CORRUGATED AND UNIFORM DIELECTRIC ROD AERIAL EXCITED IN E_{0}-MODE

By K. N. Shankara and S. K. Chatteriee
(Indian Institute of Science, Bangalore-12)
[Received: February 10, 1972]

1. Abstract

Expressions for the radiation pattern and gain of uniform and corrugated dielectric rod aerial excited in E_{0}-mode have been derived. The position, and number of lobes, beam width and relative magnitudes of lobes are fuuctions of the spacing and depth of grooves. The radiation characteristics also depend on length, diameter and dielectric constant of the aerial.

2. INTRODUCTION

The present work is a part of the programme of investigations ${ }^{1-8}$ on dielectric and dielectric coated aerials of different shapes and of differently modified surface which are being conducted for the last two decades. Several other authors ${ }^{9-20}$ have also made significant contributions in the field of dielectric aerials.

3. Radiation from Uniform Dielectric Rod

The radiation pattern has been derived by first considering radiation to take place from only the surface of the rod (Case A) and then the general relation has been derived by considering radiation to take place from both the surface as well as the end (Case B).

3.1 Field Components

The expressions for the field components of a uniform dielectric rod excited in E_{0}-mode are,
For $\rho \leqslant a$

$$
\begin{align*}
E_{\rho 1} & =\left[B k_{1}^{\prime} \beta / \omega \epsilon_{1}\right] J_{1}\left(k_{1}^{\prime} \rho\right) \exp (-j \beta z) \\
E_{z 1} & =\left[B\left(k_{1}^{\prime}\right)^{2} / j \omega \epsilon_{1}\right] J_{0}\left(k_{1}^{\prime} \rho\right) \exp (-j \beta z) \\
H_{\phi 1}^{\prime} & =B k_{1}^{\prime} J_{1}\left(k_{1}^{\prime} \rho\right) \exp (-j \beta z) \tag{1}
\end{align*}
$$

[^0]
3.2 Transformation of Co-ordinates

A transformation from (ρ, ϕ^{\prime}, z) system to spherical (r, ϕ, z) co-ordinate system is given by (See Fig. 1)

Fig. 1

Co ordinate system used in pattern computation (Case A)

$$
\begin{array}{lr}
L=\text { Length of the rod } & d^{\Sigma}=\text { Elemental surface considered } \\
a=\text { Radius of the rod } & (r \theta \phi)=\text { Spherical co-ordinates }
\end{array}
$$ $\left(\rho \phi^{\prime} z\right)=$ Circular cylindrical co-orcinates

Table 1
Transformation of Co-ordinates

	\mathbf{r}	$\vec{\theta}$	$\vec{\phi}$
$\vec{\rho}$	$\sin \theta \cos \left(\phi^{\prime}-\phi\right)$	$\cos \theta \cos \left(\phi^{\prime}-\phi\right)$	$\sin \left(\phi^{\prime}-\phi\right)$
$\vec{\psi}$	$-\sin \theta \sin \left(\phi^{\prime}-\phi\right)$	$-\cos \theta \sin \left(\phi^{\prime}-\phi\right)$	$\cos \left(\phi^{\prime}-\phi\right)$
\mathbf{z}	$\cos \theta$	$-\sin \theta$	0

3.3 Evaluation of the Radiation Field.

Case A: Radiation from the surface.
The electric and magnetic fields E_{p} and H_{p} respectively at the distant point $P(r, \theta, \phi)$ (see Fig. 1) are given in terms of the magnetic and vector potentials A^{H} and A^{E} respectively by the following relations

$$
\begin{align*}
& \mathbf{E}_{p}=-j \omega \epsilon_{0} \mathbf{A}^{H}+\frac{1}{j \omega \epsilon_{0}} \operatorname{grad} \operatorname{div} \mathbf{A}^{H}-\operatorname{curl} \mathbf{A}^{E} \\
& \mathbf{H}_{p}=-j \omega \epsilon_{0} \mathbf{A}^{H}+\frac{1}{j \omega \epsilon_{0}} \operatorname{grad} \operatorname{div} \mathbf{A}^{E}+\operatorname{eurl} \mathbf{A}^{H} \tag{2}
\end{align*}
$$

where, A^{E} and A^{H} are given as

$$
\begin{align*}
& \mathbf{A}^{E}=\frac{1}{4 \pi} \iint_{\Sigma} \mathbf{M} \frac{\exp j\left(\omega t-k r_{1}\right)}{r_{1}} d \Sigma \\
& \left.A^{H}=\frac{1}{4 \pi} \iint_{\Sigma} \mathbf{J} \frac{\exp j}{} \frac{(\omega t}{r_{1}}-k r_{1}\right) \tag{3}\\
& d \Sigma
\end{align*}
$$

where,

$$
\begin{align*}
& r_{1}=r-a \sin \theta \cos \left(\phi^{\prime}-\phi\right)-z \cos \theta \tag{4}\\
& r=\text { distance between } P(r, \theta, \phi) \text { and the oigin } \\
& \mathbf{J}=\mathbf{n} \times \mathbf{H} \\
& \mathbf{M}=-\mathbf{n} \times \mathbf{E} \tag{5}\\
& \mathbf{n}=\text { unit normal vector directed outside the surface }
\end{align*}
$$

E, H represent the values of the electric and magnetic field vectors on the surface. $\mathbf{J}, \mathbf{M}=$ Sheet electric and magnetic currents over the surface $k-2 \pi / \lambda_{0}$, the free space wave number. A time dependance of $\exp (j \omega t)$, is assumed.

$$
\begin{align*}
& \mathbf{J}=\vec{\rho} \times \overrightarrow{\phi^{\prime}} \quad \mathrm{H}_{\phi^{\prime}}=\mathbf{z} \quad \mathrm{H}_{\phi^{\prime}}=\mathbf{z} C_{3} \exp (-j \beta z) \tag{6}\\
& \mathbf{M}=-\vec{\rho} \times z E_{z}=\overrightarrow{\phi^{\prime}} E_{z}=\overrightarrow{\phi^{\prime}} C_{2} \exp (-j \beta z) \tag{7}
\end{align*}
$$

where,

$$
\begin{align*}
& C_{2}=\frac{B\left(k_{1}^{\prime}\right)^{2}}{j \omega \epsilon_{1}} \mathrm{~J}_{0}\left(k_{1}^{\prime} a\right) \tag{8}\\
& C_{3}=B k_{1}^{\prime} \mathrm{J}\left(k_{1}^{\prime} a\right)
\end{align*}
$$

Transforming \mathbf{J} and \mathbf{M} into spherical polar coordinates (see Table 1).

$$
\begin{align*}
& \mathbf{J}=C_{3}[\mathbf{r} \cos \theta-\theta \sin \theta+\phi(0)] \exp (-j \beta z) \\
& \mathbf{M}=C_{3}[{\left[-\mathbf{r} \sin \theta \sin \left(\phi^{\prime}-\vec{\phi}\right)-\vec{\theta} \cos \theta \sin \left(\phi^{\prime}-\phi\right)\right.} \\
&\left.+\vec{\phi} \cos \left(\phi^{\prime}-\phi\right)\right] \exp (-j \beta z) \tag{10}
\end{align*}
$$

If $d \mathrm{~A}^{H}$ and $d \mathrm{~A}^{E}$ are the vector potentials at $P(r, \theta, \phi)$ due to the surface element $d \Sigma\left(=a d \phi^{\prime} d: z\right)$. then the vector potentials A^{H} and A^{E} due to the complete surface of the rod are

$$
\begin{equation*}
\mathrm{A}^{H}=\int_{z=0}^{L} \int_{\phi^{\prime}=0}^{2 \pi} d A^{H}=\int_{z=0}^{L} \int_{\phi^{\prime}=0}^{2 \pi} \frac{\mathrm{~J} \exp j\left(\omega t-k r_{1}\right)}{4} d \Sigma \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}^{E}=\int_{z=0}^{L} \int_{\phi^{\prime}=0}^{2 \pi} \frac{\mathbf{M} \exp j}{4} \frac{\left(\omega t-k r_{1}\right)}{\pi r_{1}} d \Sigma \tag{12}
\end{equation*}
$$

where, L is the length of the dielectric rod. The electric field at P is

$$
\begin{equation*}
\mathbf{E}_{p}=\int_{\Sigma=0}^{L} \int_{\phi=0}^{2 \pi}\left(-j \omega \mu_{0} d \mathbf{A}^{H}+\frac{1}{j \omega \epsilon_{0}} \operatorname{grad} \operatorname{div} d \mathbf{A}^{H}-\operatorname{curl} d \mathbf{A}^{E}\right) i \Sigma \tag{13}
\end{equation*}
$$

By transforming the vector operators into spherical polar co-ordinates, replacing r by r_{1} in the denominator of the expression for $\mathbf{E}_{\boldsymbol{p}}$ obtained after vector operations and neglecting terms containing higher powers of $1 / r_{1}$. equation 13 reduces to

$$
\begin{align*}
E_{P S}= & {\left[\left(\frac{-j a}{4 \pi r} \exp (j \omega t-j k r)\right)\left\{\int_{0}^{L} \exp -j(\beta z-k=\cos \theta)\right\} d z\right] \times } \\
& {\left[\left\{\vec{\theta} \int_{0}^{2 \pi} \omega \mu_{0}(-\sin \theta) C_{3} \exp \left(j u \cos \left(\phi^{\prime}-\phi\right) d \phi^{\prime}\right\}\right.\right.} \\
+ & \left\{\vec{\theta} \int_{0}^{2 \pi} k C_{2} \cos \left(\phi^{\prime}-\phi\right) \exp \left(j u \cos \left(\phi^{\prime}-\phi\right) d \phi^{\prime}\right\}\right. \\
+ & \left\{\vec{\theta} \int_{0}^{2 \pi} k C_{2} \cos \theta \sin \left(\left(\phi^{\prime}-\phi\right) \exp \left(j u \cos \left(\phi^{\prime}-\phi\right)\right\} d \phi^{\prime}\right]\right. \tag{14}
\end{align*}
$$

which yields

$$
\begin{align*}
\mathbf{E}_{P S}= & \left(B \frac{j}{2 r}\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2} k k_{1}^{\prime} L a \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)\right) \times \\
& \left(\exp j(\omega t-k r) \exp \left\{-j \frac{L}{2}(\beta-k \cos \theta)\right\}\right) \times \\
& \left(\frac{\sin x}{x}\left\{\mathrm{~J}_{0}(k a \sin \theta) \sin \theta-C \mathrm{~J}_{1}(k a \sin \theta)\right\}\right) \tag{15}
\end{align*}
$$

where,

$$
\begin{align*}
& x=\frac{L}{2}(\beta-k \cos \theta) \tag{15a}\\
& C=\frac{k_{1}^{\prime} \mathrm{J}_{0}\left(k_{1}^{\prime} a\right)}{r_{1} k \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)} \tag{15b}
\end{align*}
$$

Case A^{\prime} : Free End Radiation.
The equivalent electric and magnetic current sheets are (See Fig. 2)

$$
\begin{equation*}
\mathbf{J}=\mathbf{z} \times \overrightarrow{\phi^{\prime}} \mathrm{H}_{\phi^{\prime}}=-\vec{\rho} \mathrm{H}_{\phi^{\prime}}=\vec{\rho} D_{1} \mathrm{~J}_{1}\left(k_{1}^{\prime} \rho\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{M}=-\mathbf{Z} \times \vec{\rho} E_{p}=-\overrightarrow{\phi^{\prime}} \quad E_{\rho}=\vec{\phi}^{\prime} \quad D_{2} J_{1}\left(k_{1}^{\prime} \rho\right) \tag{17}
\end{equation*}
$$

Fig. 2
Co-ordinate system used in pattern computation (Case A) $a=$ Radius of the rod
($r \theta \phi.)=$ Spherical co ordinates $\left(\rho \phi^{\prime} z\right)=$ Circular cylindrical co-ordinates

1 where,

$$
\begin{align*}
D_{1} & =-B k_{1}^{\prime} \tag{16a}\\
D_{2} & =-\frac{\beta B k_{1}^{\prime}}{\omega \epsilon_{1}} \tag{17a}
\end{align*}
$$

By co-ordinate transformation equations [16] and]17] become
$\mathrm{J}=D_{1} \mathrm{~J}_{1}\left(k_{1}^{\prime} \rho\right)\left[\mathrm{r} \sin \theta \cos \left(\phi^{\prime}-\phi\right)+\vec{\theta} \cos \theta \cos \left(\phi^{\prime}-\theta\right)+\vec{\phi} \sin \left(\phi^{\prime}-\phi\right)\right]$
| $M=D_{2} J_{1}\left(k_{1}^{\prime} \rho\right)\left[-\mathbf{r} \sin \theta \sin \left(\phi^{\prime}-\phi\right)-\vec{\theta} \cos \theta \sin \left(\phi^{\prime}-\phi\right)+\vec{\phi} \cos \left(\phi^{\prime}-\phi\right)\right] \quad$ [19]

- where,

$$
r_{1}=r-\rho \sin \theta \cos \left(\phi^{\prime}-\phi\right) \text { and } d \Sigma=\rho d \rho d \phi^{\prime}
$$

The field at P due to radiation from the end of the rod is

$$
\begin{aligned}
\mathbf{E}_{\rho c}=\left(\frac{-j \exp j(\omega t-k r)}{4}\right) \underset{\rho}{ } \int_{\rho=0}^{a} \int_{\phi^{\prime}=0}^{2 \pi} & {\left[\theta\left(\omega \mu_{0} \mathbf{J}_{\theta}+k \mathbf{M}_{\phi}\right)+\phi^{\prime}\left(\omega \mu_{0} \mathbf{J}_{\phi}-k \mathbf{M}_{\theta}\right)\right] } \\
& \times\left[\exp \left\{j k \rho \sin \theta \cos \left(\phi^{\prime}-\phi\right)\right\} d \rho d \phi^{\prime}\right]
\end{aligned}
$$

which reduces to

$$
\begin{align*}
\mathbf{E}_{p e}= & \left(\frac{B\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2} k k_{1}^{\prime}}{2 r} a \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)\right. \\
& \exp j(\omega t-k r)) \tag{20}\\
& {\left[\left(k \cos \theta+\frac{\beta}{\epsilon r_{1}}\right)\left(-\frac{\mathrm{J}_{0}(k a \sin \theta) \sin \theta-D \epsilon_{r 1} \mathrm{~J}_{1}(k a \sin \theta)}{\left(k_{1}^{\prime}\right)^{2}} \frac{-(k \sin }{\theta)^{2}}\right)\right] }
\end{align*}
$$

where, $\quad D=\frac{k_{1}^{\prime}}{\epsilon_{11}} \frac{J_{0}\left(k_{1}^{\prime} a\right)}{k J_{1}\left(k_{1}^{\prime} a\right)}$

Case B: Surface and End Radiation.
The resultant field at P due to radiation from both surface and end is

$$
\mathbf{E}_{P}=\mathbf{E}_{P S}=+\mathbf{E}_{p p}
$$

which reduces to

$$
\begin{equation*}
\left|E_{\mathrm{p}}\right|=\left[\left(A^{\prime}\right)^{2}+\left(B^{\prime}\right)^{2}+2 A^{\prime} B^{\prime} \sin x\right]^{1 / 2} \tag{21}
\end{equation*}
$$

where, $\quad x=(L / 2)(\beta-k \cos \theta)$

$$
\begin{align*}
A^{\prime}= & \left(\frac{B}{2 r}\left\{\frac{\mu_{0}}{\epsilon_{0}}\right\}^{1 / 2} k k_{1}^{\prime} L a \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)\right) \times \\
& \left(\frac{\sin x}{x}\left\{\mathrm{~J}_{0}(k a \sin \theta) \sin \theta-C \mathrm{~J}_{1}(k a \sin \theta\}\right)\right. \tag{21a}\\
B^{\prime}= & \left(\frac{B\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2} k k_{1}^{\prime} a \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)}{2 r}\right) \times \\
& \left(\left\{k \cos \theta+\frac{\beta}{\epsilon r_{1}}\right\}\left\{\frac{\mathrm{J}_{0}(k a \sin \theta) \sin \theta-D \epsilon_{r_{1}} \mathrm{~J}_{1}(k a \sin \theta)}{\left(k_{1}^{\prime}\right)^{2}-(k \sin \theta)^{2}}\right\}\right) \tag{2lb}
\end{align*}
$$

3.4 Radiation Patterns.

Radiation patterns (some of which are shown in Fig. 3) computed with the aid of a digital computer (Type Elliot 803) for L varying from λ_{0} to $20 \lambda_{0}$ and $a=1.27 \mathrm{~cm}$. and a varying from 1.27 cm . to 2.54 cm . for $L=10 \lambda_{0}$ show that
(i) For rods of smaller radii, the nature of the patterns and positions of maxima remain the same in class A and B. But in case B. the side lobe levels are higher than those in Case A.
(ii) For rods of larger radii, position of major lobe in cases A and B are different.
(iii) In all the cases, the radiation patterns have null in the forward direction ($\theta=0^{\circ}$).

Figures 4 and 5 showing the variation of the position of first maxima and major lobe with respect to the length of the rod indicate (iv) a shift of the first maxima towards the axis as L is varied from λ_{0} to $10 \lambda_{0}$ The position then shifts away from the axis as L is increased from $10 \lambda_{0}$ to $12 \lambda_{0}$. As L is increased further from $12 \lambda_{0}$ to $20 \lambda_{0}$. the maxima shifts towards the axis.
(v) The position of first maxima and major lobe with respect to the radius of the rod is very sensitive to changes in radius of the rod (See Figures 6 and 7).
(vi) The variation of the number of lobes as a function of Length ' L ' and radius ' a ' of the rod is shown in Figures 8 and 9. Only those lobes which are above $-20 d b$ level are considered. The number of lobes increases with increase in length, whereas, the number of lobes first increases with increasing radius and then decreases.

Fig. 3
Radiation patterns (power) of uniform dielectric rods. (Theoretical) E_{0} mode
$L=$ Lenth of the rod $\quad a=$ Radius of the rod $\quad \lambda_{0}=3.14 \mathrm{~cm}$.

- Case A : Considering the surface radiation only
.... Case B: Considering the surface and free end radiation

Fig. 4
Position of first maximum vs L / λ_{0} for uniform dielectric rod

Fig. 5
Position of major lobe vs L / λ_{0} for uniform dislectric rod $L=$ Length of the rod
$a=$ Radius of the roj $\lambda_{0}=3.14 \mathrm{~cm}$.

Fig. 6
Position of first maximum vs a / λ_{0} for uniform dielectric rod

Fig. 7
rosition of major tohe vs a/ λ_{0} for uniform die'ectric rod L-Length of the rod

$$
\lambda_{0}=3.14 \mathrm{~cm} .
$$

FIG. 8
Number of lobes vs L / λ_{0} for uniform dielectsic rod

Fig. 9
Number of lobes vs a / λ_{0} for uniform dielectric rod
$L=$ Length of the rod
$a=$ radius of the rod
$\lambda_{0}=3.14 \mathrm{~cm}$.
(vii) The 3-db beam width of the major lobe decreases with increasing length of the rod (See Fig. 10), whereas, the $3-d b$ beam width of the major lobe remains almost the same within ± 2 with increasing radius of the rod (See Fig. 11).

A complete analysis of the radiation patterns of uniform dielectric rod is given in Table 2 and 3.

4. Radiation from Corrugated Dielectric Rod

In this case also the radiation pattern calculations have been made for , case A and case B.

4.1 Field Components

! The field components in the three different regions (See Fig. 12) of the corrugated dielectric rod are

Region 1: a

$$
\begin{align*}
E_{z 1} & =A_{1} \mathrm{~J}_{0}\left(k_{1} \rho\right) \exp (-j \beta z) \\
E_{\rho 1} & =A_{1}\left(j \beta / k_{1}\right) \mathrm{J}_{1}\left(k_{1} \rho\right) \exp (-j \beta z) \\
\mathrm{H}_{\phi^{\prime} 1} & =A_{1}\left(j \omega \epsilon_{1} / k_{1}\right) J_{1}\left(k_{1} \rho\right) \exp (-j, 3 z) \tag{22}
\end{align*}
$$

Region 2: $a \leqslant \rho \leqslant b$

$$
\begin{align*}
E_{z 2} & =A_{2} \mathrm{~J}_{0}\left(k_{2} \rho\right)+A_{3} Y_{0}\left(k_{2} \rho\right) \exp (-j \beta z) \\
E_{2} & =\left(j \beta / k_{2}\right)\left[A_{2} \mathrm{~J}_{1}\left(k_{2} \rho\right)+A_{3} Y_{1}\left(k_{2} \rho\right)\right] \exp (-j \beta z) \\
\mathrm{H}_{\phi^{\prime} 2} & \left.=\left(j \omega \epsilon_{2} / k_{2}\right)\left[A_{2} \mathrm{~J}_{1}{ }^{\prime} k_{2} \rho\right)+A_{3} Y_{1}\left(k_{2} \rho\right) \exp (-j \beta z)\right] \tag{23}
\end{align*}
$$

Region 3: $\rho \geqslant b$

$$
\begin{align*}
E_{23}= & A_{4} \mathrm{H}_{0}^{(1)}\left(k_{3} \rho\right) \exp (-j \beta z) \\
E_{3}= & \left(j \beta / k_{3}\right) \mathrm{H}_{1}^{(1)}\left(k_{3} \rho\right) \exp (-j \beta z) \\
\mathrm{H}_{\phi^{\prime}}= & A_{4}\left(j \omega \epsilon_{0} / k_{3}\right) \mathrm{H}_{1}^{(1)}\left(k_{3} \rho\right) \exp (-j \beta z) \tag{24}\\
\text { where, } \quad & \epsilon_{2}=\epsilon_{0} \epsilon_{r 2}=\epsilon_{0}\left(\frac{\left.\sqrt{1} \epsilon_{r 1}\right) t+s}{t+s}\right)^{2}
\end{align*}
$$

is the effective permittivity of the corrugated medium derived by equating the optical path lengths and assuming plane wave propagation in the second medium. (See Fig. 12)

Fig. 10
$3 d b$ beam width of thajor lobe vs L / λ_{0} for uniform dielectric rod

Fig. 11
$3 d b$ beam width of majar lobe vs a / λ_{0} for uniform dielectric rod L-Length of the rod $a \Rightarrow$ Radius of the rod $\lambda_{0}=3.14 \mathrm{~cm}$.

Fig. 12
Corrugated dielectric rod
$a=$ Radius of the inner rod $b=$ Radius of dise $t=$ Thickness of disc $s=$ Spacing between discs
$\epsilon_{1}=$ Permittivity of medium 1
$\epsilon_{2}=$ Permitivity of medium 2
$\epsilon_{0}=$ Permittivity of free space (mediun 3)
$\epsilon_{0}=$ Permeability of free space
$: P \leq a$
$: a \leq P \leq b$
$: P>b$
Medium 1: $p \leqslant a$
Medium 2: $a \leqslant \rho \leqslant b$
Medium 3: $p \geqslant b$

1 4.2 Evaluation of the Radiation Field of a corrugated Dielrctric Rod

Case A : The electric and magnetic current sheets
On the surface coincident with the circumference ($\rho=b$) of the dielectric I discs and extending all along the length of the rod are

$$
\begin{equation*}
\mathbf{J}=\mathbf{z} \mathrm{H}_{\phi^{\prime}}=\mathrm{Z} C_{3}^{\prime} \exp (-j \beta z) \tag{26}
\end{equation*}
$$

where, $\quad C_{3}^{\prime}=\left(j \omega \epsilon_{2} / k_{2}\right)\left[A_{2} J_{1}\left(k_{2} b\right)+A_{3} Y_{1}\left(k_{2} b\right)\right]$

$$
\begin{equation*}
\mathbf{M}=\vec{\phi}^{\prime} C_{2}^{\prime} \exp (-j \beta z) \tag{26a}
\end{equation*}
$$

! where, $\quad C_{2}^{\prime}=A_{2} \mathrm{~J}_{0}\left(k_{2} b\right)+A_{3} Y_{0}\left(k_{2} b\right)$
The far field due to the surface radiation from the corrugated rod is 1 obtained similarly as in previous section.

$$
\begin{aligned}
\mathbf{E}_{P S}= & {\left[(-\mathrm{j} b / 4 \pi r) \exp j(\omega t-k r) \int_{0}^{L} \exp -j(\beta z+k z) \cos \theta d z\right] \times } \\
& {\left[\left\{\vec{\theta} \int_{0}^{2 \pi} \omega \mu_{0}(-\sin \theta) C_{3}^{\prime} \exp \left[j u \cos \left(\phi^{\prime}-\phi\right)\right] d \phi^{\prime}\right\}\right.} \\
& +\left\{\vec{\theta} \int_{0}^{2 \pi} k C_{2}^{\prime} \cos \left(\phi^{\prime}-\phi\right) \exp j u \cos \left(\phi^{\prime}-\phi\right) d \phi^{\prime}\right\} \\
& \left.+\left\{\vec{\phi} \int_{0}^{2 \pi} k C_{2}^{\prime} \cos \theta \sin \left(\phi^{\prime}-\phi\right) \exp j u \cos \left(\phi^{\prime}-\phi\right) d \phi^{\prime}\right\}\right]
\end{aligned}
$$

which reduces to

$$
\begin{align*}
\mathbf{E}_{P S}= & \left(\left\{-\frac{1}{2 r} \frac{b L k^{2} \epsilon_{r 2}}{k_{2}}\right\}\left\{A_{2} \mathrm{~J}_{1}\left(k_{2} h\right)+A_{3} Y_{1}\left(k_{2} b\right)\right\}\{\exp -(\mathrm{j} L / 2)(\beta-k \cos \theta)\}\right. \\
& \left.\times\left\{\mathrm{J}_{v}(k b \sin \theta) \sin \theta-C^{\prime \prime} \mathrm{J}_{1}(k b \sin \theta)\right\} \frac{\sin x}{x}\right) \tag{28}
\end{align*}
$$

where,

$$
\begin{align*}
u & =k a \sin \theta \text { and } x=(L / 2)(\beta-k \cos \theta) \\
C^{n} & =\frac{k_{2}}{k \epsilon_{r 2}}\left(\frac{A_{2} \mathrm{~J}_{0}\left(k_{2} b\right)+A_{3} Y_{0}\left(k_{2} b\right)}{A_{2} \mathrm{~J}_{1}\left(k_{2} b\right)+A_{3} Y_{1}\left(k_{2} b\right)}\right) \tag{28a}
\end{align*}
$$

Case A^{\prime} : Free End Radiation

The free end is assumed to be terminated by a disc of radius ' a '. The electric and magnetic cu:rent sheets are

$$
\begin{align*}
\mathbf{J} & =\mathbf{z} \times \overrightarrow{\phi^{\prime}} \mathrm{H}_{\phi^{\prime}}=-\vec{\rho} \mathrm{H}_{\phi^{\prime}}=\stackrel{\rightharpoonup}{\rho} D_{1}^{\prime} \mathrm{J}_{1}\left(k_{1} \rho\right) \tag{29}\\
\mathbf{M} & =-\mathbf{z} \times \vec{\rho} E_{\rho}=-\overrightarrow{\phi^{\prime}} E_{\rho}=\phi^{\prime} D_{2}^{\prime} \mathrm{J}_{1}\left(k_{1} \rho\right) \tag{29.1}
\end{align*}
$$

wheee, $D_{1}^{\prime}=-\left(\mathrm{j} \omega \epsilon_{1} / k_{1}\right) A_{1}$
and $\quad D_{2}^{\prime}=-\left(\mathrm{j} \beta A_{1} / k_{1}\right)$
The field at P due to radiation from the end of the rod is

$$
\begin{align*}
E_{P_{c}}= & {\left[\left(\mathrm{j} A_{2}\right)\left\{\frac{A_{1}}{A_{2}}\left(\frac{k^{2} \epsilon_{r}}{k_{1}} \frac{\cos \theta}{k_{1}}+\frac{k \beta}{k_{1}}\right) a\right\}\right] } \\
& \left(\frac{k_{1} \mathrm{~J}_{1}(k a \sin \theta) \mathrm{J}_{0}\left(k_{1} a\right)-(k \sin \theta) \mathrm{J}_{1}\left(h_{1} a\right) \mathrm{J}_{0}(k a \sin \theta)}{k_{1}^{2}-\frac{(k \sin \theta)^{2}}{}}\right) \tag{31}
\end{align*}
$$

Case B: Surface and Frec End Radiation

The rusultant field a: P due to radiation from the surface as well as end is

$$
\mathbf{E}_{P}=\mathbf{E}_{P S}+\mathbf{E}_{P e}
$$

which yields

$$
\begin{equation*}
\left|E_{P}\right|=\left[\left(A^{\prime \prime}\right)^{2}+\left(B^{\prime \prime}\right)^{2}+w A^{\prime \prime} B^{\prime \prime} \sin x\right]^{1 / 2} \tag{32}
\end{equation*}
$$

where,

$$
x=(L / 2)(\beta-k \cos \theta)
$$

$$
\begin{align*}
A^{\prime}= & \left\{\frac{A_{2}}{2 r}\left(\frac{b L k^{2} \epsilon_{r 2}}{k_{2}}\right)\left\{\mathrm{J}_{1}\left(k_{2} h\right)+\left(A_{3} / A_{2}\right) Y_{1}\left(k_{2} b\right)\right\}\right\}\left(\mathrm{J}_{0}(k b \sin \theta) \sin \theta\right. \\
& -\frac{k_{2}}{k \epsilon}-\left[\frac{\mathrm{J}_{0}\left(k_{2} b\right)+\left(A_{3} / A_{2}\right) Y_{0}\left(k_{2} b\right)}{\mathrm{J}_{1}\left(k_{2} b\right)+\left(A_{3} / A_{2}\right) Y_{1}\left(k_{2} b\right)}\right] \mathrm{J}_{1}(k b \sin \theta)\left(\frac{\sin x}{x}\right) \tag{32a}\\
B^{\prime \prime}= & \left\{A_{2}\left(\frac{A_{1}}{A_{2}}\right) \frac{k a}{k_{1}}\left(k \epsilon_{r 1} \cos \theta+\beta\right) \times\right. \\
& \left.\times\left(\frac{k_{1} \mathrm{~J}_{1}(k a \sin \theta) \mathrm{J}_{0}\left(k_{1} a\right)-(k \sin \theta) \mathrm{J}_{1}\left(k_{1} a\right) \mathrm{J}_{0}(k a \sin \theta)}{k_{1}^{2}-(k \sin \theta)^{2}}\right)\right\} \\
\frac{A_{3}}{A_{2}}= & \frac{\left(k_{3} / k_{2}\right) \epsilon_{r 2}\left[\mathrm{H}_{0}^{(1)}\left(k_{3} b\right) /\left\{\left(\mathrm{H}_{1}^{(1)}\left(k_{3} b\right)\right\}\right] \mathrm{J}_{1}\left(k_{2} b\right)-\mathrm{J}_{0}\left(k_{2} b\right)\right.}{Y_{0}\left(k_{2} b\right)-\left(k_{3} \epsilon_{r 2}\right.} /\left[k_{2}\right)\left[\mathrm{H}_{0}^{\prime 1}\left(k_{3}\right) /\left\{\mathrm{H}_{1}^{(1)}\left(k_{3} b\right)\right\}\right] Y_{\mathrm{t}}\left(k_{2} b\right) \tag{32c}
\end{align*}
$$

land

Numerical Computations of Radiation Patterns

The radiation power patterns have been computed in both the cases A and B as functions of t, s, a and b. Some of the computed power patterns normalised with respect to the maximum value of the radiated power are shown in figures 13 and 14. The following observations based on the results of numerical computations may be of interest
(i) The radiation patterns of the corrugated dielectric rods have, in seneral, similar characteristics as that of the uniform dielectric rods.
(ii) The positions of the maxima appear to be almost the same in the two cases A and B
(iii) The intensity of the minor lobes appear to differ in the two cases A and B
(iv) Effect of variation of ' s ':

The variation of the position of first maxima ard the major lobe with respect to s / λ_{0} for the following two structures

$$
\begin{array}{lll}
t=0.15875 \mathrm{c.m} . & a=0.9525 \mathrm{~cm} . & b=1.905 \mathrm{~cm} . \\
t=0.15875 \mathrm{~cm} . & a=0.9525 \mathrm{~cm} . & b=1.5875 \mathrm{~cm} .
\end{array}
$$

FIG. 13
Radiation patterns (power) of corrugated dielectric rods. (Theoretical) E, mode

$L=$ Length of the rod	$t=$ Disc thickness	$s=$ Disc spacing
$a=$ Inner rod radius	$b=$ Disc radius	$\lambda_{0}=3.14 \mathrm{~cm}$.

- Case A : Considering the surface radiation only
-.. Case B:Considering the surface and free end radiation

Fig. 14
Radiation patterns (power) of corrugated dielectric rods. (Theoretical) E_{0} mode
$L=$ Length of the rod $a=$ Inner rod radius
$t=$ Dise thickness
$b=$ Disc radius
s= Disc spacing
$\lambda_{0}=3.14 \mathrm{~cm}$.

- Case A : Considering the surface radiation only
. . . . Case B: Considering the surface and free end radiation.
and ' s ' varying from 0.1 cm . to 1.6 cm . shows (See Figures 15 andl6) that
(a) the position of the first maxima and the position of the major lube oscillates in the beginning and then become eonstant for large values of s / λ_{0}. The nature of variation in the two cases A and B is almost the same.
(b) The number of lobes decreases with increasing s / λ_{0} in the beginning and then becomes fairly constant. There is a marked difference in the number of lobes between the two cases A and B (See Figures 17 and 18).
(c) The $3-d b$ beam width of the major lobe oscillates as a function of s / λ_{0} around a mean value of about $\pm 2^{\circ}$ to $\pm 3^{\circ}$ (See Figures 19 and 20).
(v) Effect of variation of ' a '.

Figures (21-24) show the different characteristics as fuctions of a / λ_{0} for the following combinations of structure parameters

$$
\begin{array}{lll}
t=0.3175 \mathrm{~cm}, & s=0.5 \mathrm{~cm} . & b=2.54 \mathrm{~cm} \\
t=0.15876 \mathrm{~cm} . & s=1 \mathrm{~cm} . & b=1.5875 \mathrm{~cm} .
\end{array}
$$

The characteristics are very sensitive to the variation of ' a '.

(vi) Effect of variation of ' b '

Figures (25-28) show the variation of characteristics as a function of b / λ_{0} for the following combinations of structure parameters

$$
\begin{array}{lll}
t=0.3175 \mathrm{~cm}, & s=0.5 \mathrm{~cm}, & a=1.27 \mathrm{~cm} \\
t=0.15875 \mathrm{~cm}, & s=0.5 \mathrm{~cm}, & a=1.27 \mathrm{~cm}
\end{array}
$$

The characteristics are sensitive to the changes of b / λ_{0} when its values are smaller but the characteristics show fairly constant behaviour for larger values of b / λ_{0}.

5. Gain

The radiation pattern consists of an off-axis major lobe and a number of secondary lobes. The gain is referred to the direction of maximum radiation.

5.1 Gain of Uniform Dielectric Rod

If the radiation from the junction of the launcher and the rod is ignored, the total power flow $P_{z t}$ which consists power flow $P_{z}^{!}$inside the rod and power flow P_{z}^{0} outside the rod is given by

$$
\begin{equation*}
P_{z t}=P_{4}^{1}+P_{z}^{0} \tag{33}
\end{equation*}
$$

Fig. 15
Position of first maximum vs s / λ_{0} for coorrugated dielectric rod

Fig. 16
Position of major lobe vs s / λ_{0} for corrugated dielectrie rod
L =Length of the rod $t=$ Disc thickness
$s=$ Disc spacing $a=$ Inner rod radius
$h=$ Disc radius $\lambda_{0}=3.14 \mathrm{~cm}$.

Fig. 17
Number of lobes vs s / λ_{0} for ccrrugated dielectric rod

Fig. 18
Number of lobes vs s / λ_{0} for corrugated dielectric rod
L-Length of the rod , Dise thickress
$s=$ Disc spacing $a=$ Intner rod radius
$b=$ Dise radius $\lambda_{0}-3.14 \mathrm{~cm}$

Fig. 19
Beam width of the major lobe vs s / λ_{0} for corrugated dialectric rod

Fig. 20
Beam width of the major lobe vs s / λ_{0} for corrugated dielectric rod
$L=$ Length of the rod $t=$ Disc thickness
$5 \approx$ Dise spacing
$a=$ Inner rod radius
$b=$ Disc radius $\lambda_{0}=3.14 \mathrm{~cm}$.

Fig. 21
Position of first maximum vs a / λ_{0} for corrugated dielectric rod

Fig. 22
Position of major lobe vs a/ λ_{0} for corrugated dielectric rod
$L=$ Length of the rod t-Dise thickness
$s=$ Dise spacing a_{x} Inner rod radius
$b=$ Disc radius $\lambda_{0}=3.14$

Fig. 23
Bearn width of major lobe vs al λ_{0} far corrugated diclectfic rod

Fig. 24
B :am width of major lobe vs b / λ_{0} for corrugated dielectric rod
$L=l$ engih of the rod 1. Dise thickness
$s=$ Dise spacing $a=$ Inner rod radius
$b=$ Disc radius
$\lambda_{0}=3.14 \mathrm{~cm}$.

Fig. 25
Number of lobes vs a / λ_{0} for corrugated dielectric rod

Fig. 26
Number of lobes vs b / λ_{0} for corrugated dielectric rod
L-Length of the rod $t=$ Disc thickness
$s=$ Disc spacing
a-Inner rod radius
$b=$ Disc radius
$\lambda_{0}=3.14 \mathrm{~cm}$.

Fig, 27
Position ef first maximum vs $b / \lambda_{\boldsymbol{a}}$ for corragated dielectrie rod

Fig. 28
Position of major lobe vs b / λ_{0} for corrugated dielectric rod
$L=$ Length of the rod
: - Disc thickness
s - Disc spacing a-Inner rod radius
b-Disc radius $\lambda_{0}=3.14 \mathrm{~cm}$.
where,

$$
\begin{equation*}
P_{z}^{i}=\frac{1}{2} \operatorname{Re} \int_{\phi^{\prime}=0}^{2 \pi} \int_{\rho=0}^{a} E_{\rho_{1}} H_{\phi^{\prime} i}^{*} \rho d \rho d \phi^{\prime} \tag{33a}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{z}^{0}-\frac{1}{2} \operatorname{Re} \int_{\phi^{\prime}=0}^{2 \pi} \int_{\rho=0}^{\infty} E_{\rho 2} H_{\phi^{\prime} z}^{*} \rho d \rho d \phi^{\prime} \tag{33b}
\end{equation*}
$$

which after substitution of appropriate components and integration reduce to

$$
\begin{align*}
\mathrm{P}_{z}^{i}= & \frac{1}{2} \operatorname{Re}\left(\frac{B^{2}\left(k_{1}^{\prime}\right)^{2} \beta}{\omega \epsilon_{1}} \int_{0}^{2 \pi} \int_{0}^{a} \rho \mathrm{~J}_{1}^{2}\left(k_{1}^{\prime} \dot{\rho}\right) d \rho d \phi^{\prime}\right) \\
& =\frac{\pi B^{2} \beta u^{2}\left(k_{1}^{\prime}\right)^{2}}{2 \omega \epsilon_{0}} \frac{\epsilon_{r 1}}{}\left\{\left\{\mathrm{~J}_{0}\left(k_{1}^{\prime} a\right)\right\}^{2}+\left\{\mathrm{J}_{1}\left(k_{1}^{\prime} a\right)\right\}^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{1}^{\prime} a\right) \mathrm{J}_{1}\left(k_{1}^{\prime} a\right)}{k_{1}^{\prime} a}\right)\right\} \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{P}_{z}^{0} & =\frac{1}{2} \operatorname{Re} \frac{\pi D^{2} \beta k_{2}^{\prime}\left(k_{2}^{\prime}\right) *}{\omega \epsilon_{0}} \int_{a}^{\infty} \rho H_{1}^{(1)}\left(k_{2}^{\prime}\right) \mathrm{H}_{1}^{(2)}\left(k_{2}^{1}{ }^{*}\right) d \dot{\rho} \\
& =\operatorname{Re}\left\{\frac{\pi D^{3}\left(k_{2}^{\prime}\right)^{2} \beta a^{2}}{2 \omega \epsilon_{0}}\left[\mathrm{H}_{0}^{(1)}\left(k_{2}^{\prime} a\right)\right]^{2}+\left[\mathrm{H}_{1}^{(1)}\left(k_{2}^{\prime} a\right)\right]^{2}-\left(\frac{2 \mathrm{H}_{0}^{(1)}\left(k_{2}^{\prime} a\right) \mathrm{H}^{(1)}\left(k_{2}^{\prime} a\right)}{k_{2}^{\prime} u}\right)\right\} \tag{35}
\end{align*}
$$

The constants B and D are related by boundary conditions as follows

$$
\begin{equation*}
D=\frac{B}{\epsilon_{r 1}}\left(k_{1}^{\prime} / k_{2}^{\prime}\right)^{2} \frac{\mathrm{~J}_{0}\left(k_{1}^{\prime} a\right)}{\mathrm{H}_{0}^{(1)} \frac{\left(k_{2}^{\prime} a\right)}{}} \tag{36}
\end{equation*}
$$

The total power flow in the z-direction is, therefore given by

$$
\begin{aligned}
\mathrm{P}_{2 t}= & \left(\frac{\pi B^{2} \beta a^{2}\left(k_{1}^{\prime}\right)^{2}}{2 \omega \epsilon_{0} \epsilon_{r 1}}\right)\left[\left\{\left\{\mathrm{J}_{0}\left(k_{1}^{\prime} a\right)\right\}^{2}+\left\{\mathrm{J}_{1}\left(k_{1}^{\prime} a\right)\right\}^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{1}^{\prime} a\right) \mathrm{J}_{1}\left(k_{1}^{\prime} a\right)}{k_{1}^{\prime} a}\right)\right.\right. \\
& +\left\{\frac{1}{\epsilon_{r 1}}\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)^{2}\left(\frac{\mathrm{~J}_{0}\left(k_{1}^{\prime} a\right)}{\mathrm{H}_{0}^{(1)}\left(k_{2}^{\prime} a\right)}\right)^{2}\right\}\left\{\left[\mathrm{H}_{0}^{(1)}\left(k_{2}^{\prime} a\right)\right]^{2}+\left[\mathrm{H}_{1}^{(1)}\left(k_{2}^{\prime} a\right)\right]^{2}\right. \\
& \left.\left.-\left(\frac{2 \mathrm{H}_{0}^{(1)}\left(k_{2}^{\prime} a\right) \mathrm{H}_{1}^{(1)}\left(k_{2}^{\prime} a\right)}{k_{2}^{\prime} a}\right)\right\}\right]
\end{aligned}
$$

5.1.2 Radiated Field

The radiated field at $\mathrm{P}(r, \theta, \phi)$ due to radiation from the surfaces only is

$$
\begin{align*}
E_{\mathrm{PS}}= & B \cdot\left\{\frac{1}{2 r}\left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{1 / 2} a k k_{1}^{\prime} \mathrm{J}_{1}\left(k_{1}^{\prime} a\right)\right\}\left(L \frac{\sin \frac{1}{2} L(\beta-k \cos \theta)}{\frac{1}{2} L(\beta-k \cos \theta)}\left\{\mathrm{J}_{0}(k a \sin \theta)\right\} \sin \theta\right. \\
& \left.-\frac{k_{1}^{\prime} \mathrm{J}_{0}\left(k_{1}^{\prime} a\right)}{\epsilon_{r 1} k \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)}-\mathrm{J}_{1}(k a \sin \theta)\right) \tag{38}
\end{align*}
$$

The radiated field at $\mathrm{P}(r, \theta, \phi)$ due to radiation from the surface and free end of the rod is calculated from the expression

$$
\begin{equation*}
\left|E_{\mathrm{P}}\right|=\left[E_{\mathrm{PS}}^{2}+E_{\mathrm{Pe}}^{2}+2 E_{\mathrm{PS}} E_{\mathrm{Pe}} \sin (L / 2)(\beta-k \cos \theta)\right]^{1 / 2} \tag{39}
\end{equation*}
$$

where.

$$
\begin{align*}
E_{\mathrm{Pe}}= & B\left\{\frac{1}{2 r}\left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{1 / 2} a k k_{1}^{\prime} \mathrm{J}_{1}^{\prime} a\right)\left(k \cos \theta+\frac{\beta}{\epsilon_{r 1}}\right) \times \\
& \left.\times\left(\frac{\mathrm{J}_{0}(k a \sin \theta) \sin \theta \cdots\left[k_{1}^{\prime} \mathrm{J}_{0}\left(k_{1}^{\prime} a\right) / k \mathrm{~J}_{1}\left(k_{1}^{\prime} a\right)\right] k_{1}^{\prime} \mathrm{J}_{1}(k a \sin \theta)}{\left(k_{1}^{\prime}\right)^{2}-(k \sin \theta)^{2}}\right)\right\} \tag{40}
\end{align*}
$$

5.1.3 Numerical Computation of Gain of Uniform Dielectric Rod

The gain is computed from the following relation [41] and equations [37] and [39].

$$
\begin{equation*}
=\frac{\gamma^{\prime}\left|E_{\mathrm{P}}\right|^{2} / 2 \eta_{0}}{\mathrm{P}_{: t}} \frac{/ 4}{4} \tag{41}
\end{equation*}
$$

where, $\quad \eta_{0}=\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2}$

$$
r=\text { distance of } \mathrm{P}(r, \theta, \phi) \text { from the origin }
$$

$\left|E_{\mathrm{P}}\right|^{2}=$ maximum value of the square of the radiated field
Variation of gain with respect to L / λ_{0} and a / λ_{0} is shown in Figs. 29 and 30 respectively

5.2 Gain of corrugated Dielectrtc Rod

The gain calculations are made in a similar way to that of uniform rod.

5.2.1 Power Flow

The total power flow $P_{s t}$ along the corrugated rod is given by the relation

$$
\begin{equation*}
P_{z t}=P_{z}^{(1)}+P_{z}^{(2)}+P_{z}^{(3)} \tag{42}
\end{equation*}
$$

Fig. 29
Variation of gain with L / λ_{0} for uniform dielectric rod

Fig. 30
Variation of gain with a/ λ_{0} for uniform dielectric rod
where, the power flow in the three regions $P_{z}^{(1)}, P_{z}^{(2)}$ and $P_{z}^{(3)}$ are given respectively by the following relations

$$
\begin{align*}
& P_{z}^{(1)}=\frac{1}{2} \operatorname{Re} \int_{\rho=0}^{a} \int_{\phi^{\prime}=0}^{2 \pi} E_{\rho 1} H_{\phi^{\prime}, 1}^{*} \rho d \rho d \phi^{\prime} \tag{43}\\
& P_{z}^{(2)}=\frac{1}{2} \operatorname{Re} \int_{\rho=0}^{b} \int_{\phi^{\prime}=0}^{2 \pi} E_{\rho_{2}} H_{\phi^{\prime},}^{*} \rho d \rho d \phi^{\prime} \\
& P_{z}^{(3)}=\frac{1}{2} \operatorname{Re} \int_{\phi=b}^{\infty} \int_{\phi^{\prime}=0}^{2 \pi} E_{\rho_{3}} H_{\phi^{\prime},}^{\prime} \rho d \rho d \phi^{\prime} \tag{45}
\end{align*}
$$

which after substitution of appropriate field componerts and integrations become

$$
\begin{align*}
P_{:}^{(1)}= & \left.\frac{\pi \omega \epsilon_{1} \beta a^{2}}{2 k_{1}^{2}} A_{1}^{2}\left\{\left\{\mathrm{~J}_{0}\left(k_{1} a\right)\right\}^{2}+\left\{\mathrm{J}_{1} k_{1} a\right)\right\}^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{1} a\right) \mathrm{J}_{1}\left(k_{1} a\right)}{k_{1} a}\right)\right\} \tag{46}\\
P_{:}^{(2)}= & \left(\frac{\pi \omega \epsilon_{2} \beta}{2 k_{2}^{2}}\right)_{L}^{\Gamma}\left\{b^{2} A_{2}^{2}\right\}\left\{\left[\mathrm{J}_{0}\left(k_{2} b\right)\right]^{2}+\left[\mathrm{J}_{1}\left(k_{2} b\right)\right]^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{2} b\right) \mathrm{J}_{1}\left(k_{2} b\right)}{k_{2} b}\right)\right\} \\
& +\left\{A_{3}^{2} b^{2}\right\}\left\{\left[Y_{0}\left(k_{2} b\right)\right]^{2}+\left[Y_{1}\left(k_{2} b\right)\right]^{2}-\left(\frac{2 Y_{0}\left(k_{2} b\right) Y_{1}\left(k_{2} b\right)}{k_{2} b}\right)\right\} \\
& +\left(\frac{A_{2} A_{3} b^{2}}{2}\right)\left\{2 \mathrm{~J}_{1}\left(k_{2} b\right) Y_{1}\left(k_{2} b\right)-\mathrm{J}_{0}\left(k_{2} b\right) Y_{2}\left(k_{2} b\right)-\mathrm{J}_{2}\left(k_{2} b\right) Y_{0}\left(k_{2} b\right)\right\} \\
& -\left\{a^{2} A_{2}^{2}\right\}\left[\mathrm{J}_{0}\left(k_{2} a\right)\right]^{2}+\left[\mathrm{J}_{1}\left(k_{2} a\right)\right]^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{2} a\right) \mathrm{J}_{1}\left(k_{2} a\right)}{k_{2} b}\right) \\
& -\left\{a^{2} A_{3}^{2}\right\}\left[Y_{0}\left(k_{2} a\right)\right]^{2}+\left[Y_{1}\left(k_{2} a\right)\right]^{2}-\left(\frac{2 Y_{0}\left(k_{2} a\right) Y_{1}\left(k_{2} a\right)}{k_{2} a}\right) \\
& \left.-\left(\frac{a^{2} A_{2} A_{3}}{2}\right)\left\{2 \mathrm{~J}_{1}\left(k_{2} a\right) Y_{1}\left(k_{2} a\right)-\mathrm{J}_{0}\left(k_{2} a\right) Y_{2}\left(k_{2} a\right)-J_{2}\left(k_{2} a\right) Y_{0}\left(k_{2} a\right)\right\}\right] \tag{47}\\
P_{z}^{(3)=} & \frac{\pi \omega \epsilon_{0} b^{2} \beta}{2 k_{3}^{2}} A_{4}^{2}\left\{\left\{H_{0}^{(1)}\left(k_{3} b\right)\right\}^{2}+\left\{H_{1}^{(1)}\left(k_{3} b\right)\right\}^{2}-\left(\frac{2 H_{0}^{(1)}\left(k_{3} b\right) H_{1}^{(1)}\left(k_{3} b\right)}{k_{3} b}\right)\right\} \tag{48}
\end{align*}
$$

A_{3} and A_{4} are expressed in terms of A_{2} by asing the boundry conditions at ρ. a and $\rho=b$

The total power flow is

$$
\begin{align*}
& P_{z 1}=\frac{\pi \beta k A_{2}^{2}}{2 \eta_{0}}\left[\left(\frac{a^{2} \epsilon_{r 1}}{k_{1}^{2}} C_{2}^{2}\right)\left\{\left[\mathrm{J}_{0}\left(k_{1} a\right)\right]^{2}+\left[\mathrm{J}_{1}\left(k_{1} a\right)\right]^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{1} a\right)}{k_{1} a} \frac{\mathrm{~J}_{1}\left(k_{1} a\right)}{\cdot}\right)\right\}\right. \\
& +\binom{b^{2} \epsilon_{r 2}}{k_{2}^{2}}\left\{\left[\mathrm{~J}_{0}\left(k_{2} b\right)\right]^{2}+\left[\mathrm{J}_{1}\left(k_{2} b\right)\right]^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{2} b\right) \mathrm{J}_{1}\left(k_{2} b\right)}{k_{2} b}\right)\right\} \\
& +\left\{b^{2} C_{1}^{2}\right\}\left\{\left[Y_{0}\left(k_{2} b\right)\right]^{2}+\left[Y_{1}\left(k_{2} h\right)\right]^{2}-\left(\frac{2 Y_{0}\left(k_{2} b\right) Y_{1}\left(k_{2} b\right)}{k_{2} b}\right)\right\} \\
& +\left\{b^{2} C_{1}\right\}\left(\mathrm{J}_{1}\left(k_{2} b\right) Y_{1}\left(k_{2} b\right)-\frac{\mathrm{J}_{0}\left(k_{2} b\right)}{k_{2} b} \frac{Y_{1}\left(k_{2} b\right)}{b}+\mathrm{J}_{0}\left(k_{2} b\right) Y_{0}\left(k_{2} b\right)\right. \\
& \left.-\frac{Y_{0}\left(k_{2} b\right) \mathrm{J}_{1}\left(k_{2} h\right)}{k_{2} b}\right)-\left\{a^{2}\right\}\left\{\left[\mathrm{J}_{0}\left(k_{2} a\right)\right]^{2}+\left[\mathrm{J}_{1}\left(k_{2} a\right)\right]^{2}-\left(\frac{2 \mathrm{~J}_{0}\left(k_{2} a\right) \mathrm{J}_{1}\left(k_{2} a\right)}{k_{2} a}\right)\right\} \\
& -\left\{a^{2} C_{1}^{2}\right\}\left\{\left[Y_{0}\left(k_{2} a\right)\right]^{2}+\left[Y_{1}\left(k_{2} a\right)\right]^{2}-\left(\frac{2 Y_{0}\left(k_{2} a\right) Y_{1}\left(k_{2} a\right)}{k_{2} a}\right)\right\} \\
& -\left\{a^{2} C_{1}\right\}\left\{J_{1}\left(k_{2} a\right) Y_{1}\left(k_{2} a\right)-\frac{J_{0}\left(k_{2} a\right) \mathrm{J}_{1}\left(k_{2} a\right)}{k_{2} a}\right. \\
& \left.+\mathrm{J}_{0}\left(k_{2} a\right) Y_{0}\left(k_{2} a\right)-\frac{Y_{0}\left(k_{2} a\right)}{k_{2} a},\left(k_{2^{\prime}}\right)\right\} \\
& \left.+\left(\frac{b^{2} C_{3}^{2}}{k_{3}^{2}}\right)\left\{\left[H_{0}^{(1)}\left(k_{3}^{\prime}\right)\right]^{2}+\left[H_{1}^{(1)}\left(k_{3} h\right)\right]^{2}-\left(\frac{2 H_{0}^{(1)}\left(\frac{\left(k_{3} h\right) H_{1}^{(1)}}{k_{3} h}-\left(k_{3} h\right)\right.}{}\right)\right\}\right] \tag{49}
\end{align*}
$$

where, $\quad C_{1}=\frac{\left[k \epsilon_{t 2}\right.}{Y_{0}\left(k_{2} b\right)-\left[k_{2}\right] \mathrm{J}_{2}\left(k_{2} b\right)-\mathrm{J}_{0}\left(k_{2} b\right)}$

$$
\begin{align*}
& C_{1}=\frac{\mathrm{J}_{0}\left(k_{2} a\right)+C_{1} Y_{0}\left(k_{2} a\right)}{\mathrm{J}_{0}\left(k_{1} a\right)} \tag{49h}\\
& C_{3}=\frac{\mathrm{J}_{0}\left(k_{2} b\right)+C_{1} Y_{0}\left(k_{2} b\right)}{H_{0}^{(1)}\left(k_{3} b\right)} \tag{49c}\\
& C=\frac{k_{3}}{k} H_{0}^{(1)}\left(k_{3} b\right) \tag{49d}\\
& H_{1}^{(1)}\left(k_{3} b\right)
\end{align*}
$$

5.2.2 Radiated Field

Case A : The radiated field at $\mathrm{P}(r, \theta, \phi)$ is obtained from equation [28].

$$
\left.\begin{array}{rl}
E_{\mathrm{p}_{\mathrm{c}}}- & {\left[\left\{\frac{\left.\left.L b k^{2} \epsilon_{r_{2}} A_{2}\right\}\left\{\mathrm{~J}_{1}\left(k_{2} b\right)+C_{1} Y_{1}\left(k_{2} b\right)\right\}\right] \times}{}\right.\right.} \\
& {\left[\left\{\mathrm{J}_{\mathrm{a}}(k b \sin \theta)-C \mathrm{~J}_{i}(k b \sin \theta) \sin \theta\right\}\right]\left(\frac{\sin \frac{1}{2} L}{\frac{1}{2} L}(\beta-k \cos \theta\right.} \tag{50}\\
\beta-k \cos \theta
\end{array}\right)
$$

Case B : The radiation field at P is obtained from equation [32].

$$
\begin{equation*}
\left|E_{\mathrm{P}}\right|=\left[E_{\mathrm{PS}}^{2}+E_{\mathrm{Pe}}^{2}+2 E_{\mathrm{PS}} E_{\mathrm{Pe}} \sin (L / 2)(\beta-k \cos \theta]^{1 / 2}\right. \tag{51}
\end{equation*}
$$

where,

$$
E_{\mathrm{Pe}_{e}}=\left(\begin{array}{c}
C_{2} k a \\
k_{1}
\end{array}\left(k \epsilon_{r} \cos \theta+\beta\right)\right)\left(\frac{k_{1} \mathrm{~J}_{i}(k a \sin \theta) \mathrm{J}_{0}\left(k_{1} a\right)-(\mathrm{k} \sin \theta) \mathrm{J}_{\mathrm{i}}\left(k_{1} a\right) \mathrm{J}_{0}\left(k a \sin \theta_{\mathrm{i}}\right)}{\mathrm{k}_{1}^{2}-(k \sin \theta)^{2}}\right)
$$

5.2.3 Nnmerical Computation of Gain of Corrugated Dielectric Rod

The gain of corrugated dielectric rods computed with the aid of equations [28], [32], [41] and [49] for the following combinations of structure parameters
(i) $t=0.15875 \mathrm{~cm}$,
$a=0.9525^{j} \mathrm{~cm}$,
$b=1.5875 \mathrm{~cm}$
(ii) $t=0.15875 \mathrm{~cm}$,
$a=0.9525 \mathrm{~cm}$,
$b=1.905 \mathrm{~cm}$
and as function of s / λ_{0} is shown in Figures [31] and [32].
The variation of gain as a function of a / λ_{0} for the following combinations of the structure parameters
(i) $t=0.3175 \mathrm{~cm}$
$s=0.5 \mathrm{~cm}$,
$b=2.54 \mathrm{~cm}$.
(ii) $t=0.15875 \mathrm{~cm}$,
$s=1 \mathrm{~cm}$,
$b=1.5875 \mathrm{~cm}$.
is shown in Fig. 33.
The variation of gain computed as a function of b / λ_{0} for the following combination of structure parameters is shown in Fig. 34.

$$
\begin{array}{rll}
\text { (i) } t=0.3175 \mathrm{~cm}, & s=0.5 \mathrm{~cm}, & a=1.27 \mathrm{~cm} . \\
\text { (ii) } t=0.15875 \mathrm{~cm}, & s=0.5 \mathrm{~cm}, & a=1.27 \mathrm{~cm} .
\end{array}
$$

The following remarks regarding gain may be interesting
(i) The gain of uniform dielectric rod decreases with increasing diameter. For larger diameters, there is significant difference in gain in the two Cases A and B, which indicates that free end radiation plays an important role, especially, in the case of rod of larger diameter.

Fig. 31
Variation of gain with s / λ_{0} for corrugated dierectric rod

Fig. 32
Variation of gain with s/ λ_{0} for corrugated dielectric rod

LaLength of the rod $t=$ Disc thiskness
3_{0} - Disc spacing a- Inner rod radius
$b=$ Disc radius $\lambda_{0}=3.14 \mathrm{~cm}$.

Fig. 33
Variation of gain with a / λ for corrugated dielectric rod

Fig. 34
Variation of gain with b / λ_{8} for corrugated dieletric rod
$L=$ Length of the rod
$t=$ Disc thickness
$s=$ Dise spacing
$a=$ Inner rod radius
$b=$ Disc radius $\lambda_{\mathrm{a}}=3.14 \mathrm{~cm}$,
(ii) The gain of corrugated rods is oscillatory for smaller values of s / λ_{0}, then increases and finally tends towards a constant value at larger values of s / λ_{0}.

6. Conclusion

(i) In the case of corrugated rods radiation characteristics can be controlled by variation of groove depth and spacing. This gives an advantage over uniform rod as in both the types of aerials the radiation characteristic is a function of the length, diameter and dielectric constant of the rod.
(ii) In case of corrugated rods, the factors ' a ' and ' b ' seem to play more important role in controlling radiation pattern than other factors, viz., ' t ' and ' s '.
(iii) It is possible to achieve the reduction of the number and intensities of minor lobes by a proper selection of the combinations of structure parameters.

7. Acknowledgment

The authors are grateful to Dr. S. Dhawan, Director of the Indian Institute of Science for permission to accept the work the scheme and giving necessary facilities. The authors also expresses their deep gratitude to Dr. James R. Wait, Monitor, Senior Scientist OjT-ITS for support, encouragment and technical advice for this project. They also express their grateful thanks to U. S. Department of Commerce for providing PL-480 fund and to U. G. C., New Delhi for permission to conduct this project and also to N.O.A.A.

8. References

1. Muller, G. E. and Tyrell, W. A. . . B. S. T. J. 1947, 26, 837.
2. Haliday, D. F. and Kiely, D. G. . . J. I. E. E. 1947, 94, 610-618.
3. Chatterjee, (Mrs.) R. and .. J. Indian Inst. Sci., 1957, 39. 134. Chatterjee, S. K.
4. Wikes, G. Proc I.R.E., 1948, 36, 206-212.
5. Hortou. C. W., Karal F. C. Jr. . J. Appl. Pnysics, 1950, 21, 1279-1283. and Mckinney
6. Chatterjee (Mrs.) R. and .. J. Indian Inst. Sci., 1956, 38, 93. Chatterjee. S. K.
7. Ramanujam, H. R. and J. Indian Inst. Sci., 1962 44, 164, 203. Chatterjee (Mrs.) R.
8. Bouix. M. "Contribution a I' etude des Antennas dielectrique" Thesis for the degree of D.e'SS L' university de Paris, 1952.
9. Watson, R. B. and Horton, C. W. . . J. Appl. Phys. 1948, 19, 836-837.
10. Brown, J. and Spector, . Proc. I. E. E. 1957 B, 104, 27-34.

[^0]: *The project is supported by PL-480 contract No. E-262-69(N), dated June 15, 1969.

