· ·× (Zmr Z×

mr
) , (a,b)m → ((a,b)m1 , . . . ,(a,b)mr)

is an isomorphism

The L i n e a r C o n g r u e n c e M e t h o d for generating “random numbers” uses the affine
transformations (a,b)m: Starting with an arbitrary x0 ∈Zm , one forms the sequence (xi) in Zm
by the recursion

xi+1 = (a,b)m(xi) = a+bxi , i ∈N .

This sequence is purely periodic of a length t which divides ord (a,b)m. The cycle x0,x1, . . . ,xt−1
belongs to the cycle decomposition of (a,b)m ∈S(Zm) , cf. Example 1.7. For x0 = 0, one ob-
tains the sequence

xi = a(1+b+ · · ·+bi−1) , i ∈N .

This is

xi = a · 1−bi

1−b
, i ∈N ,

if, in addition, 1− b ∈ Z×
m (which, by the way, is possible only for odd m). If, moreover, also

a = x1 ∈ Z×
m , then xi = 0 for exactly i ∈N ·ord m b , i. e. the sequence (xi) is purely periodic of

period length ord m b = ord (a,b)m . For example, if m = p is an odd prime and if 0 < a,b < p ,
where b is a primitive prime residue class modulo p (i. e. ord p b = p− 1), then, starting with
an arbitrary x0 , 0≤ x0 < p , which is not the fixed point a/(1−b)(= 0) of (a,b)p , the terms of
the sequence (xi) run periodically through all the elements of Zp with the exception of the fixed
point a/(1−b) .

The linear congruence method for generating random numbers is discussed more thoroughly
in [4, 3.2.1].

2.10 Generalized Chinese Remainder Theorem Let m1, . . . ,mr be positive integers
and let m := LCM(m1, . . . ,mr). The Generalized Chinese Remainder Theorem character-
izes the elements of the image of the canonical homomorphism χ : Z→Zm1 ×·· ·×Zmr

also in the case that the integers m1, . . . ,mr are not pairwise relatively prime. Further,
note that ([a1]m1 , . . . , [ar]m1) ∈ im χ if and only if the system x ≡ a1 mod m1, . . . ,x ≡
ar mod mr of simultaneous congruences has a solution in Z . More precisely, we have
the following result:

2.10.1 Generalized Chinese Remainder Theorem In the situation as above, for a given
r-tuple of integers (a1, . . . ,ar) ∈ Zr the simultaneous congruences

x≡ a1 mod m1, . . . ,x≡ ar mod mr

have a solution in Z if and only if the congruences ai ≡ a j mod GCD(mi,m j) hold
for all pairs (i, j), 1 ≤ i, j ≤ r. Moreover, a solution is uniquely determined modulo
m = LCM(m1, . . . ,mr) .

To prove 2.10.1, let x be a solution. Then x− ai ∈ Zmi, x− a j ∈ Zm j and ai− a j =
−(x− ai)+ (x− a j) ∈ Zmi +Zm j = ZGCD(mi,m j). For the converse we proceed by
induction on r. The cases r = 1 and r = 2 are trivial: if a1 ≡ a2 mod d := GCD(m1,m2),
i. e. a1−a2 ∈Zm1 +Zm2, a1 = a2 +b1m1 +b2m2, then a := a1−b1m1 = a2 +b2m2 is
a solution of the congruences x≡ ai mod mi, i = 1,2. Now, let r > 2. Then let a ∈Z be
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a solution of the r−1 congruences a ≡ ai mod mi, i = 1, . . . ,r−1. Any solution of the
two congruences x≡ a mod LCM(m1, . . . ,mr−1) =: m, x≡ ar mod mr will be a solution
of the given system of r congruences. That the last two congruences have a common
solution follows from a−ar = (a−ai)+(ai−ar)∈Zmi+Zmr for i= 1, . . . ,r−1, that
is, a −ar ∈

r−1
i=1 (Zmi +Zmr) =

�r−1
i=1 Zmi


+Zmr = Zm+Zmr. Here we have used

the distributive law (a+ c)∩ (b+ c) = a∩b+ c for ideals a=Za,b=Zb,c=Zc in the
ring Z. (By the way, also the distributive law a∩c+b∩c= (a+b)∩c holds for arbitrary
ideals in Z. For the generators a,b,c∈Z of these ideals the distributive laws are the well-
known (and simple) formulae: LCM(GCD(a,c),GCD(b,c)) =GCD(LCM(a,b),c) and
GCD(LCM(a,c),LCM(b,c)) = LCM(GCD(a,b),c).)

To compute a solution in the case of Theorem 2.10.1 one may proceed in a similar manner
as in the special case of Theorem 2.1. Now, one can construct a projection homomorphism
(of the additive groups)

ϕ : Zm1 ×·· ·×Zmr → Zm

with ϕ χ = idZm , where χ : Zm → Zm1 × ·· · ×Zmr is the injective homomorphism
induced by χ and m = LCM(m1, . . . ,mr). Because of GCD(n1, . . . ,nr) = 1 for nρ :=
m/mρ , ρ = 1, . . . ,r, there exist b1, . . . ,br ∈ Z with 1 = b1n1 + · · · + brnr
and ϕ([a1]m1 , . . . , [ar]mr) = [a1b1n1 + · · ·+ arbrnr]m is well-defined and does the job.
We get:

2.10.2 Proposition Let m1, . . . ,mr ∈ N∗ be positive integers, m := LCM(m1, . . . ,mr),
n1 := m/m1, . . . ,nr := m/mr and 1 = b1n1 + · · ·+ brnr with b1, . . . ,br ∈ Z . Then the
simultaneous congruences

x≡ a1 mod m1, . . . ,x≡ ar mod mr

have a solution if and only if

a≡ a1 mod m1, . . . ,a≡ ar mod mr for a := a1b1n1 + · · ·+arbrnr .

In this case a is the unique solution modulo m.

It is very easy to show that in 2.10.2 the congruences ai ≡ a j mod GCD(mi,m j) for
1 ≤ i < j ≤ r imply the congruences a ≡ ai mod mi for 1 ≤ i ≤ r. Therefore, 2.10.2
provides an independent (and constructive) proof of 2.10.1.

2.11 Quadratic Residues In the next section very often we have to compute the order
ord m2 of [2]m ∈Z×m for an odd integer m∈N∗. This is always a divisor of ϕ(m) = #Z×m .
But, if [2]m = [a]2m is a square in Z×m and if m > 1, i. e. 2 |ϕ(m), then ord m2 divides
even ϕ(m)/2 because of [2]ϕ(m)/2

m = [a]ϕ(m)
m = [1]m. If Z×m is cyclic, i. e. if m = pα is an

odd prime power > 1 (cf. Theorem 2.7), then the converse is true: If 2ϕ(m)/2 ≡ 1 mod m
then 2 is a square in Z×m . More generally, the following simple lemma holds:

2.11.1 Lemma Let G be a finite cyclic group of order n ∈N∗ and let r ∈Z. An element
g ∈ G is an r-th power in G if and only if gn/GCD(n,r) = eG, i. e. if and only if ord g
divides n/GCD(n,r).
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For the proof, let a ∈ G be a generator of G. Then the subgroup of the r-th powers in G
is generated by ar and hence of order ord ar = s := n/GCD(n,r). But this subgroup is
the kernel of the power endomorphism x → xs of G.

The theory of squares in Z×m is the theory of quadratic residues:

2.11.2 Definition Let m ∈ N∗ and a ∈ Z with GCD(m,a) = 1. Then a is called a
q u a d r at i c r e s i d u e m o d u l o m if there exists a b ∈ Z with a≡ b2 mod m, i. e.
[a]m is a square in the group Z×m .

Sometimes the condition GCD(m,a) = 1 in Definition 2.11.2 is omitted. But, here we
keep it as we want to focus on squares in Z×m . By the Chinese Remainder Theorem
(cf. Corollary 2.3) the integer a is a quadratic residue modulo m if and only if a is a
quadratic residue modulo all (maximal) prime powers pα dividing m. Furthermore, if p
is an odd prime number then a is a quadratic residue modulo pα , α ≥ 1, if and only if a
is a quadratic residue modulo p. This follows from the exact sequence after the proof of
Theorem 2.4, which was used for the proof of Theorem 2.5. For α ≥ 3, an integer a is a
quadratic residue modulo 2α if and only if it is a quadratic residue modulo 8 = 23, i. e.
if and only if a≡ 1 mod 8 (since the group of squares of Z×2α belongs to the kernel of
Z×2α → Z×8 and has the same index 4 as this kernel, by Theorem 2.6, for example).

From now on we consider only quadratic residues modulo p where p is an odd prime.

For describing the quadratic residues modulo p it is convenient to introduce the L e g -
e n d r e s y m b o l


a
p


= (a/p) :=


1, if [a]p is a square in Z×p ,

−1, if [a]p is not a square in Z×p ,

for an integer a not divisible by p. Since the image of the group homomorphism
[a]p → [a](p−1)/2

p in Z×p is the subgroup {±1} ⊆ Z×p of order 2, by Lemma 2.11.1,
this homomorphism coincides with the Legendre symbol [a]p → (a/p), in particular
(ab/p) = (a/p)(b/p) for all integers a,b which are not divisible by p. For later use we
note explicitly:

2.11.3 Euler’s Criterion for Quadratic Residues For an odd prime p and an integer
a not divisible by p , we have


a
p


≡ a

p−1
2 mod p .

Note that [a]p → (a/p) is the only non-trivial group homomorphism Z×p →{±1}. Since
[a]p → signLa is also such a homomorphism (where La denotes multiplication with a
in Zp or Z×p ) we have

(a/p) = signLa

for an integer a not divisible by p .20

20In this way the Legendre symbol may be generalized to arbitrary integers a,m with m odd and GCD(a,m) = 1 by setting
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As a special case of 2.11.3 we get (−1/p) = (−1)(p−1)/2 and hence the following:

2.11.4 Lemma The integer −1 is a quadratic residue modulo an odd prime p if and
only if p≡ 1 mod 4 , i. e. (−1/p)≡ p mod 4.

Explicitly: If p≡ 1 mod 4, then ±((p−1)/2)! are the solutions of the equation x2 =−1
in Zp. (This follows from W i l s o n ’ s T h e o r e m: (p−1)!≡−1 mod p .)

The assertion 2.11.4 is the first supplement of the famous Q u a d r a t i c R e c i p r o c i t y
L a w: For odd primes p,q, p = q,


q
p


p
q


= (−1)

(p−1)(q−1)
4 .

This theorem was already used by L. Euler (1707-1783). A first complete proof was
given by C. F. Gauss (1777-1855) in his Disquisitiones arithmeticae (cf. [3]). It allows to
characterize, for a given positive odd integer a = q1 · · ·qs ∈N∗ (which may be assumed
to be square free) with pairwise distinct odd prime factors q1, . . . ,qs , those primes
p ∈ {q1, . . . ,qs} for which a is a quadratic residue modulo p , namely


a
p


= (−1)

p−1
2 ∑s

σ=1
qσ−1

2 ·
s

∏
σ=1


p

qσ


.

The second supplement of the Quadratic Reciprocity Law concerns the Legendre symbol
(2/p):

2.11.5 Proposition For an odd prime number p ,


2
p


= (−1)

p2−1
8 =


1, if p≡±1 mod 8 ,

−1, if p≡±3 mod 8 .

There is a simple proof of 2.11.5 proposed by V. A. Lebesgue (1791-1875). It counts
the points of the unit circle S1 = S1(Zp) = {(x,y) ∈ Z2

p | x2 + y2 = 1} over Zp. The
stereographic projection maps S1(Zp)\{(0,1)} bijectively onto Zp \{t ∈Zp | t2 =−1}
via (x,y) → x/(1− y), and its inverse is t → (2t/(t2 +1),(t2−1)/(t2 +1)). It follows
that

#S1 = 1+(p− (1+(−1/p))) = p− (−1/p) .

(a/m) := signLa, where La denotes multiplication with a in Zm or in Z×
m . But here these signs may differ. (For example, consider

m = p2 where p is an odd prime.) If one chooses multiplication in Zm, one gets the so-called J a c o b i s y m b o l. If [a/m] denotes
the alternative symbol defined with the multiplication in Z×

m , then, for all odd m ∈N∗ and for all a ∈Z with GCD(a,m) = 1, it
follows from the description of the orbits of the canonical action Z×

m ×Zm →Zm in Example 2.9 (cf. also the previous Footnote 19)
that (a/m) = ∏d|m[a/d] . Therefore

 a
m


= ∏

d|m

 a
d

µ(m/d)
= ∏

d|m,
m/d square-free

 a
d



by the (multiplicative) M ö b i u s I n v e r s i o n F o r m u l a: If f ,g : N∗ → G are two maps into any (multiplicatively written)
abelian group G with f (m) = ∏d|m g(d), then g(m) = ∏d|m f (d)µ(m/d), where µ denotes the classical M ö b i u s f u n c t i o n
defined by µ(n) := (−1)r if n = p1 · · · pr is the product of distinct prime numbers p1, . . . , pr and µ(n) := 0 otherwise. This function
was introduced by A. F. Möbius (1790-1868) in 1832 and is important in number theory and combinatorics (where it is generalized
extensively). For further properties of the Jacobi symbol see the end of this subsection.
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On the other hand, on S1 operates the square group D4 of order 8 generated by the two
reflections (x,y) → (x,−y) and (x,y) → (y,x) at the x-axis {y = 0} and at the diagonal
{x = y} respectively. All orbits have cardinality 8 with the following exceptions: In any
case the points on the coordinates axes form an orbit {(±1,0),(0,±1)} of cardinality
4, and, if 2 is a square in Zp, i. e. if (2/p) = 1, the points on the two diagonals
x = ±y also form an orbit {(±1/

√
2,±1/

√
2)} of cardinality 4. Altogether #S1 =

8k+4+2(1+(2/p)), where k is the number of orbits of cardinality 8. From the equality
p− (−1/p) = 8k + 4+ 2(1+(2/p)) one gets (besides p ≡ (−1/p) mod 4 which is
2.11.4) the two congruences p≡ (−1/p) mod 8 if (2/p) = 1 and p≡ (−1/p)+4 mod 8
if (2/p) =−1, and this is 2.11.5.

The method of this proof can also be used to prove the main part of the Quadratic
Reciprocity Law. For this one counts the points of the unit sphere

Sq−1 = Sq−1(Zp) := {(x1, . . . ,xq) ∈ Zq
p|x2

1 + · · ·+ x2
q = 1}

over Zp. Quite generally, one has the cardinality formula #S2n = pn(pn +(−1/p)n) for
n ∈N , which one proves (perhaps) most easily by induction on n using the recursion

#S0 = 2 , #Sm+2 = pm+1 (p− (−1/p))+#Sm · (−1/p)p .

(To prove this formula, one counts the elements in the fibres of the projection

Sm+2 → Zm+1
p , (x1, . . . ,xm+1,xm+2,xm+3) → (x1, . . . ,xm+1) .

For any point in Zm+1
p which does not belong to Sm, the fibre contains p− (−1/p)(=

#S1) points, and the fibre over any point in Sm contains (1 + (−1/p))p− (−1/p)
points.) In particular, #Sq−1 = p(q−1)/2


p(q−1)/2 +(−1)(p−1)(q−1)/4


. On the other

hand, the group Zq operates on Sq−1 canonically by the reiterated cyclic permuta-
tion 1,2, . . . ,q . The fixed points are the constant tuples (x, . . . ,x) with qx2 = 1 or
q = (x−1)2 in Zp. Hence, the number of fixed points is 1 + (q/p) . All the non-
constant orbits have q points each. Altogether, the class equation for this operation
of Zq on Sq−1 is #Sq−1= 1+(q/p)+ kq with some k ∈ N . Comparing both expres-
sions for #Sq−1 and using again Euler’s criterion p(q−1)/2≡ (p/q) mod q from 2.11.3
yields (p/q)


(p/q)+(−1)(p−1)(q−1)/4


≡ 1+ (q/p) mod q, which is the Quadratic

Reciprocity Law, see also [6].

It is possible to look at Lebesgue’s proof of 2.11.5 in another way. The essential point for
the proof is to look at the points of the unit circle which belong to the diagonals x =±y.
In the complex plane these are the primitive 8-th roots of unity (±1± i)/

√
2. If we choose

one of them as ζ8, then ζ 4
8 =−1, ζ 2

8 is a primitive 4-th root of unity and ζ8 +ζ−1
8 is a

square root of 2, since (ζ8 +ζ−1
8 )2 = ζ 2

8 +2+ζ−2
8 = 2 (which expresses the fact that√

2 is the length of the diagonal in a square of side length 1). The same equations hold
in an extension field K of Zp which contains a primitive 8-th root of unity again denoted
by ζ8.21 It follows: (2/p) = 1 if and only if

√
2 = ζ8 + ζ−1

8 ∈ Zp, i. e. if and only if

21Let n ∈N∗ be a positive integer relatively prime to p . A finite field Fpr of cardinality pr , r ∈N∗, contains a primitive n-th
roots of unity ζn if and only if n |#F×pr , i. e. if and only if pr ≡ 1 mod n , i. e. if and only if r is a multiple of ord n p . It follows
[Zp[ζn ] :Zp] = ord n p . For n = 8 this order is 1 if p≡ 1 mod 8 and 2 if p ≡ 1 mod 8, i. e. Fp2 contains always an 8-th primitive
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(ζ8 +ζ−1
8 )p = ζ p

8 +ζ−p
8 = ζ8 +ζ−1

8 . For p≡±1 mod 8 one has ζ p
8 +ζ−p

8 = ζ8 +ζ−1
8

and for p ≡ ±3 mod 8 one has ζ p
8 + ζ−p

8 = ζ 3
8 + ζ 5

8 = ζ 4
8 (ζ

−1
8 + ζ8) = −(ζ8 + ζ−1

8 ).
This proves 2.11.5. Also this proof can be generalized to prove the main part of the
Quadratic Reciprocity Law, now using an extension field K of Zp containing a primitive
q-th root of unity ζq. Already Gauss observed (see [3]) that K contains a square root of
(−1)(q−1)/2q. He gave even an explicit expression for such a root, namely

z :=
q−1

∑
a=1


a
q


ζ a

q .

The reader may check this as well as the equality zp =(p/q)z which proves the Quadratic
Reciprocity Law.22

For example, if q = 3, then z = ζ3− ζ−1
3 , z2 = ζ 2

3 + ζ3− 2 = −1− 2 =−3 (i.e. ζ3 =

(−1±
√
−3)/2) and

zp = ζ p
3 −ζ−p

3 =


ζ3−ζ−1

3 = z, if p≡ 1 mod 3 ,
ζ−1

3 −ζ3 =−z, if p≡−1 mod 3 ,

i. e. (−3/p) = (−1)(p−1)/2(3/p) = (p/3) .23

We recommend to treat in a similar way the case q = 5. But, to prove the general case
we proceed here a little bit differently (without using the element z from above): The
discriminant of the polynomial f := Xq− 1 = ∏q−1

i=0 (X − ζ i
q) ∈ Zp [X ] ⊆ K [X ] is (by

definition)

(−1)q(q−1)/2 ∏
0≤i< j<q

(ζ j
q −ζ i

q)
2 = ∏

i= j
(ζ j

q −ζ i
q) =

q−1

∏
j=0

f (ζ j
q ) = qq

q−1

∏
j=0

ζ− j
q = qq

and yields the equation (−1)(q−1)/2qq =V 2 with the Vandermonde determinant

V := V(1,ζq, . . . ,ζ q−1
q ) = Det(ζ i j

q )0≤i, j<q .
24

We get ((−1)(q−1)/2q/p) = (−1)(p−1)(q−1)/4(q/p) = 1 if and only if V ∈ Zp or if

V =V p = V(1,ζ p
q , . . . ,ζ

p(q−1)
q ) = sign(Lp) ·V = (p/q)V ,

i.e. (p/q) = 1. (Lp denotes multiplication with p in Zq .) In this proof we may replace q
by an arbitrary positive odd integer b not divisible by p and get (−1)(p−1)(b−1)/4(b/p) =

root of unity. Or: The degree of an algebraic element x in an extension field K of Zp is the smallest r > 0 with xpr
= x . For x = ζn

this gives the same characterization as above.

22To compute z2 = ∑a,b(ab/q)ζ a+b
q we collect the summands with a fixed exponent a + b ≡ c mod q, c = 0, . . . ,q −

1. For c ≡ 0 mod q, this gives ∑q−1
a=1 (a(q−a)/q) = ∑q−1

a=1(−1/q) = (−1)(q−1)/2(q − 1). For c ≡ 0 mod q, we get
(−1)(q−1)/2 ζ c

q ∑1≤a<q ,a=c (a(a− c)/q). In Zq we have a(a− c) = a2(1− c/a), and 1− c/a runs through all elements = 1

in Z×
q , hence ∑1≤a<q ,a=c (a(a− c)/q) = −1. Altogether, as asserted, z2 = (−1)(q−1)/2


q−1−∑q−1

c=1 ζ c
q


= (−1)(q−1)/2q , since

∑q−1
c=0 ζ c

q =(ζ q
q −1)/(ζq−1)= 0. It follows


(−1)(q−1)/2q/p


=(−1)(p−1)(q−1)/4(q/p)= 1 if and only if z= zp =∑q−1

a=1(a/q)ζ ap
q =

∑q−1
a=1(ap2/q)ζ ap

q = (p/q)∑q−1
c=1(c/q)ζ c

q = (p/q)z, i. e. (p/q) = 1. Cf. [5, Teil 2, § 55, Exercise 19].

23As an application we get the famous primality test for the Fermat numbers (cf. Footnote 29): Ft = 22t
+ 1, t ≥ 1, is prime if

and only if 3(Ft−1)/2 ≡−1 mod Ft (P e p i n ’ s Te s t). We have Ft ≡ (−1)2t
+1≡ 2≡−1 mod 3 and Ft ≡ 1 mod 4 for t ≥ 1 and

hence, if Ft is prime, then 3(Ft−1)/2 ≡ (3/Ft) = (Ft/3) =−1 mod Ft. Conversely, if 3(Ft−1)/2 ≡−1 mod Ft, then ordFt 3 = Ft −1
and Ft is prime. Till today the only known Fermat primes are F0, F1, F2, F3 and F4.

(ζ8 +ζ−1
8 )p = ζ p

8 +ζ−p
8 = ζ8 +ζ−1

8 . For p≡±1 mod 8 one has ζ p
8 +ζ−p

8 = ζ8 +ζ−1
8

and for p ≡ ±3 mod 8 one has ζ p
8 + ζ−p

8 = ζ 3
8 + ζ 5

8 = ζ 4
8 (ζ

−1
8 + ζ8) = −(ζ8 + ζ−1

8 ).
This proves 2.11.5. Also this proof can be generalized to prove the main part of the
Quadratic Reciprocity Law, now using an extension field K of Zp containing a primitive
q-th root of unity ζq. Already Gauss observed (see [3]) that K contains a square root of
(−1)(q−1)/2q. He gave even an explicit expression for such a root, namely

z :=
q−1

∑
a=1


a
q


ζ a

q .

The reader may check this as well as the equality zp =(p/q)z which proves the Quadratic
Reciprocity Law.22

For example, if q = 3, then z = ζ3− ζ−1
3 , z2 = ζ 2

3 + ζ3− 2 = −1− 2 =−3 (i.e. ζ3 =

(−1±
√
−3)/2) and

zp = ζ p
3 −ζ−p

3 =


ζ3−ζ−1

3 = z, if p≡ 1 mod 3 ,
ζ−1

3 −ζ3 =−z, if p≡−1 mod 3 ,

i. e. (−3/p) = (−1)(p−1)/2(3/p) = (p/3) .23

We recommend to treat in a similar way the case q = 5. But, to prove the general case
we proceed here a little bit differently (without using the element z from above): The
discriminant of the polynomial f := Xq− 1 = ∏q−1

i=0 (X − ζ i
q) ∈ Zp [X ] ⊆ K [X ] is (by

definition)

(−1)q(q−1)/2 ∏
0≤i< j<q

(ζ j
q −ζ i

q)
2 = ∏

i= j
(ζ j

q −ζ i
q) =

q−1

∏
j=0

f (ζ j
q ) = qq

q−1

∏
j=0

ζ− j
q = qq

and yields the equation (−1)(q−1)/2qq =V 2 with the Vandermonde determinant 24

V := V(1,ζq, . . . ,ζ q−1
q ) = Det(ζ i j

q )0≤i, j<q .

We get ((−1)(q−1)/2q/p) = (−1)(p−1)(q−1)/4(q/p) = 1 if and only if V ∈ Zp or if

V =V p = V(1,ζ p
q , . . . ,ζ

p(q−1)
q ) = sign(Lp) ·V = (p/q)V ,

root of unity. Or: The degree of an algebraic element x in an extension field K of Zp is the smallest r > 0 with xpr
= x . For x = ζn

this gives the same characterization as above.

22To compute z2 = ∑a,b(ab/q)ζ a+b
q we collect the summands with a fixed exponent a + b ≡ c mod q, c = 0, . . . ,q −

1. For c ≡ 0 mod q, this gives ∑q−1
a=1 (a(q−a)/q) = ∑q−1

a=1(−1/q) = (−1)(q−1)/2(q − 1). For c ≡ 0 mod q, we get
(−1)(q−1)/2 ζ c

q ∑1≤a<q ,a=c (a(a− c)/q). In Zq we have a(a− c) = a2(1− c/a), and 1− c/a runs through all elements = 1

in Z×
q , hence ∑1≤a<q ,a=c (a(a− c)/q) = −1. Altogether, as asserted, z2 = (−1)(q−1)/2


q−1−∑q−1

c=1 ζ c
q


= (−1)(q−1)/2q , since

∑q−1
c=0 ζ c

q =(ζ q
q −1)/(ζq−1)= 0. It follows


(−1)(q−1)/2q/p


=(−1)(p−1)(q−1)/4(q/p)= 1 if and only if z= zp =∑q−1

a=1(a/q)ζ ap
q =

∑q−1
a=1(ap2/q)ζ ap

q = (p/q)∑q−1
c=1(c/q)ζ c

q = (p/q)z, i. e. (p/q) = 1. Cf. [5, Teil 2, § 55, Exercise 19].

23As an application we get the famous primality test for the Fermat numbers (cf. Footnote 29): Ft = 22t
+ 1, t ≥ 1, is prime if

and only if 3(Ft−1)/2 ≡−1 mod Ft (P e p i n ’ s Te s t). We have Ft ≡ (−1)2t
+1≡ 2≡−1 mod 3 and Ft ≡ 1 mod 4 for t ≥ 1 and

hence, if Ft is prime, then 3(Ft−1)/2 ≡ (3/Ft) = (Ft/3) =−1 mod Ft. Conversely, if 3(Ft−1)/2 ≡−1 mod Ft, then ordFt 3 = Ft −1
and Ft is prime. Till today the only known Fermat primes are F0, F1, F2, F3 and F4.

24By the way, this shows that V =±q(q−1)/2z.
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signLp = (p/b) where (p/b) is the Jacobi symbol, cf. Footnote 20. Since (bd−1)/2≡
(b+ d− 2)/2 mod 2 for arbitrary odd integers b,d we get (p/bd) = (p/b)(p/d) for
positive odd integers b,d not divisible by p and hence, quite generally,

 ac
bd


=
a

b

c
b

a
d

 c
d


, (−1)

(a−1)(b−1)
4


b
a


=
a

b



for arbitrary positive odd integers a,b,c,d with GCD(ac,bd) = 1. This is the Jacobian
version of the Quadratic Reciprocity Law which may also be deduced in a more formal
way from the classical special case.

2.12 Diophantine Equations Nowadays, methods of modular arithmetic are of supreme
importance in the study of Diophantine equations and have evolved into a far reaching
theory. In this final subsection we give some examples which make use of the theory of
quadratic residues.

2.12.1 Theorem Let p be an odd prime number. The Diophantine equations x2+y2 = p,
x2−2y2 = p (or 2y2− x2 = p) and x2 +2y2 = p have integer solutions if and only if p
is congruent to 1 modulo 4 , or congruent to 1 or 7 modulo 8 or to 1 or 3 modulo 8 ,
respectively.

To prove these results, consider the quadratic algebras Z[
√

D ] = Z⊕Z
√

D(⊆ C) for
D =−1,2,−2, respectively, with their multiplicative norm functions x+ y

√
D → x2−

y2D = (x+y
√

D)(x−y
√

D) = Det(Lx+y
√

D) (where Lx+y
√

D : z → (x+y
√

D)z denotes
multiplication with x+ y

√
D in Z[

√
D ] ) , x,y ∈ Z . All three algebras are Euclidean

integral domains with respect to the absolute norm function |x2− y2D| . One checks this
quite easily. In particular, they are principal ideal domains and factorial (i.e. UFDs).
Furthermore, for an element x+ y

√
D = 0 in Z[

√
D ] the absolute norm |x2− y2D| is

the index of the principal ideal x+ y
√

D = Z[
√

D ] (x+ y
√

D) in Z[
√

D ] . (More
generally: For an injective group homomorphism ϕ : Zm → Zm given by an m×m-
matrix A ∈ Mm(Z) the absolute determinant |Detϕ| = |DetA| > 0 is the index of the
image imϕ in Zm, i.e. the order of the cokernel cokerϕ = Zm/imϕ . See [5, Teil 1,
§ 49, Corollary 49.8].) It follows: The Diophantine equation |x2−Dy2|= n ∈N∗, also
called P e l l ’ s e q u a t i o n, has a solution (x,y) ∈ Z2 if and only if there exists a
principal ideal of index n in Z[

√
D ] . Since any ideal of index n contains n , the ideals of

index n in Z[
√

D ] correspond bijectively to the ideals of index n in Z[
√

D ]/Z[
√

D ]n =
(Z/Zn) [

√
D ] ∼= (Z/Zn) [X ]/(Z/Zn) [X ](X2 −D) . As a consequence we obtain: If

Z[
√

D] is a principal ideal domain, then, for a prime number p , Pell’s equation |x2−
y2D|= p is solvable if and only if D is a square in Fp =Z/Zp, i. e. (D/p) = 1 or p|D .
This proves all the claims made in the Theorem 2.12.1. For D = 2 one has to note that
the solvability of x2−2y2 = n and of x2−2y2 = −n are equivalent conditions: (x,y)
solves x2−2y2 = n if and only if (u,v) := (x+2y,x+ y) solves u2−2v2 = −n . (The
norm of 1+

√
2 is −1. )

But, even more can be said: One easily calculates the D e d e k i n d ’ s ζ -f u n c t i o n

ζD(n) := ζZ[
√

D ](n) ,
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i.e. the number of ideals of index n ∈N∗ in Z[
√

D ] . Since

ζD(pα1
1 · · · pαr

r ) = ζD(pα1
1 ) · · ·ζD(pαr

r )

for pairwise distinct prime numbers p1, . . . , pr, ζD is completely determined by the
values ζD(pα) = 1 if p = 2 or if p is prime with p|D , ζD(pα) = α +1 if p is an odd
prime number not dividing D with (D/p) = 1 and ζD(pα) = ((−1)α +1)/2 if p is an
odd prime number not dividing D with (D/p) =−1. These formulae for the values of
ζD are true for all square-free integers D ≡ 1 mod 4 because then Z[

√
D ] is a so-called

D e d e k i n d d o m a i n, i. e. Z(p)[
√

D ] = Z(p)⊕Z(p)
√

D is a principal ideal domain
for every prime number p , where Z(p) ⊆Q denotes the discrete valuation ring of those
rational numbers whose (reduced) denominator is not divisible by p. Z(p)[

√
D ] has

exactly



one (principal) maximal ideal of index p if p = 2 or p|D ,

two (principal) maximal ideals of index p each if p≥ 3 , p  |D and (D/p) = 1 ,
one (principal) maximal ideal of index p2 if p≥ 3 , p  |D and (D/p) =−1 .

This gives the values of the ζ -function ζD above.

Now, assume that Z[
√

D ] even is a principal ideal domain. Then for n ∈N∗ the number
of solutions of Pell’s equation |x2− y2D|= n ∈N∗ is eD ζD(n) , where eD is the order of
the group of units in Z[

√
D ] , because two elements in Z[

√
D ] generate the same ideal if

and only if they differ multiplicatively by a unit. For D > 0 (D not a square) one always
has eD = ∞ , i.e. |x2− y2D|= n has no solution or infinitely many ones. For example,
the units in Z[

√
2 ] are ±(1+

√
2)m, m ∈ Z . The units in Z[

√
−1 ] are ±1,±

√
−1, i.e.

e−1 = 4, and for D <−1 the only units are ±1, i.e. eD = 2 for D <−1. So we get for
D =−1,−2 and n ∈N∗ the following very precise results (recall that vp(n) denotes the
exponent of the highest p-power which divides n , p prime) :

2.12.2 Theorem (Tw o S q u a r e s T h e o r e m o f E u l e r - F e r m a t) The number
of solutions (x,y) ∈ Z2 of x2 + y2 = n is equal to



4 · ∏
p|n,

p≡1 mod 4

(vp(n)+1) , if vp(n) is even for all prime numbers p≡ 3 mod 4 dividing n ,

0 else .

2.12.3 Theorem The number of solutions (x,y) ∈ Z2 of x2 +2y2 = n is equal to



2 · ∏
p|n,

p≡1,3 mod 8

(vp(n)+1) , if vp(n)is even for all prime numbers p≡ 5, 7 mod 8 dividing n ,

0 else .

For D <−2 the algebra Z[
√

D ] is never a principal ideal domain because then Z[
√

D ]
contains (exactly) one ideal of index 2 (namely the ideal generated by 2 and D+

√
D ),

but no element x+ y
√

D with norm x2 + |D|y2 = 2. The first non-trivial algebra of this
kind (with D square-free and ≡ 1 mod 4) is the famous example Z[

√
−5 ] of Dedekind.
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For D> 0 the situation is different. For example, if 0<D< 100, then Z[
√

D ] is a princi-
pal ideal domain if and only if D∈{2,3,6,7,11,14,19,22,23,31,38,43,46,47,59,62,67,
71,83,86,94}. Cf. [5, Teil 2, § 59, Example 8] for a more thorough but still comparatively
elementary investigation of the algebras Z[

√
D ] and related rings.

§3 Special Shufflings

In this section we resume the discussion of shufflings which started in 1.1.

3.1 A shuffling machine shuffles a given pack c ∈PC of a set C of n ∈N∗ cards again
and again with respect to a fixed permutation σ ∈Sn, i. e. it produces successively the
stacks

c0 = c , c1 = σ ∗ c = cσ−1, c2 = σ ∗ c1 = σ2 ∗ c = cσ−2, . . .

ci+1 = σ ∗ ci = σ i+1 ∗ c = cσ−(i+1), . . . ,

which is the orbit of the natural action on PC of the subgroup H(σ) ⊆Sn generated
by σ . Since the action of Sn on PC is simply transitive and, in particular, free, the
stacks ci and c j = σ j−i ∗ ci coincide if and only if σ j−i = idn, i. e. if and only if
i ≡ j mod ord σ . This means the sequence c0,c1,c2, . . . is (purely) periodic of period
length ord σ .25 In Example 1.7 we described a general method to compute the order
of a permutation σ ∈Sn with the help of the cycle decomposition of σ . If one wishes
that any card of C reaches in this sequence of stacks every position 1 . . . ,n , i. e. that
H(σ) operates transitively on [1,n] , then σ must be necessarily a cycle of length n , and,
in particular, of order n. But, for n > 4 , n = 6, there are permutations σ ∈Sn of order
> n . By Example 1.7 the group Sn contains an element of order m ∈N∗ if and only if
∑p∈P , p|m pvp(m) ≤ n.26 It follows: The maximum of the orders of the elements of Sn is

Mn = Max{m ∈N∗ | ∑
p∈P , p|m

pvp(m) ≤ n} .

It seems to be rather cumbersome to compute the exact value of Mn for a given n. Obvi-
ously, one has M1≤M2≤M3≤ ·· · . Compared to the exponent ExpSn =LCM(1, . . . ,n)

25Let us fix the terminology for periodic sequences which is used here: For an arbitrary sequence (xi)i∈N of elements of a set
X , a pair (m0,n) ∈N×N∗ is called a p a i r o f p e r i o d i c i t y for (xi) if xi+n = xi for all i ≥ m0. In this case m0 is called
a p r e - p e r i o d l e n g t h and n a p e r i o d l e n g t h of (xi). If no such pair of periodicity for (xi) exists, then (xi) is called
a p e r i o d i c, otherwise (xi) is called p e r i o d i c. One shows easily that, for a periodic sequence (xi), there exists a unique pair of
periodicity (k0, ) ∈N×N∗ with the following property: Any pair of periodicity for (xi) is of the form (m0,m) with m0 ≥ k0 and
m ∈N∗. (The main point to show is the following: If r,s ∈N∗ are period lengths of (xi), then GCD(r,s) is also a period length of
(xi).) One calls k0 the p r e - p e r i o d l e n g t h of (xi) and  the p e r i o d l e n g t h. The pair (k0, ) itself is called the ( p e r i -
o d i c i t y ) t y p e of (xi). The (finite) sequence (x0, . . . ,xk0−1) is the p r e - p e r i o d of (xi) and (xk0 , . . . ,xk0+−1) the p e r i o d.
One writes shortly (xi)i∈N = (x0, . . . ,xk0−1,xk0 , . . . ,xk0+−1). If k0 = 0 then (xi) is called p u r e l y p e r i o d i c. The periodicity
type of an aperiodic sequence is often denoted by (∞,0). In particular, by definition, the period length of an aperiodic sequence is 0.
– If x is an element of a group, the sequence (xi)i∈N of its powers has period length ord x and is purely periodic if ord x > 0. For an
element x of a monoid the periodicity type of the sequence (xi)i∈N characterizes the cyclic monoid generated by x up to isomorphism
and any type in N×N∗ ∪{(∞,0)} may occur. – For an integer r ∈N∗, the reader may compute the periodicity type of the sequence
(xri)i∈N in terms of the periodicity type (k0, ) of (xi)i∈N.

26In this formula P ⊆N∗ denotes the set of all prime numbers and m = ∏p∈P pvp(m) is the canonical prime decomposition of
a positive integer m . For the proof of the next equality use the simple fact that, for arbitrary positive integers m1, . . . ,mr ≥ 2, the
inequality m1 + · · ·+mr ≤ m1 · · ·mr holds.
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of the group Sn, cf. Footnote 15, the number Mn is rather small. Note that B(n) :=
LCM(1, . . . ,n) = eψ(n) where ψ(n) = ∑m≤n Λ(m) , n∈N∗, is the C h e b y s h e v f u n c -
t i o n ψ and Λ is the v o n M a n g o l d t f u n c t i o n with Λ(m) = ln p if m ∈N∗ is
a prime power pk = 1 and Λ(m) = 0 else. Using the P r i m e N u m b e r T h e o r e m
ψ(n) ∼ n for n → ∞ (i.e. limn→∞ ψ(n)/n = 1) one obtains the following estimates for
B(n) = ExpSn: It is lnB(n) = lnExpSn ∼ n for n → ∞ and hence for arbitrary con-
stants C,D > 1 with C < e < D one has Cn < B(n) < Dn for almost all n ∈N∗. (For a
discussion and a proof of the Prime Number Theorem cf. [7, Bd. 3, Beispiel 7.G.15] , for
example.)

3.1.1 Example We list the values of Mn for n≤ 20:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mn 1 2 3 4 6 6 12 15 20 30 30 60 60 70 105 140 210 210 420 420 .

Furthermore, we mention that M49 = M50 = M51 = M52 = 22 · 32 · 5 · 7 · 11 · 13 = 180180 and
M53 = 2 ·M52 = 360360. Compare this with ExpS53 = 164249358,725037825439200 ≈
164 ·1021.

3.2 Discrete Logarithm Problem for Sn Another natural question is the following:
Given a stack d ∈ PC , does d occur in the sequence c = c0,c1,c2, . . . , i.e. can d be
obtained from c by iterated shuffling with the given permutation σ ∈Sn, or equivalently,
is d = σ x ∗ c = cσ−x, i.e. τ := d−1c = σ x for some x ∈ N. Thus, for the answer
we need to solve the d i s c r e t e l o g a r i t h m p r o b l e m (DLP) belonging to the
data (Sn ;σ ,τ) , which we already mentioned in a more general setting in Example 2.8.
Usually the cycle decomposition of σ yields a representation of ord σ as a product of
small positive integers. Therefore one may expect, after the discussions in Example 2.8,
that for moderate n = #C the problem is rather easy to solve. However, here we give a
direct method. We compute the cycle decomposition of σ (cf. Example 1.7):

σ = σ1 · · ·σr = a(1)0 , . . . ,a(1)m1−1 · · · a
(r)
0 , . . . ,a(r)mr−1 .

The orbits of σ are invariant under σ and hence, if the DLP (Sn ;σ ,τ) has a solution,
the orbits have to be invariant under τ , too. If this is the case, then

τ(a(ρ)0 ) = a(ρ)xρ for some xρ with 0≤ xρ < mρ , ρ = 1, . . . ,r .

Now, if there exists an x with τ = σ x, then necessarily

x≡ xρ mod mρ , ρ = 1, . . . ,r ,

because σ x(a(ρ)0 ) = a(ρ)xρ if and only if x ≡ xρ mod mρ . By the Generalized Chinese
Remainder Theorem 2.10.1, this system of simultaneous congruences has a solution if
and only if the solvability conditions

xλ ≡ xµ mod GCD(mλ ,mµ) , 1≤ λ < µ ≤ r ,

hold. If these necessary conditions hold, then there exists a solution x with 0 ≤ x <
ord σ = LCM(m1, . . . ,mr) . It is uniquely determined and may be computed rather easily,
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cf. 2.10.2. Hence, if the DLP (Sn ;σ ,τ) has a solution, then logσ τ = x . Now, one
checks the validity of the equation

σ x = σ x
1 · · ·σ x

r = σ x1
1 · · ·σ xr

r = τ
(which is possible without knowing x explicitly).

3.3 Faro Shufflings Now we discuss some special shuffling methods which are well-
known to card players. The F a r o s h u f f l i n g27 is performed by cutting the given pack
into two equal piles (as far as possible) and then by taking alternately one card from each
pile to form the new pack. Therefore, if the number n of cards is even, n = 2m , then there
are two possibilities which are described by the following permutations σ1A,σ1B ∈S2m
(according to the convention (1) of Subsection 1.1):

σ1A :=


1 2 3 . . . m m+1 m+2 . . . 2m−1 2m
1 3 5 . . . 2m−1 2 4 . . . 2(m−1) 2m


,

σ1B :=


1 2 3 . . . m m+1 m+2 . . . 2m−1 2m
2 4 6 . . . 2m 1 3 . . . 2m−3 2m−1


.

If n is odd, n = 2m+1, there are four possibilities described by the following permuta-
tions σ2A, σ2B; σ3A, σ3B ∈S2m+1 (in this case one pile contains m and the other m+1
cards):

σ2A :=


1 2 3 . . . m m+1 m+2 . . . 2m 2m+1
1 3 5 . . . 2m−1 2 4 . . . 2m 2m+1


,

σ2B :=


1 2 3 . . . m m+1 m+2 . . . 2m 2m+1
2 4 6 . . . 2m 1 3 . . . 2m−1 2m+1


,

σ3A :=


1 2 3 . . . m+1 m+2 m+3 . . . 2m 2m+1
1 3 5 . . . 2m+1 2 4 . . . 2(m−1) 2m


,

σ3B :=


1 2 3 . . . m+1 m+2 m+3 . . . 2m 2m+1
2 4 6 . . . 2m+1 1 3 . . . 2m−3 2m−1


.

The Faro shufflings which leave the original top card at the top are known as o u t - s h u f -
f l i n g s. These are the cases 1A,2A,3A. The Faro shufflings which move the original top
card to the second place are known as i n - s h u f f l i n g s. These are the cases 1B,2B,3B.
Faro shufflings are also described in [1] and [2].

3.3.1 Example We illustrate the Faro shuffling by giving the pictures of the resulting packs after
shuffling the pack c = (c1, . . . ,cn) for n = 6 and n = 7:

27The name goes back to the Faro (or Pharo or Pharaoh) game. Many sources say the game of Faro originated in France in the early
18th century (about 1713) as a revised form of the popular British pub game basset. Basset was outlawed in France by King Louis
XIV in 1691, and Faro was developed by European gamblers as an alternative. Although both Faro and Basset were forbidden in
France, these games continued to be popular in England. In 19th century Faro was the most commonly played card game in the Old
West of America.
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3.3.2 Remark The permutations of the Faro shufflings belong to the general shuffle permutations
of Sn . A s h u f f l e p e r m u t a t i o n σR ∈ Sn is characterized by a subset R ⊆ [1,n] . If
R = {i1, i2, . . . , ir} with i1 < i2 < · · · < ir , then shuffling with permutation σR puts the upper r
cards of the given pack to the positions i1, i2, . . . , ir , and the remaining s := n− r cards to the
positions j1, j2, . . . , js , respectively, where { j1, j2, . . . , js}= [1,n]\R and j1 < j2 < · · ·< js , i. e.

σR =


1 2 . . . r r+1 . . . r+ s
i1 i2 . . . ir j1 . . . js


.

Note that the definition of σR uses not only the subset R , but also the canonical order on the set
[1,n] . For a fixed r , 0≤ r ≤ n , the

�n
r


shuffle permutations σR with # R = r form a canonical

system of representatives for the left cosets of the subgroup Sr,n−r :=S([1,r])×S([r+1,n]) in
Sn : For σ ∈Sn , the equality σSr,n−r = σRSr,n−r holds for the unique subset R := σ([1,r])⊆
[1,n] of cardinality r . (The inverses σ−1

R , # R = r, form a system of representatives for the right
cosets of Sr,n−r in Sn.)

In order to understand the permutations σ of Faro shufflings, we try to interpret them as
permutations of sets X with additional structures, i. e. instead of a given σ we consider
the conjugated permutation ϕ σ ϕ−1 for some appropriate bijection ϕ : [1,n]→ X , cf.
Proposition 1.8.
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To handle σ1A , we omit the fixed point 2m and consider σ1A as an element of S2m−1.
Now, interpreting the integers 1, . . . ,2m−1 as the elements of the ring Z2m−1, σ1A is
obviously the affine transformation Z2m−1 → Z2m−1 , x → 2x−1. Since it has the fixed
point 1 it is conjugated to the homothecy ϑ2 : x → 2x and hence

ord σ1A = ord ϑ2 = ord 2m−1 2 .

The permutation σ1B can directly be interpreted as the homothecy ϑ2 : Z2m+1 →
Z2m+1 and hence

ord σ1B = ord ϑ2 = ord 2m+1 2 .

3.3.3 Example Bridge28 is a well-known game played with the standard set of n=2m=52 cards.
For the out-shuffling 1A, we need to compute ord 51 2 = LCM(ord 3 2,ord 17 2) = ord 17 2 = 8,
since ord 3 2 = 2, 24 ≡ −1mod 17, 28 ≡ 1mod 17.29 – For the in-shuffling 1B, we need to
compute ord 53 2 which divides ord Z×

53 = 53−1 = 52 = 22 ·13. Since 222 ≡ 1mod 53 and, by
2.11.5 22·13 ≡ (2/53) =−1 ≡ 1mod 53, we have ord 53 2 = 22 ·13 = 52, cf. Example 2.8.

The cases 2A and 2B are treated similarly 1A and 1B, respectively, with the result

ordσ2A = ord 2m−1 2 and ord σ2B = ord 2m+1 2 .

Further, obviously, ord σ3A = ord σ2B , and hence

ord σ3A = ord 2m+1 2 .

3.3.4 Example The card game Old Maid30 is played with a set of n= 33= 2 ·16+1 picture cards.
In this case ord σ2A = ord 31 2 = 5, since 25 = 32≡ 1 mod 31. ord σ2B = ord σ3A = ord 33 2 =

LCM(ord 3 2,ord 11 2) = LCM(2,10) = 10, since 22 ≡ 1 mod 11 and 25 ≡−1 ≡ 1 mod 11.

The case 3B is the most difficult one. Instead of σ3B we consider the permutation

σ  :=


0 1 2 . . . m m+1 m+2 . . . 2m 2m+1 2m+2
0 2 4 . . . 2m 2m+1 1 . . . 2m−3 2m−1 2m+2



by adding two fixed points 0 and 2m+2. Obviously,

ord σ3B = ord σ  .

28No one knows precisely where the name “Bridge” for the card game comes from, although it is fairly certain that it has nothing to
do with other meanings of the word “bridge”. One proposal for the etymology of the word “Bridge” for the card game is the following:
In the 19th century in eastern countries a card game was popular which was called “Whist” in Russia. This game was also known as
Biritch or Britch. Both these words sound Russian although neither of them seems to be Russian. Anyway, once the British took up
the game (and changed the rules), “Britch” became “Bridge” through folk etymology.

29More generally, ord 22t
+1 2 = 2t+1, since 22t ≡−1 ≡ 1mod 22t

+1 and 22t+1 ≡ 1mod 22t
+1. The numbers Ft := 22t

+1, t ≥ 0,
are called F e r m a t n u m b e r s. For any prime factor p of Ft we also have ord p2 = 2t+1 and, in particular, p≡ 1 mod 2t+1, hence,
by Proposition 2.11.5, (2/p) = 1 for t > 1, which implies 2t+1|(p− 1)/2 or p ≡ 1 mod 2t+2. For example, for t = 5, the first
primes ≡ 1 mod 27 are F3 = 2 ·27 +1 and 641 = 5 ·27 +1, and, indeed, 641 |F5 because 641 = 54 +24, i. e. 24 ≡−54 mod 641,
hence 232 ≡−54 ·228 ≡−(5 ·27)4 ≡−1 mod 641. The next Fermat number F6 is divisible by 1071 ·28 +1.

30Old Maid is a traditional children card game in most English-speaking countries. The set of cards consists of 16 pairs and a single
card called Old Maid, usually featuring an old woman or a spinster. By picking cards in turn from each other’s hands, the players
try to discard couples and to avoid being left with the Old Maid, whose holder at the end is the loser. The same game is even more
popular in German-speaking countries and those related to German culture, where the game is known as Schwarzer Peter (German),
Cerný Petr (Czech), Cierny Peter (Slovak), Fekete Péter (Hungarian), Uomo Nero (Italian), . . . . In these varieties the single card of
the game is often featuring a chimney-sweeper (Black Peter) who is considered as a mascot.
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Now, in σ  , we interchange the images of m+1 and 2m+2, and get the permutation
σ  = 2m+1,2m+2 ·σ  with

σ  =


0 1 2 . . . m m+1 m+2 . . . 2m 2m+1 2m+2
0 2 4 . . . 2m 2m+2 1 . . . 2m−3 2m−1 2m+1



which is visibly multiplication by 2 in the ring Z2m+3 and so ord σ  = ord 2m+3 2 .

Let 1, . . . , r be the cardinalities of the orbits of σ  which are not singletons and let
r be the cardinality of the orbit H(σ ) · (2m+ 1) (which is not a singleton). Then
1, . . . , r−1, r +1 are the cardinalities of the orbits of σ  which are not singletons, and
r +1 is the cardinality of the orbit H(σ ) · (2m+2) = H(2) · (−1) , since 2m+2 =−1
in Z2m+3 . (H(2) is the subgroup generated by 2 in Z×2m+2.) We get r +1 = #H(2) =
ord 2m+3 2 . Now, we distinguish the following two cases:

a) The element 2 does not generate the prime residue class group Z×2m+3, i. e. there exists
an element a ∈ Z×2m+3 \H(2) · (−1), the orbit H(σ ) · a = H(2) · a of which has also
cardinality #H(2) = ord 2m+3 2 . This is one of the numbers 1, . . . , r−1, and all the others
are divisors of #H(2) by Theorem 1.3. Therefore it follows that ord σ  (= ord σ3B) is
equal to

LCM(1, . . . , r−1, r) = LCM(ord 2m+3 2,(ord 2m+3 2)−1)
= ord 2m+3 2 · (ord 2m+3 2−1) .

b) The element 2 generates the prime residue class group Z×2m+3. Then Z×2m+3 = H(2)
is a cyclic group and, by Theorem 2.7, 2m+ 3 = pα with a prime number p ≥ 3. If
α = 1, then r = 1 and hence

ord σ3B = ord σ  = ord σ  −1 = ord p 2−1 = p−2 = 2m+1 .

i. e. σ3B is a cycle of length 2m+1. Now, let α ≥ 2. The orbits of σ  are the orbits of the
canonical operation Z×pα ×Zpα → Zpα of Z×pα = H(2) on Zpα by multiplication which
we discussed already in Example 2.9. Each orbit is formed by the elements of a fixed order
pβ , 0≤ β ≤ α . Hence, the sequence 1, . . . , r−1, r coincides (up to permutation of the
elements 1, . . . , r−1 ) with the sequence (p−1), p(p−1), . . . , pα−2(p−1), pα−1(p−1) .
It follows

ord σ3B = ord σ  = LCM(1, . . . , r−1, r) = pα−2�p−1
�

pα−1(p−1)−1

.

Altogether, we have completed the proof of the following theorem:

3.4 Theorem The Faro shuffling permutations of a pack of n ∈N∗ cards as described
in the beginning of Subsection 3.3 have the following orders:

(1) If n = 2m is even, then ord σ1A = ord 2m−1 2 and ord σ1B = ord 2m+1 2 .
(2) If n=2m+1 is odd, then ord σ2A = ord 2m−1 2 , ord σ2B = ord σ3A = ord 2m+1 2 and

ord σ3B =




ord 2m+3 2 · (ord 2m+3 2−1) , if H(2) = Z×2m+3 ,
2m+1 = p−2 , if 2m+3 =: p is prime and

H(2) = Z×p ,
pα−2�p−1

�
pα−1(p−1)−1


, if 2m+3 =: pα , p prime, α ≥ 2,

and H(2) = Z×pα .
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(Note that H(2) is the subgroup generated by 2.)

3.4.1 Example Continuing Example 3.3.4, to compute ord σ3B for n = 2m+1 = 33, we have
to apply the first case of the formula for ord σ3B in Theorem 3.4(2), since 2 is not a generator
of the (non-cyclic) group Z×

35 . Hence ord σ3B = ord 35 2 · (ord 35 2−1) = 12 ·11 = 132 because
of ord 35 2 = LCM(ord 5 2,ord 7 2) = LCM(4,3) = 12.

3.4.2 Example Theorem 3.4 implies in particular: A Faro permutation σ ∈Sn operates transi-
tively (i. e. σ is a cycle of length n) only in the following cases:

(1) n = 2m is even, p := n+1 = 2m+1 is a prime number with H(2) =Z×
p and σ = σ1B ∈Sn

belongs to the in-shuffling case 1B.

(2) n= 2m+1 is odd, p := n+2= 2m+3 is a prime number with H(2)=Z×
p and σ =σ3B ∈Sn

belongs to the in-shuffling case 3B.

If 2 is, as in (1) and (2) above, a primitive prime residue modulo the odd prime number p, then,
by the theory of quadratic residues (see Proposition 2.11.5), p≡ 3mod8 or p≡ 5mod8. But, the
only odd prime numbers <200 with p≡ 3 or 5mod8 for which 2 is not a primitive prime residue
modulo p are p = 43, 109 and 157 (with ord 43 2 = 14, ord 109 2 = 36, ord 157 2 = 52). Hence,
the only Faro permutations in Sn , 1≤ n≤ 200, which operate transitively are σ1B for n = 2m =

p−1 and σ3B for n = 2m+1 = p−2, where p is a prime number with p ≡ 3 or 5mod8 and
p = 43, 109, 157.

3.4.3 Example The orders of the six Faro shufflings illustrated in Example 3.3.1 are successively
ord 5 2 = 4, ord 7 2 = 3, ord 5 2 = 4, ord 7 2 = 3, ord 7 2 = 3, (3−1)(3(3−1)−1) = 10. – In
connection with the computation of ord σ3B in the case that n+ 2 = 2m+ 3 = pα is an odd
prime power, the problem arises how to decide whether 2 is a primitive prime residue modulo
pα . Now, if 2 is a primitive prime residue modulo pα for α > 0, then 2 is a primitive prime
residue modulo pβ for every β , 1≤ β ≤ α , in particular p≡ 3 mod 8 or p≡ 5 mod 8, see the
previous example for the case α = 1. For α ≥ 2, the following Proposition 3.5 may be useful.

3.5 Proposition Let p be an odd prime number and let α ≥ 2 . The following conditions
are equivalent:

(i) 2 is a primitive prime residue modulo pα .

(ii) 2 is a primitive prime residue modulo p2.

(iii) 2 is a primitive prime residue modulo p and 2p−1 ≡ 1 mod p2.

The proof is left to the reader, cf. the proof of Theorem 2.5. By the way, in Proposition 3.5
the number 2 in the statements (i), (ii), (iii) can be replaced (simultaneously) by any
integer not divisible by p. No odd prime number p is known for which 2 is a primitive
prime residue modulo p , but not a primitive prime residue modulo pα , α ≥ 2.31

3.6 Monge Shufflings The M o n g e s h u f f l i n g32 takes cards from a given pack

31Indeed, the only known odd prime numbers p with 2p−1 ≡ 1 mod p2 (which are called W i e f e r i c h p r i m e s) are 1093
(≡ 5 mod 8, found by Meissner in 1913) and 3511 (≡ 7 mod 8, found by Beeger in 1922), but, for these two prime numbers,
2 is not a primitive prime residue modulo p . Any other Wieferich prime must be > 1.25 · 1015 (as checked with a computer by
Knauer/Richstein in 2003) or even > 2.5 ·1015 (cf. Ribenboim, R.: Meine Zahlen, meine Freunde. Springer, Berlin/Heidelberg 2009,
p. 258). It is not known whether there are infinitely many Wieferich primes or whether there are infinitely many non-Wieferich primes.

32Named after Gaspard Monge (1746-1818) who investigated this shuffling in 1773, cf. G. Monge: Réflexions sur un tour des cartes,
Mém. math. phys. présentés à l’Académie des Sciences, Paris (1773), 390-412.
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c = (c1, . . . ,cn), alternately a card from the top and from the bottom, to form the new
pack

cA :=


(c1,c2m,c2,c2m−1, . . . ,cm,cm+1), if n = 2m is even ,
(c1,c2m+1,c2,c2m, . . . ,cm,cm+2,cm+1), if n = 2m+1 is odd .

3.6.1 Example If n = 6 and c = (1,2,3,4,5,6) , then cA = (1,6,2,5,3,4) , and, if n = 7 and
c = (1,2,3,4,5,6,7) , then cA = (1,7,2,6,3,5,4) .

The Monge shuffling is performed with the M o n g e p e r m u t a t i o n

σMA :=






1 2 . . . m m+1 m+2 . . . 2m−1 2m
1 3 . . . 2m−1 2m 2(m−1) . . . 4 2


, if n=2m is even,


1 2 . . . m m+1 m+2 . . . 2m 2m+1
1 3 . . . 2m−1 2m+1 2m . . . 4 2


, if n=2m+1 is odd.

(Remember that we use the convention (1) of Subsection 1.1.) Analogously, from a given
pack c = (c1, . . . ,cn) one can take alternately a card first from the bottom and then from
the top to form the new pack

cB =


(c2m,c1,c2m−1,c2, . . . ,cm+1,cm), if n = 2m is even,
(c2m+1,c1,c2m,c2, . . . ,cm+2,cm,cm+1), if n = 2m+1 is odd.

3.6.2 Example If n = 6 and c = (1,2,3,4,5,6) , then cB = (6,1,5,2,4,3) , and, if n = 7 and
c = (1,2,3,4,5,6,7) , then cB = (7,1,6,2,5,3,4) .

The corresponding Monge permutation is now

σMB :=





1 2 . . . m m+1 m+2 . . . 2m−1 2m
2 4 . . . 2m 2m−1 2m−3 . . . 3 1


, if n = 2m is even,


1 2 . . . m m+1 m+2 . . . 2m 2m+1
2 4 . . . 2m 2m+1 2m−1 . . . 3 1


, if n=2m+1 is odd.

The permutation σMA describes a M o n g e o u t - s h u f f l i n g and the permutation
σMB a M o n g e i n - s h u f f l i n g. The Monge shufflings are also mentioned in [1].

We prove the following theorem:

3.7 Theorem The Monge shufflings of a pack of n∈N∗ cards have the following orders:

(1) If n = 2m is even, then

ord σMA =


ord 4m−1 2 , if −1 ∈ H(2)⊆ Z×4m−1 ,
1
2 ord 4m−1 2 , if −1 ∈ H(2)⊆ Z×4m−1 ,
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ord σMB =


ord 4m+1 2 , if −1 ∈ H(2)⊆ Z×4m+1 ,
1
2 ord 4m+1 2 , if −1 ∈ H(2)⊆ Z×4m+1 .

(2) If n = 2m+1 is odd and ≥ 3, then

ord σMA =


ord 4m+1 2 , if −1 ∈ H(2)⊆ Z×4m+1 ,
1
2 ord 4m+1 2 , if −1 ∈ H(2)⊆ Z×4m+1 ,

ord σMB =


ord 4m+3 2 , if −1 ∈ H(2)⊆ Z×4m+3 ,
1
2 ord 4m+3 2 , if −1 ∈ H(2)⊆ Z×4m+3 .

To prove 3.7 we start with a general remark: Let k ∈N∗ be an odd positive integer ≥ 3.
Then the subgroup {±1} ⊆Z×k of order 2 operates canonically on Zk . The set of orbits
Xk :=Zk\{±1} contains the singleton {0} and (k−1)/2 orbits of type {±a} , a = 0 in
Zk , with cardinality 2. The homothecy ϑ2 : Zk → Zk induces a permutation ϑ 2 of Xk .
To compute the order of ϑ 2 in S(Xk) , we need to determine the  ∈ Z with {±2a}=
{±a} for all a ∈ Zk . This is equivalent with {±2} = {±1} or with 2 ∈ {±1} . If
−1 ∈ H(2), then necessarily 2 = 1 and  ∈ Zord k 2. If −1 ∈ H(2) ⊆ Z×k , then the
order ord k 2 of the cyclic group H(2) is even and 2

1
2 ord k 2 = −1 and  ∈ Z 1

2 ord k 2.
Altogether,

ord ϑ 2 =


ord k 2 , if −1 ∈ H(2)⊆ Z×k ,
1
2 ord k 2 , if −1 ∈ H(2)⊆ Z×k .

Now, to compute the order ord σMB in the even case n = 2m, we interpret the elements
1,2, . . . , 2m as representatives of the orbits of X 

4m+1 := X4m+1\{{0}}. Then σMB is
the permutation ϑ 2|X 

4m+1 . For ord σMA , we omit the fixed point 1 and translate the
elements 2, . . . ,2m by −1 and get the permutation

σ MA =


1 2 . . . m−1 m m+1 . . . 2m−2 2m−1
2 4 . . . 2m−2 2m−1 2m−3 . . . 3 1


,

which we interpret as ϑ 2|X 
4m−1 . Analogously, in the odd case n = 2m+1, we interpret

σMB and σMA as ϑ 2|X 
4m+3 and ϑ 2|X 

4m+1 , respectively. Using the above general
formula for ord ϑ 2 , the proof of 3.7 is complete.

We mention the following corollary which will be used in Example 3.9.

3.8 Corollary (1) Let n = 2m ∈N∗ be even. For the Monge permutation σMB ∈Sn ,
the following statements are equivalent :

(i) σMB is a cycle of order n = 2m.

(ii) ord σMB = n = 2m.

(iii) p := 2n+1 = 4m+1 is prime and ord p 2 = p−1.

(2) Let n = 2m+1 ∈N∗ be odd. For the Monge permutation σMB ∈Sn , the following
statements are equivalent :

(i) σMB is a cycle of order n = 2m+1.



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in4 0

(ii) ord σMB = n = 2m+1.

(iii) p := 2n+1 = 4m+3 is prime and either ord p 2 = (p−1)/2 or ord p 2 = p−1.

Note that the permutation σMA of a Monge out-shuffling is never a cycle of order n = #C
if n > 1, since 1 is a fixed point of σMA.

To prove the implication “(ii) ⇒ (iii)” in part (1) of Corollary 3.8 assume that ord σMB =
n = 2m and −1 ∈ H(2) ⊆ Z4m+1. Then, by Theorem 3.7(1), ord 4m+1 2 = 2m and
#
�
H(2) · {±1}


= 4m, hence p := 4m+1 is prime and Z×p

∼= H(2)×{±1}. This con-
tradicts the cyclicity of the group Z×p .33 It follows −1∈H(2) and, again by Theorem 3.7
(1), ord 4m+1 2 = 4m, hence p = 4m+1 is prime and ord p 2 = p−1. The implication
“(iii) ⇒ (i)” follows from the interpretation of σMB in the proof of Theorem 3.7.

To prove the implication “(ii) ⇒ (iii)” in part (2) of Corollary 3.8 assume that ord σMB =
n = 2m+ 1 and −1 ∈ H(2) ⊆ Z4m+3. Then, by Theorem 3.7(2), ord 4m+3 2 = 2m+ 1
and #

�
H(2) · {±1}


= 4m+2, hence p := 4m+3 is prime and ord p 2 = (p−1)/2. If

−1 ∈ H(2), then, cf. Theorem 3.7(2), ord 4m+3 2 = 4m+ 2 and p = 4m+ 3 is prime
with ord p 2 = p− 1. The implication “(iii) ⇒ (i)” follows again from the proof of
Theorem 3.7.

We mention that, if the statements of Corollary 3.8 (1) are true, then, by Proposition 2.11.5,
p = 4m+ 1 ≡ 3 or 5 mod 8 and hence even p = 4m+ 1 ≡ 5 mod 8. If the statements
of Corollary 3.8 (2) are true, then p = 4m+ 3 ≡ 7 mod 8 if ord p 2 = (p− 1)/2 and
p≡ 3 mod 8 if ord p 2 = p−1. In particular, p is never ≡ 1 mod 8. If (n = 2m+1, p =
2n+1 = 4m+3) is a Sophie Germain pair of odd primes n, p, cf. Example 2.8, then the
statements of Corollary 3.8 (2) are true.

3.9 Example ( M o n g e s h u f f l i n g s i n p o e t r y ) A s e s t i n a is a poem of six six-line
stanzas in which each stanza repeats the end words of the lines of the previous stanza according
to the Monge in-shuffling

σMB :=


1 2 3 4 5 6
2 4 6 5 3 1


= 1,2,4,5,3,6 ∈ S6

(supplemented with a three-line envoy which we ignore here).34 If one wants to form a poem in
an analogous manner as a sestina, but with n stanzas each consisting of n lines, n ∈N∗, then the
corresponding Monge permutation σMB ∈Sn should be an n-cycle so that each end word of the
lines of the first stanza will run in the following stanzas through all the lines and, moreover, the
shuffling of the end words of the lines of the last stanza will yield the end words of the lines of the
first stanza in their correct order. The problem to find those n was already posed and (partially)
solved by the French writer Raymond Queneau (1903 - 1976). By Corollary 3.8, n ∈N∗ is an
appropriate number if and only if it is even and fulfills condition (iii) in Corollary 3.8(1) or it is
odd and fulfills condition (iii) in Corollary 3.8 (2). The even numbers n ≤ 30 of this kind are
2, 6, 14, 18, 26, 30, and the odd numbers n≤ 30 of this kind are 1, 3, 5, 9, 11, 23, 29.

33Or, more elementary: The equation x2 = 1 has in H(2)×{±1} four solutions (since # H(2) is even) but in Z×
p only two.

34The sestina was (probably) invented by the Provençal troubadour Arnaut Daniel in the second half of the 12th century. Later on it
played a significant role in Italian poetry. – Sometimes the simple cycle γ6 = 1,2,3,4,5,6 as in Example 1.1.1 is used to shuffle
the end words of the lines of a stanza. – The envoy repeats the end words of the first stanza, three in the middle and three at the end of
its lines. An example of a sestina can be found in Math. Int. 49 (1), p. 7 (2007) . For an original sestina by Arnaut Daniel cf. the book
“Prosody in England and Elsewhere: A Comparative Approach” by L. Malcovati.
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§4 Shuffling of Multisets

For many card games the set C of cards is a multiset. It contains cards which are
indistinguishable. For example, Canasta is played with two decks of 52 cards each and 4
jokers. Therefore, the whole set of 108 cards contains 52 pairs of two indistinguishable
cards each and one set of 4 indistinguishable jokers.

4.1 Multisets For our purposes, the best method to model this situation is to define
a m u l t i s e t (C ;R) as a set C together with an equivalence relation R on C given
by a subset R ⊆P(C) which is a partition of C into non-empty subsets. For the a u -
t o m o r p h i s m g r o u p S(C ;R) of the multiset (C ;R) one chooses the subgroup
∏R∈RS(R) ⊆S(C) of those permutations ρ ∈S(C) which map each set R ∈ R into
itself, i. e.

S(C ;R) := {ρ ∈S(C) | ρ(R) = R for every R ∈ R} .

Two stacks c,d : [1,n]→C in PC (n := #C < ∞ ) are indistinguishable if d = ρ c(=
ρ ◦ c) for some ρ ∈S(C ;R). Hence, the set of m u l t i p a c k s of the multiset (C ;R)
is the set

P(C ;R) :=PC\S(C ;R)

of orbits [c] = [c]R :=S(C ;R)c of the canonical (left) operation of S(C ;R)⊆S(C) =
S(C)×{idn} on PC described already at the end of Example 1.6. The cardinality of
P(C;R) is [S(C) : S(C;R) ] = n!/∏R∈R(#R)!.35 Since the operations of S(C) and Sn
on PC commute, the shuffling induces an operation

Sn×P(C ;R) →P(C ;R), (σ , [c]) → σ ∗ [c] = [σ ∗ c] = [cσ−1] ,

of Sn on P(C ;R) which is again transitive, but not simply transitive (if R is not the
identity relation). On the contrary, the stabilizer of the stack [c]R is the group

Sn, [c]R = {σ ∈Sn | [cσ−1]R = [c]R}= {c−1ρc | ρ ∈S(C ;R)} ,

i. e. the conjugate c−1S(C ;R)c of S(C ;R) in Sn with respect to the bijective map
c−1 : C → [1,n] . Note that c−1S(C ;R)c =S([1,n];c−1(R)) = ∏r∈RS(c−1(R))⊆Sn.
For a fixed shuffling permutation σ ∈Sn the stacks [c]i := σ i ∗ [c]R and [c] j := σ j ∗
[c]R = σ j−i ∗ [c]i coincide for i, j ∈ Z if and only if σ j−i ∈ H(σ)∩Sn, [c]R , i. e. if and
only if

i≡ j mod
ord σ

#
�
H(σ)∩ c−1S(C ;R)c

 .

This proves the following theorem:

4.2 Theorem The sequence [c]0 =[c]R, [c]1 =σ ∗ [c]R, [c]2 =σ2 ∗ [c]R=σ ∗ [c]1, . . . ,

35A similar situation occurs for a pair (C;R) where C is a set of n not necessarily distinct characters and, where the equivalence
classes R ∈ R are the sets of identical characters respectively. P(C;R) is then the set of the different words of length n which can be
formed with the characters contained in C.
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[c]i+1=σ i+1 ∗ [c]R = σ ∗ [c]i, . . . is (purely) periodic of period length

ord σ
#
�
H(σ)∩ c−1S(C ;R)c

 .

Note that the period length depends significantly on the stack [c]R which the shuffling
starts with. To determine the possible orders #

�
H(σ)∩ c−1S(C ;R)c


, c ∈ PC, one

usually needs the cycle decomposition of σ , cf. Example 1.7.

To describe this more precisely, let us first introduce the following terminology for
partitions: If Y and Z are partitions of the same set X , then Y is called f i n e r than
Z if every Y ∈ Y is contained in some Z ∈ Z or, equivalently, if every Z ∈ Z is the
union of elements of Y. Similarly, if n = ∑i∈I yi = ∑ j∈J z j are partitions of n ∈N with
positive integers yi,z j, then ∑i∈I yi is called f i n e r than ∑ j∈J z j if there is a partition
I=


j∈J

I j of the index set I with z j=∑i∈I j yi for all j∈J.

Generally, a permutation τ ∈S(X) of a finite set X belongs to S(X ;Z) where Z is a
partition of X if and only if the partition of X defined by the orbits of τ is finer than
Z. We obtain: A permutation τ ∈Sn belongs to c−1S(C ;R)c for some c ∈PC if and
only if the partition 1ν1(τ)2ν2(τ). . .nνn(τ) of n = #C defined by the type of τ is finer than
the partition 1ν1(R)2ν2(R). . .nνn(R) of n defined by R (with νi(R) := #{R ∈R | #R = i}).
Now, to decide whether σ k ∈ c−1S(C ;R)c for some k ∈N∗ and some c ∈PC one uses
the formula

νi(σ k) · i = ∑
j, i·GCD( j,k)= j

ν j(σ) · j , i,k ∈N∗ ,

which follows from the fact that the k-th power of a cycle of length m ∈N∗ is a product
of GCD(m,k) cycles of length m/GCD(m,k) .

4.2.1 Example For the Old Maid game (cf. Example 3.3.4) the partition R of C contains 16
pairs and a singleton. Hence, in this case, S(C ;R) is an elementary 2-group of order 216

and every element of order 2 in S33 belongs to some c−1S(C ;R)c . For σ ∈ S33 and c ∈
PC the group H(σ)∩ c−1S(C ;R)c is of order 1 or 2 . It follows: If ord σ is even and
[σ ord σ/2 ∗c] = [c], then the period length of the sequence [c]i = σ i ∗ [c] , i ∈N , is 1

2 ord σ . In all
the other cases the period length is ord σ . – For the Monge shufflings one has, by Theorem 3.7,
ord σMA = 1

2 ord 65 2 = 6 (since ord 65 2 = LCM(ord 5 2,ord 13 2) = LCM(4,12) = 12 and −1≡
26 mod 65) and ord σMB = 1

2 ord 67 2 = 33 (since 26 ≡ −3 mod 67, 233 ≡ −1 mod 67 by
Proposition 2.11.5, 222 = (26)3 · 24 ≡ (−3)3 · 24 ≡ 40 · 24 = 26 · 10 ≡ −30 mod 67 and hence
ord672 = 66). Hence, for the Monge out-shuffling σMA ∈ S33 the period length may be 6 or
3 , and for the Monge in-shuffling σMB ∈S33 it is always 33 (independent of the original stack
[c] ). By Corollary 3.8(2) σMB is a cycle of length 33.

4.2.2 Example For Canasta as described at the beginning of Section 4 the partition R of C con-
tains 52 pairs and 1 quartet (four jokers). Let us consider the Faro shufflings σ1A,σ1B∈S108. By
Theorem 3.4(1), one has ord σ1A=ord 107 2=106 and ord σ1B=ord 109 2=36 (cf. Example 3.4.2).
It follows that #

�
H(σ1A)∩S(C ;R)


≤2. Further, we have

σ53
1A=


1 2 3 . . . 106 107 108
1 107 106 . . . 3 2 108


.
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The period length of the Faro out-shuffling σ1A∈S108 is 53 if in the original stack c=(c1, . . . ,c108)
the pairs {c2,c107}, . . . ,{c54,c55} contain indistinguishable cards each, otherwise the period
length is 106. – The permutation σ1B ∈ S108 can be interpreted as multiplication by 2 in
Z×

109 and hence its cycle decomposition contains 3 cycles of length 36. Again, it follows
#
�
H(σ1B)∩S(C ;R)


≤ 2. Since

σ18
1B =


1 2 3 . . . 106 107 108

108 107 106 . . . 3 2 1



is multiplication by 218 =−1 in Z×
109 , the period length of the Faro in-shuffling σ1B is 18 if in

the original stack c = (c1, . . . ,c108) the pairs {c1,c108}, . . . ,{c54,c55} contain indistinguishable
cards each, and 36 otherwise.

4.2.3 Example (F o u r - g a m e s) In a four-game (in German Quartett, in English often called
Happy Families) the partition R of the multiset (C ;R) contains k sets with four elements each36,
hence #C = n = 4k , and the group S(C ;R) is isomorphic to Sk

4. Let us consider the Faro
shufflings with σ1A,σ1B ∈S32 in case n = 32, i. e. k = 8. By Theorem 3.4,

ord σ1A = ord 31 2 = 5 , ord σ1B = ord 33 2 = 10 .

Therefore #
�
H(σ1A)∩ c−1S(C ;R)c


= 1 and #

�
H(σ1B)∩ c−1S(C ;R)c


≤ 2 for all c ∈ PC.

Hence, by Theorem 4.2, the period length for the Faro out-shuffling is always 5 , and for the Faro
in-shuffling it is 10 or 5 depending on the original pack c . The reader may also consider the
case n = 40, i. e. k = 10.

4.3 Remark So far we have not taken into account the role of the dealer of the cards. Each
player is dealt a certain number of cards and the rest (if any) forms a stock which may be an
ordered pile or an unordered set. For example, in Canasta the four players are dealt 11 cards
each and the rest of 64 cards is placed as an ordered stack pile. In the European card game Skat,
each of the three players is dealt 10 cards and 2 additional cards form an unordered stock (called
the “Skat”). Usually the dealer distributes the cards according to a fixed scheme, i.e. each of
the players gets a set c(T ) of the stack c : [1,n]→C where the subset T ⊆ [1,n] is fixed. The
game does not change if the stack c is replaced by σ ∗ c = cσ−1 for any σ ∈S(T )⊆Sn. This
means, one has to consider besides the partition R of the set C of cards a partition T of the
set [1,n] of the positions of the cards in a stack. For example, for Canasta the partition T (of
[1,108] ) contains 4 sets of 11 elements each and 64 singletons, for Skat T contains 3 sets
of 10 elements each and 1 pair. In Subsection 4.1 we discussed the case that T is the identity
relation on [1,n], i. e. that T contains only singletons.

Two stacks c,d ∈ PC have to be identified if there are a ρ ∈ S(C ;R) = ∏R∈RS(R) and a
τ ∈S([1,n] ;T)=∏T∈TS(T ) with d=(ρ,τ)∗ c=ρ cτ−1, cf. the end of Example 1.6. In other
words, the multistacks one has to consider now are the “double cosets”

[[c]] = [[c]]R,T = (S(C ;R)×S([1,n] ;T))∗ c =S(C ;R)cS([1,n] ;T) .

These are the orbits of the canonical (left) operation of S(C ;R)×S([1,n] ;T) ⊆ S(C)×Sn
on PC. We denote the set of these orbits by P(C ;R,T) =PS(C ;R)\S([1,n] ;T) . The stabilizer of
c ∈PC is the subgroup

{(ρ,τ) ∈S(C ;R)×S([1,n] ;T) | ρ = cτc−1} ∼= S(C ;R)∩S(C ;c(T))
= S(C ;R c(T)) ,

where, for two partitions Y,Z of a set X , the partition YZ contains the non-empty intersections

36To be correct, the cards of a four-set R ∈R are usually distinguishable. But, in general, this plays no essential role in the course of
the game.



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in4 4

Y ∩Z with Y ∈ Y,Z ∈ Z. In particular (cf. Theorem 1.3),

#[[c]]R,T =
#S(C ;R) ·#S([1,n] ;T)

#S(C ;R c(T))
.

In general, this number depends not only on R and T, but also on c .

Now choose a fixed shuffling permutation σ ∈ Sn, n = #C . The sequence of multistacks ob-
tained from [[c]]R,T by iterated shuffling with σ is

[[c]]i := [[σ i ∗ c]]R,T =S(C ;R)cσ−iS([1,n] ;T), i ∈N .

The difficulty in studying this sequence arises from the fact that, in general, the operation of Sn
on PC does not induce an operation of Sn on P(C ;R,T), since, for τ ∈Sn and d,d ∈PC, the
equality [[d]]R,T = [[d]]R,T does not necessarily imply [[τ ∗d]]R,T = [[τ ∗d]]R,T .

To treat this problem in a more general setting, let X be a G-space H ⊆ G a subgroup and con-
sider the induced operation of H on X . Then, an element g ∈ G operates naturally on the set
X\H of H-orbits if, for every x∈X , the set gHx coincides with the H-orbit Hgx of gx. The sub-
group of the elements with this property contains the normalizer NG(H) = {g∈G | gH =Hg} of
H in G. In particular, G operates canonically on X\H if H is a normal subgroup of G. In this
case the projection X → X\H is a G-morphism, and the induced mapping X\G→ (X\H)\G is
bijective.

In our situation, X is the set PC with the operation of G := S(C)×Sn and H ⊆ G is the
subgroup H :=S(C ;R)×S([1,n] ;T). The normalizer NG(H) is the group

S(C)R×Sn,T = {(ρ,τ) ∈S(C)×Sn | ρ(R) = R,τ(T) = T}

(because of (ρ,τ)H(ρ−1,τ−1)=S(C ;ρ(R))×S([1,n] ;τ(T)) ). The sequence [[c]]i= [[cσ−i]]R,T ,
i ∈N , is purely periodic, and its period length divides ord σ (cf. Footnote 25). Since [[c]]i+ j =
[[c]]i is equivalent with σ j ∈S([1,n] ;σ i(T)) ·S([1,n] ;c−1(R)), the period length of the purely
periodic sequence ([[c]]i)i∈N is

(c) := R,T(c) :=
ord σ

#
ord σ−1

i=0 H(σ)∩ (S([1,n] ;σ i(T)) ·S([1,n] ;c−1(R)))
.

Note that
ord σ−1

i=0

H(σ)∩
�
S([1,n] ;σ i(T)) ·S([1,n] ;c−1(R))



contains the group (H(σ)∩S([1,n] ;T)) ·
�
H(σ)∩S([1,n] ;c−1(R))


of order

LCM
�
#(H(σ)∩S([1,n] ;T)),#(H(σ)∩S([1,n] ;c−1(R)))


.

We emphasize that the elements [[c]] = [[c]]0, . . . , [[c]](c)−1 of the period of the sequence ( [[c]]i)i∈N
are not necessarily pairwise distinct.
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