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ABSTRACT 

In this paper the use of bur buckling eigenfunctions in the stability 
analysis of clamped skew plates is examined. 	These functions which are 
obtained from the solution of the linear, homogeneous differential equation 

corresponding to the buckling problem of uniform bar are used in the series 

expansion for deflection. The problem is formulated in oblique co-ordinates 

and using oblique components of stress. Galerkin method is used and the 

resulting set of algebraic equations is solved for the eigenralues. Numerical 

calculations have been made for a few combinations of side ratio, skew angle and 

in-plane loading. The critical values obtained are in fair agreement with 

the results obtained by using beam characteristic functions indicating that thece 

functions can well be used as an alternate set of functions in approximate 

solution of plate buckling problems. 

1. INTRODUCTION 

In many structural mechanical problems like bending, vibration and 
stability of bars and plates, especially when using energy methods, the 
solution needs to be expanded in a series of admissible functions. It 
is desirable, though not essential, that these functions, apart from satisfying 
the geometric boundary conditions, also possess some of the properties 
pertinent to the problem under consideration. The beam characteristic 
functions, that is, the functions representing the normal modes of a 
vibrating beam, have been used extensively in the literature for this purpose 
(see, for example, Refs. 1-8). They appear to be the normal choice 
in vibration problems, although they have been used with advantage in 
other problems like stability, thermal stress analysis of beams and plates. 

Similarly the functions which are obtained from the solution of 
the linear, homogeneous differential equation corresponding to the buckling 

of bars may be called the " Bar Buckling Eigenfunctions". The orthogonality 
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relation relevant to the buckling problem is between the first derivatives 
of the deflection mode shapes and not between the mode shapes themselves. 
Tt is felt desirable to investigate the use of bar buckling eigenfunctions for 
approximate solution of plate buckling problems. 

Unlike the beam characteristic functions, the bar buckling functions 
have not been used in formal analyses of plates except to obtain some 
rough estimates of the buckling load with a one-term approximation 9 ' 10 . In 
this paper, buckling of clamped skew plates under different loading 
conditions is considered for studying in detail the use of bar buckling 
eigenfunctions. 	The problem is formulated in terms of oblique co- 
ordinates with in-plane stresses represented in terms of oblique components, 
Deflection surface is, therefore, expressed in the form of a double series 
of bar buckling eigenfunctions in oblique co-ordinates. Galerkin method 
is used and the resulting set of simultaneous, homogeneous, linear 
algebraic equations is solved for eigenvalues and eigenvectors. 

2. MATHEMATICAL FORMULATION 

A sketch of the skew plate is shown in Fig 1, along with the 
in-plane stresses represented in terms of oblique components. The skew 
plate is assumed to be thin, uniform and isotropic. Using the classical, 
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FIG. I 

Sketch of the skew plate showing the co-ordinate system and the oblique stress system 
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small deflection thin plate theory, the differential equation for the 
deflection of the plate of constant thickness under the action of middle 
surface forces is given by, 

( 
6 2 w 	a2w 	o2 w ) 

	

D cos 017 4 	— W = N x 	2 + 2 Nx  ---+N - i 	 11] 6x 	s' Ox 6 y 	Y  6 y4 

The boundary conditions for the clamped edge are 

W 
W=. 	—0 where n is the outward normal to the edge 	[2) On 

For example, for the edge x a, the boundary conditions are 

w= 	
w 	

[3] ax 

In terms of non-dimensional co-ordinates e (=-- xja) and v (=---yjb), the 
differential equation, Eq. (1), becomes 

W, vtg + A4  W, 77,2,7 ,1 +2 A 2  ( I +2 Sin 2 	W, " in  —4 A Sin ( W, e 4 71  + A 2  Ws t sin  ) 

+R W +PR W +2AR W =0 	 [4] 

	

x /44 	Y 	In 	xy 	tv 

where subscripts after a comma denote differentiation. 

The deflection W(, 	is expressed as a series of bar buckling 
eigenfunctions satisfying the boundary conditions, Eq. (2). The deflection 

is expressed as, 
Al 	Jsr 

W E, .2:d 	Com  /lc (e) Ylf ( ) [ 5 ) )= 
mtl, 2.. n1, 2 . • 

where X, 	Y. are the re and n' bar buckling eigenfunctions (for details 

see Ref. 11). Substituting the expression for W( e, v ) from Eq. (5) in 
Eq. (4), we get the error function c U, v ) as 

M N 
C (e, Ti)ne 	Cm. {X,'„' Yn + A4  A m Ye!" +2 A2  (1+2 sin2  0)X: Y." 

m 1 

—4 A sin tb (X.:" y + A 2  Xj, Yr) + R., 

+2 A Rry  X,, y , + 	X„, 	A21 	 [6] 
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This error in the interior is now orthogonalised with respect to each 
of the functions used in Eq. (5), i.e., 

If E (S, TO X, (6) Y.,(1) cos tfr de d r; e.0 for r= 1, 2 .. Af 
o o 

s= 1, 2... N [ 7] 

Substituting the expressions for the error c (e, 7)) in Eq. (7), we get a 
set of linear, simultaneous, algebraic equations in the unknown ens 
which can be expressed in the matrix form as, 

[H] {C„)=-)72 [E]C„,„}-1-n ey [F]iC„} +/-Cy [GliC„) 	( 8 ) 

where, 

I coin = Intel?, + A 4  inTri n4s°  2A2  (1+2 sin 20) 	c2; 

—4A sin(/ 2tOrin13 	m  l0 + 	i A2 Orin3  30) 

Einnrs= trr. 1n0s°  ; Fnanrs 	lit?in2s°  ; Gmnrs= 2 A imm./2 	 [ 9] 

The I — and .1 — integrals are defined as follows : 

1rz mi Acv,(e) Arstr (e) d e ; i5=f 1": (v) 	d 	 [101 

where p, q represent the order of derivatives. The formulae and numerical 
values of their integrals are given in Ref. 11. 

The eigenvalue problem as stated by Eq. (8) can be solved by using 
standard methods, by giving numerical values to any two of the three 

_.• _• 
parameters R„, R y, Rxy  and treating the third as the eigenvalue. For example, 

_.• 
if the buckling parameter R„i to be obtained when Ny  and N,  are also 

__• 
acting, we assign appropriate numerical values to R .), and R xy  and write 

[GO {C„,„} 	Rs Cmj 

where [Gi l 	1E1-3  ([11 I— Ry 	—R ay,, [Cl) 

and R, is the eigenvalue to be determined. 

Due to the symmetry in the boundary condition, Eq. [8] can be 
split for convenience and computational advantage into two cases : (a) skew 
symmetric case consisting of modes with (m+n) and (r+s) even i.e., 
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modes which are symmetric (antisymmetric) in x — direction and symmetric 
(antisymmetric) 	in y —direction. 	(b) 	skew 	antisymmetric 	case 	consisting 
of modes with ( m st-n ) and (r+s) odd i.e.: 	modes which are symmetric 
(antisymmetric) in i — direction and antisymmetric (symmetric) in y — direction. 
This 	splitting 	reduces 	the 	order 	of 	the 	matrix 	to be considered. 	The 
lower 	of 	the 	least 	eigenvalue 	from 	the 	twe 	cases 	corresponds 	to 	the 
critical buckling load. 

3, RESULTS AND DISCUSSION 

Numerical calculations have been made for a few combinations of 
alb and skew angle tit under direct and shear loadings and also for a few 
combined loadings. The results of the convergence study for an example 
case of 30 0  rhombic plate under the action of Arx  alone is given in 
Table 1. It can be seen from the table that convergence of 18 terms 
is quite satisfactory for tfr tc.. 30°. 	For higher skew angles, naturally, 
more terms are required to get equivalent accuracy and hence 32 terms 
are used. In Table 2, the buckling coefficients under the action of direct 
and shear loadings are given for different combinations of a/b and skew angle. 
Also, the results for a few combined loadings are given in Table 3. 
The results from Ref. 12, obtained by using beam characteristic functions, 
for the same order of matrices are given for comparison. From these 
comparisons. it is seen that the results from the use of products of bar 
buckling eigenfunctions are nearly the same as the results using beam 
characteristic functions. 

TABLE 1 
Convergence Study 

_____ 

a/b=l 	; 4fr---30° 	; 	isix alone 

Skew Symmetric case 

acting 

------ 

Order of 
Matrix 

_ 

Eigen value 
eit. M N 

1 1 1 18.48 

2 2 2 14.23 

3 3 5 3.03  1 • 

4 4 8 12.69 

5 5 13 12.10 

6 6 18 11.95 

7 7 15 11.80 

8 8 32 11.78 
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TABLE 2 

Buckling coefficients under direct and shear loading 

Order, of 	Buckling Coefficient Rx  or R.., 
alb 	* 	Loading 	Matrix 	Present Paper (a) 	Ref. 12 (b) -- 

• 

0.5 00 9 19.4 19.4 

0.5 15 0  18 20.9 20 8 

0.5 300  18 26.5 26.3 .tt 

0.5 45 0  32 39.2 38.8 

1 00 Pla  
alone 

9 10.1 101 

1 15° 18 10.5 105 

1 30° 18 12.0 118 

1 	450 	 32 	 14.5 	 14.3 

11 

0.5 

0.5 

15° 

300  

18 

18 

31.8 
-62.8 

25.5 
-112 

0.5 450  32 27.6 
N xy 

alone 
-246 

1 15° 18 11.4 
-22.5 

1 30° 18 9.85 
-40.2 

1 45° 32 9.53 
-89.6 

31.9 
-62.2 

27.2 
-111 

27.1 
-246 

11.1 
-22.3 

9.50 
-40.0 

9.35 
-89.3 

(a) Bar Buckling Functions 	(b) Beam Characteristic Functions 
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TABLE 3 

Buckling Coefficient T?, Under Combined Loading 

alb 3= 0.5 ; 	IP =30" ; 	a = NyIN, ; 	fi= Ain! Nx 

Order of Matrix= 18 x 18 

a i3 	—__  
Present Paper(a) 

i?„ 
Ref. I2(b) 

_ 

1 0 5 14.8 14.4 

1 1 11.8 11.5 

0.5 0 23.3 23.1 

0.5 0.5 17.7 17.2 

0.5 1 13.6 13.2 

0 0.5 20.9 20.7 

0 0 26.5 26.3 

(a) Bar Buckling Eigenfunctions (b) Beam Characteristic Functions 

4. CONCLUSIONS 

In this paper, the use of bar buckling eigenfunctions in the approximate 
solutions of stability problems of clamped skew plate is examined. 
Numerical results for the buckling coefficients are given for different 
skew angles and side ratios mainly under individual loading ; the results 
for a few cases of combined loading are also given. The results obtained 
from the use of bar buckling eigenfunctions are quite close to those 
obtained earlier by the use of beam characteristic functions. Therefore, 
these functions can also be equally well used in solving plate buckling 
problems. 
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6. NOTATION 

a, b 
	

dimensions of the plate 

C„ 	 coefficient in the series expansion for deflection 

D 
	

flexural rigidity of the plate, Eh'/12 (1—v 2 ) 

E,F,G, H, G I 	matrices defined in Eqs. [8] and (11] 

E 
	

Young's modulus of the material of the plate 

Ii 

1.1 , 47 
k g  

M, N 

m, n, r, a 

Nz , Ny , Nxy 

—* —• —• 
R z , Ry  , Rxx 

plate thickness 

integrals occurring in Eq. [10] 

gib  root of the transcendental equation tan k =1 

maximum number of terms in x— and y—directions 
respectively. 

integers defined in Eqs. [5] and [7] 

in-plane forces a zh , eh and a zy h respectively 

non-dimensional mid-plane force parameters 

a x  a2h cos3  0 ID, ay  a2h cos 3  0 ID, 

a y  a2h cos3  # I D respectively x 

non-dimensional mid-plane force parameters 

a z b2hlon 2 D, ayb2hIn 2D, .azyb2hIn 2 D respectively 

bar buckling eigenfunctions 

oblique co-ordinate system as in Fig. 1 

deflection of the plate 

non-dimensional co-ordinates, xla and y/b respectively 

in-plane stresses (oblique components) 
Poisson's ratio 

error in the interior 

side ratio, alb 

skew angle, as defined in Fig. I 

skew differential operator 

62 62  62  0 ( ..ix-a-2  —2 sin ift --- ± ----al v2  ) 6x ay 	- 
— sec3 
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