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ABSTRACT 

In this paper the non-linear analysis of an axially moving mass has been 

presented. 	It is shown that upto a certain critical value of the transport velocity, 

the 	characteristic is similar to 	that of the 	stationary state. 	At the critical 
velocity, it departs from its non-linear behaviour and the vibration mode is the 
same as that of the linear case with zero 	transport velocity. 	For transport 
velocities greater than the critical, the non-linear period T .N  decreases as the 
initial tension and the flexural parameter iu increases. These conclusions are not 

borne out in a linear analysis. 

NOMENCLATURE 

The following symbols are used in this paper : 

P = Mass density. 

A=Cross-sectional area. 

C=Const. axial transport velocity. 

Initial tension. 

1= Moment of inertia. 

Er Elastic modulus. 

tfr=Curvature. 

S=Distance measured along the elastic arc. 

1= Free length of strip between supports. 

Axial displacement with 
at velocity C. 

vt:a Transverse displacement. 

1= time. 

x=Fixed axial co-ordinate. 

respect to co-ordinates translating 
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wr- Nondimensional transverse displacement. 
r -=-- 17A = Radius of gyration. 

Si= Frequency. 

a =Non-dimensional initial tension. 
7 —Non-dimensional time. 

.--- Non-dimensional axial coLordinate. 
8 	Non-dimensional velocity number. 

A—Non-dimensional velocity constant. 
Az =Non-dimensional radius of Dration. 

TN= Non-dimensional non-linear period. 

Tie  v--- Non-dimensional linear period. 
A-=-Critical velocity number. 

TN/TL =Period ratio. 

0/0 = Amplitude of vibration. 

W0= Critical amplitude. 

7C
2 132 

A mplitude effect. 
4( a 2  + M 2  its) 

I 	INTRODUCTION 

The problem of the free-transverse vibrations of an axially moving mass 
has attracted the attention of many workers recently on account of its many 

I  technological applications. The moving mass considered is either a string, a 
strip or a beam with finite flexural rigidity. 	Most of the analyses presented 
so far are concerned with linear problems ". The analogous problem of 
the transverse vibrations of a pipe containing a flowing fluid has also invited 
the attention of many workers 9-11 . 

Although these class of problems are 
generally non conservative, the analysis presented neglects certain coriolis 

I type of force terms, thus reducing the system to a conservative one 11 , (be- 

t  cause the coupling terms do not contribute to the energy of vibration) 	The 

I, conclusions arrived at from the linear analysis are, that the natural frequency 
of transverse vibration decreases with transport velocity and there exists 
a certain critical velocity at which the fundamental frequency of free-vibration 
ceases to exist. 	In fact for a string, all the mode frequencies vanish at the 
critical velocity. 

Some papers have appeared recently which take into account the non- 

linear terms but such analysis is mostly restricted to strings ' 2 . 13% 15 . The 

problem of a moving strip wac considered recently by a perturbation technique 
' but the analysis was limited to strips defined for ,u 2  <0.001 and restricted to 

small motions. 
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In this paper an analysis is presented to cover all classes of moving 
masses namely strings, strips or beams. 	The solution presented is not 
restricted to small motions and it is valid for a larger range of strip geometry. 
The analysis not only provides better physical insight into the problem but 
also established the range of validity and the limitations of the linear analysis. 

The following assumptions have been made : 

(i) Damping is negligible 

(ii) The axially moving mass is simply supported 

(iii) The transverse displacements are measured from the equilibrium 
configuration defined by material moving at a constant axial 
transport velocity. (with no variation in transverse deflection.) 

(iv) Effects of rotary inertia and transverse shear are negligible 

(v) Only free-transverse vibrations are considered. 

2. EQUATION OF MOTION 

Fig. (1) shows the deflected position of the moving strip with its velocity 
components in transverse and longitudinal directions. 	The expressions for 
kinetic energy T and potential energy V are 

T-=1 PA f f(v, + CO302  + + 	+ ux)r} dx 	 [1] 

f Pcdx+ 12- A E f c 2d.v +1 E 1 f ift 2  ds 	 [21 
0 

where 	E =[(i tix)2 v31Ii2 1 

+ux)  On -  VA ux.r1 2  and 	ds- - _ — dx 
11(14 it., 2 )-1 v WI 2  

Taking ux  < <1, vx2  <1 and vx4  «v3, the kinetic and potential energies become : 

T=--IpA f [(, 1 4 cvx ) 2  4 (Ut  C )2 1 dx 	 1 31 
0 

and V=4- f [Pvl +4 A E + 	(1 -14)] dx 	 [4] 
0 

and the Lagiangian L is given by : Lcm(T— V) 	 [ 5 1 

Applying the Hamilton' Principle, 

8 f dr r: 0 	 [6] 
1, 
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Fie. 1 
Co-ordinate System and Velocity Components 

and performing the variation : 

(2 1 
-f f Ep A on  +2 p AC o x,+ (p AC 2  P )ox„--(312) AEo3 o„ 

t, 

+ El ozxn — (512) El 03 oxxn -10 El ox  vxx nxxx — (5/2) El 01.,1(80) elx dt 

/, 

—f f PAti„(8 a) dx dt 
ti 0 

(2 

[ {AC (or + C ox)—(AE12) 	Pox } S (0) I 
11 	 0 

I. 

1 

— Elf(' —(1 0, 20josx 8(14)1
0
+ ox (.0 1) 2  —(1 - 1 olhaxxx 8  (v) I dt 1 71 

the equation of motion for free transverse vibration is : 

P A on  +2 P AC 0,, +(P AC2 — P) oxx—(312) AE Lk 2, 

+ 	o(5/2)uxxxx —  10 Ef ox oxx oxxx 5/2 E1 i.4 re- 0 
	

f8) 
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The expression P A u, =4) in equation [7] implies that the rate of displace- 
ment in the longitudinal direction is constant and the remaining terms in 
equation [7] specify the boundary conditions, viz , 

V Ire  Vx  x  ea 0 at xmo 

v-z- vrx -r 0 at x=1 	 (91 

Introducing the non-dimensional parameters : 

P El itly 2  
= V P ; 	Xi/ ; 	a- .  ( 1 /1) ( 	4-  

PA p A I
-- 	-2  1 ; %V  

— 	 
- [P/PA +El n 2/(P A 12)]1'

; /3 ci
V(Pip A)

; A
V(E/P) 

the equation [8] in terms of non-dimensional parameter becomes: 

8202.1)  
w,v;  + 28 w in + 

f32 	" 	2 A' g  

/425 2 

['vim - 4 Wi Wu 10 it'd wit "tut --+ "'hi —0 	 it 

and the boundary conditions are : 

w (0, 7) ) 	7) ).- o 
and 	w(1, 7))=-W* (1, 1))=.40 	 [121 

3. SOLUTION BY THE METHOD OF HARMONIC BALANCE 

The equation [111 is a highly nonlinear partial differential equation with 
constant co-efficients and only an approximate analysis is possible. In this 
paper a solution far equation [II] is given by the method of harmonic 
balance. A solution of equation [I1} is assumed in the form 

w ce. 70=--x(e) 	 [131 

and X and T are 
The constants in 
conditions (12). 

determined so as to 	approximately 	satisfy 	equation [11]. 
the 	resulting solution are 	chosen 	to satisfy the boundary 
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Substituting equation [13] in equation [11], 

.n1 +2 8 X' 7."- 	 T—(312)_82X' 2  X' T 3  
A 4  

11-4282[X" T—(512) X' 2  X" T 3 -10 X' X' X" T 3 —(512) X' 3  T 3]= 0 [14] A 2 

By this substitution the nonlinear partial differential eqation [11] reduces to an 
ordinary nonlinear differential equation [14]. Assuming X= X0  sin ene (which 
satisfies the boundary conditions as given by equation 12) equation (141 
becomes: 

•• 	 8 2 (1 —)6 2 ) (X0  sin tte) T+28 (nX0  cos ICE) T+ 	(Xon2  sin ice) T 

8 2  
+ (3p 2 	0 (cos2  're) (sin re) T 3 + —A-f

iu282 
(Xer 4  sin ne) T A  

u2R2 
— (5/ 2)-12'82

Xn3  7C6  (COS77 e k (sin ire) T 3 -10 " X„3 70 tcos2ne) (sine)T' Al 	 A 2 	If 

8 2 
+ (5/2)

4,2
— X 3 .7c 6  (sirt3re) T 3 = 0. 

A ) 	0 

Simplifying further 

•• 
(A'0  sin Pre) T t (25 X on cos we) i+ 	

8e2ii  432 ) ir 2  + Au 2Arn. 4  is  

192  

2 	 282 
((3/8) 

8
—A91T 4  — (5/ 4)---442  X02  7C 6)T 3 1 sin ire 
A' °  A' 

+ ((3/8)----82/0—(15/4)7c
6,L2A2 
" Xn2  Ts) X0  sin 3 IT e==o 	 [15] 

A2 	
A2 w 

Neglecting sin 3 pig 
and setting the co-efficient of sin re equal to zero, the 

equation [15] becomes, 

.. 	
R2(1 R21 _ u2s2 a 	( 	

-- 
n  2 s2 

Li 2 iT 	0 
4 X2 T3 

- 
0 	[16] 

r  Tr 2 	it 4) T 
R2-- 	A2 	 8 All 4 A2 

A simple solution to equation 116] can be obtained by the method of harmonic 
balance. A solution of the form T= To  sin D7 is assumed. Substituting it 
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into eqation [16] and setting the co-efficient of sin .Q1 equal to zero yields the 

frequency equation, viz., 

.Q2  (2( 1  432 )+ m 282 7r2) n2+  ( 9 	8 2_ 1 5 th 28 2 2) 4  
/32 	A L 	 32 	Az  ' 	A 2 	n 	(X1) 7) 	[171 7)   

Letting itr X 0  To = amplitude of transverse vibration and in view of equation 
[10] the non-linear period after some simplification becomes : 

Tx -= 	 • --- 	• 	
1 

1— 8 2 +[9/32 —(15/16) 2  7C 21 n2WIA a 2 	+ 2  it ) 
and consequently the linear period from equation [18] becomes : 

TiL  =2 V[(1/1 V)] 

[18-A)* 

[19] 

and the period ratio, 

TN/Tit = V( 1 _82 

1 — 	+ [902 — (1.5/16),u2iv2] rç1  iv(2 f( 0( 2 + ,u 2  7c 2 ) 
[20) 

Though the method of analysis is approximate, the accuracy of the results can 
be seen from a comparison of results of some of the recent workers 84 13 and 16  . 

For the case of the travelling string the non-linear period given by 
equation [18] corresponds exactly to that found in 13 . 	As there exists no 
expression for the frequency of vibration in the paper by Thurman and Mote l6  
for strips with transport velocity, a quantitative comparison with their 
rusults is not possible. But for a stationary string the fundamental frequency 
of vibration (by first approximation) is in excellent agreement with that given 
in this analysis. The results for a purely travelling beam cannot be compared 
as no such non-linear analysis is available. 	But one important result can be 
compared, viz., the fundamental frequency of vibration of the linear system 
ceases to exist if the non-dimentional velocity: number 8 equals unity as given 
by equation [19], i.e., when C 0E4P A)e=n, the linear vibration ceases to 
exist. This conclusion is in close agreement with C //(Ei/P A) 1 r--3.18 as 
obtained by Barokal s . 

4. RESULTS AND DISCUSSION 

The results of the analysis have been presented in the forms of graphs in 
Figs. 2 to 11. 

*This can also be written as 

TN = 2V( 	 a 2 +  M 2
7C

2 
(18-13] 

(00 + /22 7C 2  - A2) + [9/32 —0 5/16),u 2 .70] TrIct)(21 
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INITIAL TENSION ot,(P/AE)13 

FIG. 2 

Nonlinear period versus initial tension for various values of velocity constant it• 
,c'00.001 and ..a0=C•005  
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iNITIAL TENSION x, (P/AE ) 

FIG. 3 
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Nonlinear period ...cm's initial tension for various values of velocity constant ‘• 
ta1Tso.0i and coo .0.005 
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I I/2 INITIAL TENSION at • (P/AE, 

FIG. 4 

Nonlincar period versus initial tension for various values of velocity constant bb 

stir isa.05 and we 0.005 
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I/2 INITIAL TENSION  

FIG. 5 

Nomlinear period versus initial tension for various values of amr Litude we 
penal:H/01 and X-0-01 
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ec-P4-.4 	 0.06 	 wow 

INSTIAL TENSION of, (P/AF ) 6 

FIG. 6 

Nonlinear period versus initial tensi 3n for various values of amplitu le 

pit s0.0i and X001 
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INITIAL TENSION et , (P/AE) 
tr) 

F1G. 7 

Nonlinear period versus initiai tension for various values of amplitude wo• 
p a43•05 and X.•0.0l 
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2 2 n  

AMPLITUDE EFFECT 4(0(24.p2n2) 

FIG. 8 

Period ratio vet sus amplitude effect for various values of velocity number 5.(p 2 70 =0.00) 

It can be seen from Figs. 2 to 4 that for a given amplitude iv c, there exists 
a critical velocity constant Ac. For values of A <Ac the non-linear period TN 

increases as the initial tension a and flexural parameter At increase. For 
values of A> Ac, the non-linear period TN  decreases as a and m increase. 
In other words, for transport velocities co:responding to A <Ac, the charac- 
teristics are similar to that of the stationary case. 	The existance of critical 

velocity constant Ac is clearly a non-linear phenomenon and it depends not 
only on the amplitude of vibration but also on the flexural parameter L. 
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This can be seen from equation [181 and figs. 2 to 4. 
velocity the non-linear period Tit reduces to a constant 

equation (18). 

At the critical 
as seen from 

For constant values of tension a and parameter ,u the non-linear period 
is found to decrease as the transport velocity constant A increases. 

In a similar manner the effect of amplitude w d  on non-linear period T N  
is shown in Figs. 5 to 7 for a constant transport velocity constant A. For 

AMPLITUDE EFFECT 1 C- 	2  12 2 2  ) 4( gs * p T1 ) 

FIG. 9 
Poriod ratio versus amplitudo effect for various values of velocity number 3 (14:410-0'08) 
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2 2 ,  T1 wo  
AMPLITUDE EFFECT, 	

2)) 4(0/2.1.12TT 

FIG. VI 

Period ratio versus amplitude effect for varions values of velocity number 3.(m7711 0.00 

Ivo > w oe, the period TN increases as the intial tension a and flexural para- 
meter 1u increase and for wo<woc, the period TN is seen to decrease with an 

increase in a and AA. 	This clearly indicates a reverse effect as compared to 
the effect of velocity constant, A. 

Figs. 8 to ii show the relationship between the period ratio TN/71 
and the amplitude effect 7r 2wl/4 (a 2 -4-i.4 2 7c 2 ) for various values of velocity 

number 8 and different values of 1u. 	In all the cases the period TAIT!, con- 

tinuously decreases as the velocity number 8 increases indicating the 
limitations of linear analysis at higher transport velocities. 	It is also to he 
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noted that a"s the contribution due to flexural parameter Al increases the Period 

ratio tviris  increases for a particular value of amplitude effect as shown i n  
Figs. 8 to 11. 	This effect is completely due to the non-linear terms 
associated within the expression for the period TN in equation [20]. For  
a =Se= 1, the period ratio is zero, indicating that no vibration in fundamen- 
tal mode is possible by linear analysis at this value of transport velocity, 
The value of transport velocity corresponding to Sc has been described as 
critical velocity in the literature on linear analyses. 

2 2 
f TT Wo  	3  

AMPLITUDE EFFECT, k 4( 0, 2, ti2n2) 

AG. 11 
Period ratio versus amplitude effect for various values of velocity number 3.0ivos 0°°4)  
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CoNCLUSION 

The non-linear characteristics of an axially moving mass (a string, strip 

or beam) is similar to that of a stationary state case upto a critical value of 
transport velocity. The non-linear period increases with an increase in initial 
tension a and flexural paramcter Ai. At the critical velocity it departs from 
its non-linear behaviour and the vibration mode is the same as given by the 
linear equation with zero transport velocity. This is because of the fact that 
the effect of transport velocity on non-linear period is completely neutralised 
by the non-linear terms and the system reduces to a linear stationary case. 
For transport velocities greater than the critical value the non-linear period 
TN  decreases as the intial tension cc and flexural parameter Ai increase. 

The contribution of non-linear terms significantly increases as the 
transport velocity increases and at higher velocities the linear analysis is 
meaningless. For the flexural parameters Ai 2 >6.001 or at higher amplitudes 
the non-linear period is significantly modified and the effect of non-linear 
terms decreases for a particular transport velocity. The analysis is limited to 
fundamental frequency only. 
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