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ABSTRACT

In this paper the ron-linear analysis of an axially moving mass has been
presented. It is shown that upto a certain critical value of the transport velocity,
the characteristic is similar to that of the stationary state. At the critical
velocity, it departs from its non-linear behaviour and the vibration mode is the
same as that of the linear case with zero transport velocity. For transport
velocities greater than the critical, the non-linear period T, decreases as the
initial tension and the flexural parameter u increases. These conclusions are not
borne out in a linear analysis.

NOMENCLATURE

The following symbols are used in this paper :

P = Mass density.

A =Cross-sectional area.

C=~Const. axial transport velocity.
P=Initial tension.

I=Moment of inertia.

E = Elastic modulus.

Jr =Curvature.

S=Distance measured along the elastic are.
I=Free length of strip between supports.

u=Axial displacement with respect to co-ordinates translating
at velocity C.

v="Transverse displacement.
I=time.
x=Fixed axial co-ordinate.
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w=Non:dimensional transverse displacement,
r=1f{A=Radius of gyration.
{2=Frequency.
o = Non-dimensional initial tension.
7 = Non-dimensional time.
$ = Non-dimensional axial corordinate.
d = Non-dimensional velocity number.
A — Non-dimensional velocity constant.
s = Non-dimensional radius of gyration.
Ty=Non-dimensional non-linear period.
T, = Non-dimensional linear period.
A.=Critical velocity number.
Tn/T, =Period ratio.
W,=Amplitude of vibration.
Woe = Critical amplitude.

2y 2
s Wo - = Amplitude effect.
4(o?+ u?x?)

1. INTRODUCTION

The probiem of the free-transverse vibrationg of an axially moving mass
has attracted the attention of many workers recently on account of its many
| technological applications. The moving mass considered is either a string, a
strip or a beam with finite flexural rigidity. Most of the analyses presented
5o far are concerned with linear problems '~%.  The analogous problem of
the transverse vibrations of a pipe containing a flowing fluid has also invited
‘the attention of many workers °~'',  Although these class of problems are
generally non conservative, the anulysis presented ncglect§ Cﬁl’lalg ::Ionol:s
| type of force terms, thus reducing the system to a conservall\fe on-e *2% (De-
cause the coupling terms do not contribute to the energy of vibration) The
| conclusions arrived at from the linear analysis are, that the natwral frequer_lcy
Iof transverse vibration decreases with transport velocity and lhere‘ eXIsts
a certain critical velocity at which the fundamental frequency .of free-‘vlbratlon
ceases 1o exist. In fact for a string, all the mode frequencies vanish at the
critical velocity. ‘ _
Some pugcrs have appeared recently which take into accgtl?; 1tshc n"[?::e
linear terms but such analysis is mostly restricted to strings - .hni ”
problem of i moving strip was considered recently bzy a P"-‘““"b“{;'o'z ttifctedqw
' but the analysis was limited to strips defined for u* <0.001 and res

small mations.
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In this paper an analysis is presented to cover all classes of moving
masses namely strings, strips or beams. The solution presented js
restricted to small motions and it is valid for a larger range of strip geometry,
The analysis not only provides better physical insight into the problem py,
also established the range of validity and the limitations of the linear analysis.

The following assumptions have been made :
(i) Damping is negligible
(ii) The axially moving mass is simply supported
(iii) The transverse displacements are measured from the equilibrium

configuration defined by material moving at a constant axial
transport velocity. (with no variation in transverse deflection.)

(iv) Effects of rotary inertia and transverse shear are negligible
(v) Only free-transverse vibrations are considered.

2. EQUATION OF MOTION

Fig. (1) shows the deflected position of the moving strip with its velocity
components in transverse and longitudinal directions. The expressions for
kinetic energy T and potential energy V are:

I
T=1pA [ {(o,+Co ) +[u, +C(1 +u,)?} dx (1]
0
I i i
V=£ Pedx+;-AE6[ e’d.t+-;-Elaf i ds 2]
where €=[(1+1,)+p2]'2 =1

. L 2
and Ylds= l i1+ u")_':’s-t-' Yx “5“} dx
!{(I'I'Hx )‘5'03} 12

Takingu, < <1, p? <l and ¢} < <v2, the kinetic and potential energies become::

!
T=1pA4 J [(v,+ Co)? 4 (u, + C )] dx [3]
{
and V=--2L6[ [Po? +5 A Eo} +EIv2 (1 —3p2)] dx [4]
and the Lagrangian L is given by : L=(T-V) (5]

Applying the Hamilton's Principle,

£2
8 [ Ldi-0 [6]
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Fic. 1

Co-ordinate System and Velocity Components

and performing the variation:

s |
_?[: 0] (P Ap,+20 ACo,+(P AC* =P o, —(3]2) AE o} 0,,

+ Eloy . —(5/2) EF 02 05pex—10 El 0, v 9,00c —(5/2) ET 02, )(30) dx di

25 1
— [ [ P Au, (5u)dxdt

£y O

i

+ [ {{AC (4 + Co,) —(AE[2) 03— Pv,} 8 (0) |
f 0

b

! ' !
- EI{(I —[%’ 0_3)]0;; 3(0;) I +';_ Uy (”x.t)z "'(l "";‘ v:)uxx.: o (u)l }]d‘ [7]
0

the equation of motion for free transverse vibration 1S :

P A Un+2 P AC 0;,+(P AC:"'P) ﬂ;x‘(:;/z) AE!’E’”H

+Elg e~ (5/2) EN 0} 00— 10 El 0,0 Vuex =312 El gz = 0 [8)
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The expression £ A4 u,, =0 in equation [7] implies that the rate of displace.
ment in the longitudinal direction is constant and the remaining terms ip
equation [7] specify the boundary conditions, viz,

D= vxxmn al J."=0

u:—-v'”‘*—"n at x=’ [91

Introducing the non-dimensional parameters :

P El =?\1?
r= : = ] : a l , R - - —— I {
W ﬂ/la '3 T/! i ( /)(PA PAF)

C C

C 8. ,
V(P[P A)’ V(E/p)

o [P/PAVEIE[(P AIHVE

a=(PlAEV?; wu=r[l; 110]

the equation [8] in terms of non-dimensional parameter becomes:

2 p 2
5 (fn,, 3P,

, e 2 i
W.,,,,+28H;,,+ Bz ¢ 2 A ¢ Wi

inl
M9
<+ 12 [H'gggg ""% H';z wigeg — 10 “'g H'ge “’ggg ""*%- ll'?:]_n ]l I]

and the boundary conditions are :
w (0, )=uw" (0, »)=0
and w(l, n)=w" (1, )=0 | [12]

3. SOLUTION BY THE METHOD OF HARMONIC BALANCE

The equation [11] is a highly nonlinear partial differential equation with
constant co-efficients and only an approximate analysis is possible. In this

paper a solution for equation [Il] is given by the method of harmonic
balance. A solution of equation [I1] is assumed in the form

w (€. 1) =X (&) T(7) [13}

and X and T are determined so as to approximately satisfy equation [I1].

The constants in the resulting solution are chosen to satisfy the boundary
conditions (12).
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Substituting equation [13] in equation [11],

A . 2i1 _ R2
¥7+28 X T2 Byo g 32 x 2 xr
Al

ﬁl
,u232 »n 2 k|
ST X T=(5[2) XX T2 =10 X' X*X™ T5~(5/2) X T%=0 {14

£=

By this substitution the nonlinear partial differential ¢qation [11] reduces to an
ordinary nonlinear differential equation [14]. Assuming X = X, sin w& (which
satisfies the boundary conditions as given by equation 120) equation (14}
becomes:

83(' __ﬁ!)

(Xp sin n§) T+28 (7 X, cos x¢) T+ .

(Xynw?sin ®g) T

5* : 252
+ (3/2)—)‘—2[X3ﬁ‘ (cos?§) (sin =é&) T3+ %2— (Xom!sin ®&) T

uls? 6 ? - “282
--(5,12)--)l—I X3m® (cos’mé) (sin x€) T3 - lU—iTXEﬂELCOSZﬁf) (sinn&)T?

w8y 6 i3 3
-i-(5/2)--~-)tT X3n® (sin’mf) T°=0.
Simplifying further

- _ 201 _ QA2 202
(X, sin &) T+ (28 Xy cos ®€) T+ [(8 (1-F )2 +£E'n'“) T

- Bz-_- A2
5’ uly?
+ ((3/8)_}6}'3«‘-(5/4)TX§7:‘)T" sin 7§
2 202 _
+ ((3/8)13-&11‘-(]5/4)71'6%2 X3 T’) X, sin 3 w&=0 [15]

Neglecting sin 3 =& and setting the co-efficient of sin ~¢ equal to zero, the

equation [15] becomes,
Z}'—.+(32(l—ﬁz) 2 stz 4) T +(_-__;_ 32___5_513_2“2) act X% T3=0 []6]

R'+—TN s"'j‘i ‘¢ )2

B’ A

L

can be obtained by the method of harmonic

: . . 6 _ ) :
A simple solution to equation [] ] is assumed. Substituting it

balance. A solution of the form T=Tq sin -Q’J
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into eqation [16] and setting the co-efficient of sin £2y equal to zero yields the
frequency equation, Viz.,

2 2 222
.QZ=(§2“._BZ) +h S-Zﬂ’)ﬂz+ ( 2 e B2 ﬂ’) X3 TH ()

B At 32 A 16 A

Letting wy= Xy To=amplitude of transverse vibration and in view of equation
[10] the non-linear period after some simplification becomes :

1
Ta= 2'\/( |- 57 +[9/32 — (15/16) u*n?] m2wi/(a? + u? n?) ) LS-A]

and consequently the linear period from equation [18] becomes :

T =2V[(1]1-8%] [19)

and the period ratio,

TxlT =‘/ 1 -3* [20)
i ek 1 =82 +[9/32 - (15/16) x37?] * w2 [( a® + u? =)

Though the method of analysis is approximate, the accuracy of the resulis can
be seen from a comparison of results of some of the recent workers 8 13 and 16

For the case of the travelling string the non-linear period given by
equation [18] corresponds exactly to that found in'>. As there exists no
expression for the frequency of vibration in the paper by Thurman and Mote'®
for sirips with transport velocity, a quantitative comparison with their
rusults is not possible. But for a stationary string the fundamental frequency
of vibration (by first approximation) is in excellent agreement with that given
in this analysis. The results for a purely travelling beam cannot be compared
as no such non-linear analysis is available. But one important result can be
compared, viz., the fundamental frequency of vibration of the linear system
ceases to exist if the non-dimentional velocity number § equals unity as given
by equation [19], i.e., when C I/(EI/p A)'=m, the linear vibration ceases to

exist. This conclusion is in close agreement with C lI/(EIlP A)'=3.18 as
obtained by Barokal®.

4. RESULTS AND DISCUSSION

The results of the analysis have been presented in the forms of graphs in
Figs. 2 to 11.

*This can also be written as

T =2¢ - 1 az"l'ﬂzfj S_B
N ((&z+'uzﬂz—hi)+[9/32—(]5/:6)#2W1] ﬁim% [I ]
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It can be seen from Figs. 2 to 4 that fora given amplitude w, there exists
a critical velocity constant Ac. For values of A <Ac the non-linear period Ty
increases as the initial tension o and flexural parameter u increase. For
values of A> Ac¢, the non-linear period T, decreases as a and a4 increase.
In other words, for transport velocities co:responding to A<Ac, the charac-
teristics are similar to that of the stationary case. The existance of critical
velocity constant Ac is clearly a non-linear phenomenon and it depends not
only on the amplitude of vibration but also on the flexural parameter A.
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This can be seen from equation [I8] and figs. 2 10 4. At the Critical
velocity the non-linear period Ty reduces 10 a constant as seep from
equation [18].

For constant values of tension & and parameter u the non-linear perigq
T, is found to decrease as the transport velocity constant A increases.

In a similar manner the effect of amplitude wy on n?n-linear period T,
is shown in Figs. 5 to 7 for a constant transport velocity constant \. Por
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Period ratio versus amplitude effect for varions values of velocity number 8-(u?n? 0-01)

We> W, the period Ty increases as the intial tension « and flexural para-

meter u increase and for wy<w,, the period T is seen to decrease with an

increase in « and . This clearly indicates a reverse effect as compared to

the effect of velocity constant, A.

Figs. 8 to 11 show the relationship between the period ratio TN/TL
and the amplitude effect w2w2 /4 (a?+ p¥n?) for various values of velocity
number § and different values of 4. In all the cases the period Tﬂ/?} con-
linuously decreases as the velocity number 3 increases in_ducatmg the
limitations of linear analysis at higher transport velocities. It is also 1o be
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noted that 4s ihe contribution due to flexural parameter a4 increases the period
ratio T;H/TL increases for a particular value of amplitude effect as shown i,
Figs. 8 to 11, This effect is completely due to the non-linear terms
associated within the expression for the period Ty in equation [20]. Fo
§=8c=1, the period ratio is zero, indicating that no vibration in fundamep.
tal mode is possible by linear analysis at this value of transport velocity.
The value of transport velocity corresponding to 8¢ has been described as
critical velocity in the literature on linear analyses.
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Fig. 11
Period ratio versus amplitude effect for various values of velocity number 3-(u?n?=0:04)
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CONCLUSION

The non-linear characteristics of an axially movin
or beam) is similar to that of a stationary state case u
ransport velocity. The non-linear period increases with an Increase in initial
tension a and flexural paramcter u. At the critical velocity it depans] flr ;a
its non-linear behaviour and the vibration mode is the same as given by t}::
linear equation with zero transport velocity. This is because of the fact that
the effect of transport velocity on non-linear period is completely neutralised
by the non-linear terms and the system reduces to a linear stationary case
For transport velocities greater than the critical value the non-linear pcrioci
T, decreases as the intial tension « and flexural parameter u increase.

The contribution of non-linear terms significantly increases as the
transport velocity increases and at higher velocities the linear analysis is
meaningless. For the flexural parameters 4> (.001 or at higher amplitudes
the non-linear period is significantly modified and the effect of non-linear
terms decreases for a particular transport velocity. The analysis is limited to
fundamental frequency only.

g mass (a string, Strip
Pto a critical value of
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NEW PERIODICALS

From 1972, the following two new periodicals are being
added on to the family of research periodicals being brought out
by the Publications & Information Directorate, Council of

Scientific & Industrial Research, in collaboration with the Indian
National Science Academy.

Indian Journal of Radio and Space Physics

To be issued quarterly, this periodical is intended to serve
as a medium for the publication of research communications

(full papers and short communications) in the following areas of
radio and space science :

* Radio frequency standards and measure- * Neutral atmosphers

ments. * Airglow
* Propagation throgh non-ionized madia * Winds and motion in the uvpper atmos-
* Jonospheric propagation phere
* Magnetosphere * Stratosphere—mesosphere coupling
* Radio and radar astronomy ® Jonosphere—magnetosphere coupling
* Physics and chemistry of the ionosphere  * Solar—terrestrial relationship
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Annual Subscription: Rs. 30.00 £ 3.00 & 10.00

Indian Journal of Marine Sciences

This six-monthly periodical will be devoted to research
communications (full papers and short communications) pertaining
to the following areas of marine sciences :

* Biological Oceanography - Gcologic&l Oceanography
* Pbysical Oceanography * Chemical Oceanography

The first issue will be published in June 1972
Annual subscription : Rs. 15 £ 1.75 § 5.00

Subscriptions for the journals may be sent by cheque, bank draft,
money order or postal order payable 1o

Publications & Information Directorate, Hillside Road, New Delhi-12
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