EXPERIMENTAL STUDY OF UNIFORM AND CORRUGATED ROD AS SURFACE WAVEGUIDE AND AS RADIATOR *

By K. N. SHANKARA AND S. K. CHATTERJEE (Indian Institute of Science, Bangalore-12)

[Received: April 20, 1972]

I. ABSTRACT

Experimental results are presented on the radial and axial field distributions and hence radial decay coefficient, guide wavelength and also radiation patterns and gain as functions of spacing, depth of grooves, diameter and length of a corrugated rod and also as functions of diameter and length of a uniform rod, both the rods being excited in E_0 -mode. The characteristics such as scattering parameters and hence launching efficiency, etc. of mode transducer used for exciting the uniform and corrugated rods are also determined.

2. INTRODUCTION

The surface wave characteristics and radiation characteristics of uniform and corrugated dielectric rods have been studied theoretically by the authors and the results are reported elsewhere^{1, 2}. The object of this paper is to verify the theoretical results experimentally. The experiment is concerned with the measurement of field distribution, radiation pattern and gain of a large number of rods of the above two types (See Appendix A.1). (See Fig. 1 for corrugated rods).

3. MEASUREMENT OF FIELD DISTRIBUTION

The launching unit, its associated assembly and the arrangement for measuring field distribution are shown in Figures 2-4. The field distributions in the axial and radial directions were measured with the aid of a dipole and a monopole probe respectively.

4. GUIDE WAVELENGTH

The guide wavelength λg was determined from the field distributions in the axial direction. The theoretical and measured values of λg are compared in Table 1.

^{*} The project is supported by PL-480, Contract No. E-262-69(N), dated June 15, 1969.

K. N. SHANKARA AND S. K. CHATTERJEE

- a =Radius of the inner rod.
- b=Radius of disc.
- 1=Thickness of disc.
- s = Spacing between discs.
- ϵ_1 = Permittivity of medium 1.
- $\epsilon_1 =$ Permittivity of medium 2.
- $\epsilon_0 =$ Permittivity of free space (mediun 3)
- # = Permeability of free space.
- Medium 1; pea
- Mcdium 2: a
- Medium 3 : p≤b

212

FIG. 2

Block diagram of surface wave launching unit.

FIG. 3 Corrugated dielectric rod.

K. N. SHANKARA et al.

J. Ind. Inst, Sci., Vol. 54, No 4

Measurement of guide wavelength

TABLE 1

Measured	and	calcul	ated	values	ofla

Structure Number	Measured λg (cm)	Theoretical λg (cm)	Structure Number	Measured λg (cm)	Tneoretical λg (cm)
1 u	2.9	2.902	6 C	2.78	2 7836
7 u	2.82	2.82	7 C	2.70	2.7016
8 u	2.70	2.656	8 C	2.56	2.568
9 u	2.38	2.369	9 C	3.05	3.13
10 u	2.30	2.254	10 C	3.20	3.1084
11 u	2.20	2.1835	11 C	3.05	3.016
12 u	2.16	2.133	12 C	3.05	3 0399
1 C	3.06	2.975	13 C	3.10	2.0165
2 C	3.0	3.07	14 C	3.07	3.08
3 C	3.12	3.088	15 C	2.75	2.788
4 C	3.05	3.0998	16 C	3.10	3.084
5 C	3.12	3.1096			

The theoretical value of λg is obtained from the following relation¹

$$\lambda g = \lambda_0 / [\epsilon_{r1} - x_1^2 (\lambda_0 / 2\pi a)^2]^{1/2}$$
[1]

Where ϵ_{r1} is the dielectric constant of the rod ($\epsilon_{r1} = 2.56$) and x_1 is obtained by solving the equations

$$x_1 \frac{J_0(x_1)}{J_1(x_1)} = x_2 \epsilon_{r1} \frac{H_0^{(1)}(x_2)}{H_1^{(1)}(x_2)}$$
[2]

1997 - 193

and
$$x_1^2 + \left(\frac{x_2}{j}\right)^2 = \left(\frac{2\pi a}{\lambda_0}\right)^2 (\epsilon_{r_1} - 1)$$
 [3]

where $x_1 = k'_1 a, \quad x_2 = k'_2 a$

and
$$k'_1$$
, k'_2 are related by the following equation
$$(k'_1)^2 - (k'_2)^2 = k^2(\epsilon_{r1} - 1)$$
[4]

where k is the free space wave number.

214 K. N. SHANKARA AND S. K. CHATTERJEE

5. ANALYSIS OF RADIAL FIELD DECAY CURVES

The field distribution in the radial direction for some of the structures are shown in Figures 5-13. In order to determine whether the wave launched on the structure is a pure cylindrical surface wave, the following method³ is used.

If ρ_1 and ρ_2 be two radii such that $\rho_1 \ll \rho_2$ and if the "identifying constant" = $n = \rho_2/\rho_1$ and the "Identifying ratio" is defined by

$$P_n(\chi_1) = \frac{H_1^{(1)}(jk_1\rho_2)}{H_1^{(1)}(jk_3\rho_2)} = \frac{H_1^{(1)}(\chi_2)}{H_1^{(1)}(\chi_1)}$$
[5]

an identifying curve over any required range for a given range *n* is given by the plot $p_n(X_1)$ Vs X_1 (See Fig. 14).

The experimental decay curves (5-13) can be represented by functional relations, $f(\rho) V_S \rho$. From the experimental field decay curves, the ratio $f(\rho_2)/f(\rho_1)$ is tabulated against ρ_1 for n=2. For a pure surface wave $f(\rho_2)/f(\rho_1) = p_n(\chi_1)$, so that from the identifying curve, if the corresponding values of χ_1 are plotted against ρ_1 , a straight line passing through the origin is expected. The linearity of this curve is a measure of the purity of the

FIG. 5 Radial field decay curves (experimental) for uniform dielectric rod.

Corrugated Dielectric Rod

.

٠

- A

Radial field decay curves (experimental) for corrugated dielectric rod.

K. N. SHANKARA AND S. K. CHATTERJEE

Radial field decay curve (experimental) for corrugated dielectric rod.

surface wave and the slope of the curve gives the value of decay coefficient $\xi = k_3$. Fig. 15 shows the identifying lines for some of the experimental field decay curves. The experimental decay coefficients obtained by the above

method are compared with theoretical values in Table 2.

	Measured and Theoretical values of Decay Coefficient									
Structure Number	Measured values of \$ cm ⁻¹	Theoretical Values of \$ cm ⁻¹	Structure Number	Measured values of f cm ⁻¹	Theoretical values of \$ cm ⁻¹					
1 u	.82	0 8 2 6	6 C	1.05	1.044					
7 u	.978	0 978	4 C	1.185	1.185					
8 u	1.185	1 417	8 C	1 42	1.406					
9 u	1.72	1.738	9 C	0.13	0.158					
10 u	1 858	1.938	10 C	0.28	0.283					
11 u	2 04	2 067	11 C	0.55	0.578					
12 u	2.11	2 159	12 C	0.50	0.517					
1 C	0 66	0.674	13 C	0.54	0.578					
2 C	0 40	0.425	14 C	0.40	0.395					
3 C	0.36	036	15 C	1.102	1.035					
4 C	0 33	0.33	16 C	0.40	0 3823					
5 C	0.20	0.279								

TABLE 2

FIG. 15 Identifying lines.

	11C	2 <i>C</i>	10C	5C	17C
	1.15875 cm	1 0.15875 cm	0.15875 cm	0.1875 cm	0.15875 cm
	10 cm	1.0 cm	1.0 cm	2 0 cm	0.5 cm
0 -	0.9525 cm	0.9525 cm	0.9525 cm	0 9525 cm	0.8 cm
- <u></u>	1.42875 cm	1.5875 cm	1.27 cm	1.5875 em	1.27 cm
Measured Slope	0.55 cm	1 0.40 cm	0 28 cm	0.21 cm -1	Does not sup- port a pure sur- face wave.
	1	= Disc thickness = Disc spacing	a=Inner rod b. Disc radi	radius. us.	

The field decay curve (Fig. 6) shows that a uniform dielectric rod whose radius is below cut-off value cannot support a pure surface wave. The field decay curves for corrugated rods shows that (See Figures 10 and 11) the the structures 10 and 11 cannot support pure surface wave which is confirmed by theory¹. The structures which support pure surface waves have their identifying lines straight.

6. MEASUREMENT OF ATTENUATION CONSTANT

The v.s.w.r. is measured close to the surface of the guiding structure with the aid of a probe. The attenuation constant α is calculated from the relation

$$\alpha = (1/l) \text{ arc tanh } (v.s.w.r.)^{-1}$$
 [b]

where *l*, is the length of the structure measured from the point where the v.s.w.r. is measured to the end of the structure. The v.s.w.r. is measured at different distances from the feed end and the average values are reported in Table 6.

7. MEASUREMENT AND ANALYSIS OF RADIATION PATTERNS

The experimental set-up for radiation measurement is shown in Fig. 16. Some of the theoretical and experimental radiation patterns for uniform and corrugated aerials are shown in Figures 17-25. The analysis of radiation pattern shows that (a) most of the measured patterns show better agreement with the theory derived by considering radiation from both the end as well as the surface of the structure. (b) measured beam width, position of lobes agree fairly well with the theory. The theoretical radiation are calculated from² the following relations.

(a) Uniform Rod: Field Pattern

222

Case At Considering radiations from the surface only.

$$E_{PS} = \left[B \frac{1}{2r} \left(\frac{\mu_0}{\epsilon_0} \right)^{1/2} k k_1' L a J_1(k_1' a) \right] \times \left[\exp j \left(\omega t - kr \right) \exp \left(-j \frac{L}{2} \left(\beta - k \cos \theta \right) \right) \right] \times \left[\frac{\sin x}{x} \right] \left[J_0 \left(ka \sin \theta \right) \sin \theta - C J_1 \left(ka \sin \theta \right) \right]$$

$$x = \frac{1}{2} \left(\beta - k \cos \theta \right)$$

$$C = \frac{k_1' J_0(k_1' a)}{\epsilon_{r1} k J_1(k_1' a)}$$

$$(7)$$

Corrugated Dielectric Rod

1

FIG. 16

٠

Block diagram of experimental set up used for radiation pattern measurement.

Ratiation pattern (power) for unlform dielectric rod. L= Length of the rod, a= Radius of the rod.

...

٠

L=Length of the rod, a=Radius of the rod.

Radiation pattern (power) for uaiform dielectric rod. L=Length of the rod, a=Radius of the rod.

Radiation pattern (power) for corrugated dielectric dielectric rod. t=Disc thickness a=Inner rod radius.s=Disc spacing b=Disc radius.

s = Disc spacing b = Disc radius.

<. . .

t=Disc thickness a=Inner rod radius. s=Disc spacing b=Disc radius.

Case B: Codsidering radiation from the surface as well as end. $|E_p| = [(A')^2 + (B')^2 + 2A'B'\sin x]^{1/2}$ $A' = [(B/2r)(\mu_0/\epsilon_0)^{1/2}kk'_1LaJ_1(k'_1a)] \times$ $\left[\frac{\sin x}{x}\right] J_0(ka\sin\theta)\sin\theta - CJ_1(ka\sin\theta)]$ $B' = \left[\frac{B(\mu_0/\epsilon_0)^{1/2}kl'_1aJ_1(k'_1a)}{2r}\right] \times$ $\left[\left\{k\cos\theta + \frac{\beta}{r'}\right\}\right] \left[\frac{J_0(ka\sin\theta)\sin\theta - D\epsilon_{r1}J_1(ka\sin\theta)}{(k'_1)^2 - (k\sin\theta)^2}\right]$

.

(b) Corrugated Rod : Field Pattern.

Case A: Surface Radiation only

$$E_{PS}^{\cdot} = \left[-\frac{1}{2r} \frac{b L k^2 \epsilon_{r2}}{k_2} \left\{ A_2 J_1(k_2 b) + A_3 Y_1(k_2 b) \right\} \right] \times \exp\left[-j \frac{L}{2} \left(\beta - k \cos \theta \right) \right] \times \left[J_0(kb \sin \theta) \sin \theta - C'' J_1(kb \sin \theta) \right] \left[\frac{\sin x}{x} \right]$$
[9]

$$C'' = \frac{k_2}{k\epsilon_{r2}} \frac{A_2 J_0(k_2 b) + A_3 Y_0(k_2 b)}{A_2 J_1(k_2 b) + A_3 Y_1(k_2 b)}$$

Case B: Surface and End Radiation.

$$|E_{\mathbf{P}}| = [(A'')^{2} + (B'')^{2} + 2A'' B'' \sin x]^{1/2}$$

$$A'' = \left[\frac{A_{2}}{2r} \left(\frac{b \ L \ k^{2} \ \epsilon_{r2}}{k_{2}}\right) \left(J_{1} \ (k_{2} \ b) + \frac{A_{3}}{A_{2}} \ Y_{1}(k_{2} \ b)\right)\right] \times$$
[10]

 $\left[I_{1}(k_{1}+k_{2}) + \frac{k_{2}}{J_{0}(k_{2}b) + (A_{3}/A_{2})} Y_{0}(k_{2}b) \right] J_{1}(k_{2}b) \sin \theta \right] \times$

$$\begin{bmatrix} J_0(kb \sin \theta) \sin \theta - \frac{1}{k\epsilon_{r2}} \left\{ \frac{J_1(k_2 b) + (A_3/A_2) Y_1(k_2 b)}{J_1(k_2 b)} \right\}^{J_1(kb \sin \theta)} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\sin x}{x} \\ \frac{1}{x} \end{bmatrix}$$

$$B'' = \begin{bmatrix} A_2 \frac{A_1}{A_2} \frac{ka}{k_1} (k \epsilon_{r1} \cos \theta + \beta) \\ \frac{1}{k_1} \frac{J_1(ka \sin \theta) J_0(k_1 a) - k \sin \theta J_1(k_1 a) J_0(ka \sin \theta)}{k_1^2 - (k \sin \theta)^2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{A_3}{A_2} = \frac{(k_3/k_2) \epsilon_{r2} [H_0^{(1)}(k_3 b) / H_1^{(1)}(k_3 b)] J_1(k_2 b) - J_0(k_2 b)}{Y_0(k_2 b) - (k_3 \epsilon_{r2}/k_2) [H_0^{(1)}(k_3 b) / H_1^{(1)}(k_3 b)] Y_1(k_2 b)} \end{bmatrix}$$

$$\frac{A_1}{A_2} = \frac{J_0(k_2 a) + (k_3 \epsilon_{r2}/k_2) [H_0^{(1)}(k_3 b) / H_1^{(1)}(k_3 b)] Y_0(k_2 a)}{J_0(k_1 a)}$$

8. MEASUREMENT OF GAIN

The gain of aerials has been measured by comparison method. The aerial 10 C (t=0.15875 cm, s=1 cm, a=0.9525 cm and b=1.27 cm) which is found to have the highest gain is used as a reference aerial. It is to be noted that in finding the gain of the reference aerial by comparison with a phyramidal horn, the power input to the horn which is directly fed from the rectangular guide is different from the power input fed to the aerial 10 C from the mode transducer. The gain of the test aerial (10 C) is calculated in the following way

$$G = G_1 \frac{P_1}{P_2} = \frac{W_2}{W_1} \frac{P_1}{P_2} G_H$$
[7]

where, W_1 and W_2 are the relative power levels when the pyramidal horn and the test antenna are used as transmitting aerials, which correspond to microammeter readings in the two cases

 P_1 and P_2 correspond to the relative input power levels in the two cases which are proportional to the respective launching efficiencies.

The launching efficiency of the mode transducer = 70% (determined from scatter parameter measurement). Then

$$G_{db} = 10 \log_{10} \frac{350 \times 100 \times 100}{1000 \times 70} = 16.99 \ db.$$

The measured and theoretical values of gain of the aerials are tabulated in Table 4. The theoretical gain is calculated from the following relation

$$G = \frac{r^2 |E_p|^2 / 2\eta_0}{P / 4\pi}$$
[11]

where, for

(a) Uniform rod

$$|E_{P}| = \left[E_{PS}^{2} + E_{Pe}^{2} + 2E_{PS}E_{P}\sin\frac{L}{2}\left(\beta - k\cos\theta\right)\right]^{1/2}$$
[12]

 E_{PS} is given by equation [7] and

$$E_{Pe} = \left[\frac{B}{2r} \left(\frac{\mu_0}{\epsilon_0} \right)^{1/2} a \, k \, k_1' \, J_1(k_1' \, a) \right] \times \left[\left(k \, \cos \theta + \frac{\beta}{\epsilon_{r_1}} \right) \frac{J_0(ka \, \sin \theta) \, \sin \theta - [k_1' \, J_0(k_1' \, a)/k \, J_1(k_1' \, a)] \, k_1 \, J_1(ka \, \sin \theta)}{(k_1')^2 - (k \, \sin \theta)^2} \right]$$

and the total power flow P is given by

$$P = \left[\frac{\pi B^2 \beta a^2(k_1')^2}{2 \omega \epsilon_0 \epsilon_{r_1}}\right] \left[\left\{ J_0(k_1' a) \right\}^2 + \left\{ J_1(k_1' a) \right\}^2 - \left\{ \frac{2 J_0(k_1' a) J_1(k_1' a)}{(k_1' a)} \right\} + \left\{ \frac{1}{\epsilon_{r_1}} \frac{k_1'^2}{k_2'} \left(\frac{J_0(k_1' a)}{H_0^{(1)} (k_2' a)} \right)^2 \right\} \times \left\{ H_0^{(1)} (k_2' a) \right\}^2 + \left\{ H_1^{(1)} (k_2' a) \right\}^2 - \left\{ \frac{2 H_0^{(1)} (k_2' a) H_1^{(1)} (k_2' a)}{k_2' a} \right\}$$

and

$$\eta_0 = \sqrt{\left(\frac{\mu_0}{\epsilon_0}\right)}$$
[13]

(b) Corrugated Rod.

- - - -

231

$$|E_{\rm P}| = [E_{\rm PS}^2 + E_{Pe}^2 + 2 E_{\rm PS} E_{\rm P} \sin(L/2) (\beta - k \cos \theta)]^{1/2}$$
[14]

where E_{PS} is given by equation [9] and

$$\begin{split} E_{\mathsf{P}} &= \left[\frac{C_2 \, ka}{k_1} \, (k \, \epsilon_{r_1} \, \cos \theta + \beta) \right] \times \\ &\left[\frac{k_1 \, J_1 \, (ka \, \sin \theta) \, J_0(k_1 \, a) - (k \, \sin \theta) \, J_1(k_1 \, a) \, J_0(ka \, \sin \theta)}{k_1^2 - (k \, \sin \theta)^2} \right] \\ P &= \left[\frac{\pi \, \beta \, k \, A_2^2}{2 \, \eta_0} \right] \left[\left\{ \frac{a^2 \, \epsilon_{r_1} \, C_2^2}{k_1^2} \right\} \left\{ [J_0(k_1 \, a)]^2 + [J_1(k_1 \, a)]^2 - \left(\frac{2 \, J_0(k_1 \, a) \, J_1(k_1 \, a)}{k_1 \, a} \right) \right\} \\ &+ \left\{ \frac{\epsilon_{r_2} \, b^2}{k_2^2} \right\} \left\{ [J_0(k_2 \, b)]^2 + [J_1(k_2 \, b)]^2 - \left(\frac{2 \, J_0(k_1 \, a) \, J_1(k_2 \, b)}{k_2 \, b} \right) \right\} \\ &+ \left\{ b^2 \, C_1^2 \right\} \, \left\{ [Y_0(k_2 \, b)]^2 + [Y_1(k_2 \, b)]^2 - \left(\frac{2 \, Y_0(k_2 \, b) \, Y_1(k_2 \, b)}{k_2 \, b} \right) \right\} \end{split}$$

$$+ \{b^{2} C_{1}\} \left(J_{1}(k_{2} b) Y_{1}(k_{2} b) - \frac{J_{0}(k_{2} b) Y_{1}(k_{2} b)}{k_{2} b} \right)$$

$$+ J_{0}(k_{2} b) Y_{0}(k_{2} b) - \frac{Y_{0}(k_{2} b) J_{1}(k_{2} b)}{k_{2} b} \right)$$

$$- \{a^{2}\} \left\{ [J_{0}(k_{2} a)]^{2} + [J_{1}(k_{1} a)]^{2} - \left(\frac{2 J_{0}(k_{2} a) J_{1}(k_{2} a)}{k_{2} a}\right) \right\}$$

$$- \{a^{2} C_{1}^{2}\} \left\{ [Y_{0}(k_{2} a)]^{2} + [Y_{1} (k_{2} a)]^{2} - \left(\frac{2 Y_{0}(k_{2} a) Y_{1}(k_{2} a)}{k_{2} a}\right) \right\}$$

$$- \{a^{2} C_{1}\} \left\{ J_{1}(k_{2} a) Y_{1}(k_{2} a) - \frac{J_{0}(k_{2} a) Y_{1}(k_{2} a)}{k_{2} a} + J_{0}(k_{2} a) Y_{0}(k_{2} a) - \frac{Y_{0}(k_{2} a) J_{1}(k_{2} a)}{k_{2} a} \right\}$$

$$+ \left\{ \frac{b^{2} C_{3}^{2}}{k_{3}^{2}} \right\} \left\{ [H_{0}^{(1)} (k_{3} b)]^{2} + [H_{0}^{(1)} (k_{3} b)]^{2} - \left(\frac{2 H_{0}^{(1)} (k_{3} b) H_{1}^{(1)} (k_{3} b)}{k_{2} b} \right) \right\} \right\}$$

$$[15]$$

$$C_{1} = \frac{(k \epsilon_{r2}/k_{2}) J_{1}(k_{2} b) - J_{0}(k_{2} b)}{Y_{0}(k_{2} b) - (k \epsilon_{r2}/k_{2}) C Y_{1}(k_{2} b)}$$

$$C_{2} = \frac{J_{0}(k_{2} a) + C_{1} Y_{0}(k_{2} a)}{J_{0}(k_{1} a)}$$

$$C_{3} = \frac{J_{0}(k_{2} b) + C_{1} Y_{0}(k_{2} b)}{H_{0}^{(1)}(k_{3} b)}$$

$$C = \frac{k_{3}}{k} \frac{H_{0}^{(1)}(k_{3} b)}{H_{1}^{(1)}(k_{3} b)}$$

So the gain of uniform and corrugated rods are calculated from equation [11]. The measured and calculated values of gain are compared in Table 4.

9. MEASUREMENT OF E_0 - MODE TRANSDUCER CHARACTERISTICS

The characteristics of mode transducer (See Fig. 26) which can be represented as a four terminal network (See Fig. 27) are measured by using Deschamp's method^{3,4}. The experimental set-up for measuring the scattering parameters S_{11} , S_{12} and S_{22} is shown in Fig. 28. The circle

	N.C.	Theoretical			16 14 K C
Number	value of gain (db)	value of gain (db) (Case A) Case B	Structure Number	Measured value of gain (db)	Theoretica value of gain (db) (Case A) Case B
l u	13 22	(12.56) 13.36	5C	15.82	(15.65)
2u	12.78	(12.33) 13.36	6C	7.78	(9.44)
3u	11.76	(11.48) 12.75	7C	1.76	(`.96)
4u	10.79	(11.28) 11.96	8C	3.01	(1.77)
5u	12.80	(12.68) 13.55	9C	4.91	(4.51) 4.41
би	11.14	(10.78) 12.03	10 C	16.99	(17.97)
7u	10.05	(10.27) 11.53	11C	12.79	(12.25) 12.44
8u	11.0	(8.81) 11.44	12C	13.22	(14.52) 14.83
9u	6.99	(3.05) 7.74	13C	14.77	(16.11) 16.15
1 C	10.79	(11.40) 10.99	14 C	15.84	(15.65) 15.73
2C	16.02	(16,65) 16.74	15C	7.02	(6.73) 6.96
3C	16.02	(16.85) 17.13	16C	15.55	(16.53) 16.60
4C	15.44	(16.29) 16 28			

TABLE 4 Measured and calculated values of Gain

diagram (See Fig. 29) using appropriate experimental data is drawn (See Appendix A.3). The scattering coefficients (See Appendix A.4) are evaluated.

$$S_{11} = 0.16 \exp(j 5.9 \text{ rad})$$

 $S_{12} = 0.855 \exp(j 0.087 \text{ rad})$
 $S_{22} = 0.197 \exp(j 3.2 \text{ rad})$
[16]

.

K. N. SHANKARA AND S. K. CHATTERJEF

.

CONE 2

FIG. 27 Scattering network representation of a microwave network.

Experimental set up for measurement of scattering matrix of mode transduces.

9.1 Insertion Loss (L).

The insertion loss (L) of the mode transducer is given by,

$$L(db) = -10 \log_{10} (1 - |S_{11}|^2) - 10 \log_{10} \frac{|S_{12}|^2}{1 - |S_{11}|^2} = 1.56 \ db.$$
[17]

- 1-----

9.2 Reflection Loss (L_R)

The reflection loss at the input terminals of the mode transducer is

$$L_R(db) = -10 \log_{10} (1 - |S_{11}|)^2 = 0\ 0.86\ db$$
[18]

9.3 Dissipation Loss (L_D) .

The dissipation loss in the network is given by

$$L_{R}(db) = -10 \log_{10} \frac{|S_{12}|^{2}}{|-|S_{11}|^{2}} = 1.474 \ db.$$
[19]

9.4 Transmission Efficiency 71.

The transmission efficiency of the mode transducer is

$$\eta_{t} = \frac{|S_{12}|^2}{1 - |S_{11}|^2} = 75.02\%$$
[20]

Circle diagram leading to the evaluation of seattering mattrix (S).

9.5 Launching Efficiency of the Mode Transducer η_L .

The launching efficiency of the mode transducer is given by (See Appendix A.5)

$$\eta_L = \frac{1 - \left| \frac{\sigma_{11}}{1 - \sigma_{11}} \right|^2}{\left| 1 - \sigma_{11}^2 S_{22} \right|^2} \left| S_{12} \right|^2$$
[21]

where, σ - is the scattering matrix of the dielectric rod which is fitted to the mode transducer.

The σ -matrix is determined by the method described elsewhere⁴. From the v.s.w.r. and positions of minimum for different lengths of the rod a second circle diagram is drawn (See Fig. 30). The scattering coefficient Σ of the combined network consisting of the mode transducer and the dielectric rod is determined from the circle diagram. The scattering coefficient Σ_{11} is given by

$$\Sigma_{11} = 0.18 \exp j (3.48 \text{ rad})$$
 [22]

The scattering coefficient σ_{11} of only the dielectric rod is obtained by S-matrix and Σ -matrix by the following relation (See Appendix A.3)

Substituting the values of S_{11} and Σ_{11} from equations (16-22), the value of the scattering coefficient for the dielectric rod is

$$\sigma_{11} = 0.4026 \exp j \ (0.1218 \ rad)$$
 [24]

The launching efficiency is

L = 73.96 %.

10. DISCUSSION.

10.1 Purity of the Surface Wave Mode.

The agreement between theoretical and experimental values of decay coefficient (ξ) , guide wavelength, gain and radiation characteristics shows that the surface wave mode E_0 launched on the corrugated structure is practically free from contamination of other modes. It also shows that the assumption of treating the corrugated guide as a homogeneous structure of effective dieletric constant

$$\epsilon_{r2} = \left[\frac{\sqrt{\epsilon_{r1}} \cdot t + s}{t + s}\right]^2$$
[25]

is justified.

10.2 Cut-off-Conditions.

The cut-off condition is significantly influenced by corrugation. For example, a uniform dielectric rod $\epsilon_r = 2.56$ excited in $E_0 - \text{mode}$ at $\lambda_0 = 3.14$

cm has a cut-off radius = 0.9624 cm., whereas, a corrugated rod of inner dielectric rod radius, a = 0.2 cms, disc radius b = 2.54 cm, disc spacing, = s = 0.5 cm. and disc thickness, t = 0.3175 cm can support a pure surface wave E_0 -mode.

10.3 Surface - wave Field and Radiated wave field.

The correlation of the radiated wave field and near field (See Fig. 31-33) show that

(i) The position of major lobe for a particular value of $\lambda g/\lambda_0$ (for different structures) remains the same within $\pm 2^\circ$ (See Fig 31).

(ii) The 3-db beam width of the major lobe for a particular value of $\lambda g/\lambda_0$ (of different structures) remains the same within $\pm 2^\circ$ (See Fig. 32).

(iii) The number of lobes (maxima) for a particular value of $\lambda g/\lambda_0$ which are above - 20 db differ significantly in different cases. Also, the number of lobes in cases A and B are different (See Fig. 33).

The variation of gain with $\lambda g/\lambda_0$ is shown in Fig. 34.

0.9

0.8

1.1

1.0

Corrugated Dielectric Rod

243

10.4 Comparison of Uniform and Corrugated Dielectric Rods Characteristics.

The corrugated rod can be cosidered as a uniform dielectric rod of radius 'a' loaded with dielectric dies of radius 'b' or it can be considered as a grooved uniform rod of radius 'b'. It may therefore, be worthwhile to compare the performance of the corrugated dielectric rod with uniform dielectric rod of radius 'a' and 'b'. The characteristics such as decay coefficients, attenuation constants, gain, etc of the uniform and corrugated rods are compared in tables 5-9.

11. CONCLUSIONS

(i) The corrugated rod can act as a better surface wave guide than a uniform rod.

(ii) The corrugated rod can support surface wave of longer wavelength than uniform rod when excited in E_0 - mode.

(iii) The radiation characteristics of a corrugated rod can be controlled by adjusting groove depth and spacing.

(iv) The corrugated rod shows better radition characteristics with regard to number and relative intensity of minor lobes and gain compared to uniform dielectric rod.

(v) It is possible to predict the nature of the far field from a measurement of the surface wave field.

Structure		Parameters		ucture Parameters $\xi = k_s$ of rod of		¢cm ⁻¹ of rod of	f(cm-1) of rod of	Radius of uniform rod which
<i>i</i> (cm)	s(cm)	a(cm)	b(cm)	(cm - 1)	radius 'a'	'a' 'b'	gives $\xi = k_1$	
0.3175	0.5	1.27	1.4288	1 035	0.826	1.22	1.35	
0.1588	0.5	1.27	1.508	1.027	0.826	1.30	1.32	
0.3175	0.5	1 27	2.54	1.4065	0.826	2.067	1.58	
0 3175	0.3	1.27	2.54	1.5472	0.826	2.067	1.75	
0 3175	0.5	1.27	2.0	1.3151	0.826	1.54	1.50	
0.3175	0.5	1.27	3.0	1.44	0.826	2.20	1.62	
0.1599	0.5	1 27	17	1.10	0.826	1.52	1.42	
0.1300	0.5	0.6	2 54	0 9346	cut-off	2.067	1.28	
0.3173	0.5	2.225	2.54	0 3999	1.938	2.159	cut-off	
0.1588	1.6	2.225	3.175	0.3823	1.938	2.222	cut-off	

TABLE 5 Decay Coefficients & of uniform and corrugated Dielectric Rod

TABLE 6

Attenuation constant of corrugated (a) and uniform (a) of dielectric rods

	Structure	Parameters		$\alpha(db/m)$	a(db/m) rod radius	a(db/m) rod radius
t(cm)	s(em)	<i>a</i> (cm)	b(cm)	measured	(measured) calculated	'b' cm (measured) calculated
0.1588	0.4	0.9525	1.5875	3.92	cut-off	(6.53) 6.4
0.1588	1	0.9525	1.5875	4.20	cut-off	(6.53) 6.4
0.3175	0.5	0.8	2.54	3.63	cut-off	(7.5)
0.1588	0.5	1.27	2.54	4.01	(4.53) 4.25	(7.5)
0.1588	0.5	1.27	1.4288	4.3	(4.55) 4.25	(5.20) 5.255
0.1588	1	0.9525	1.27	3.2	cut-off	(4.55)

2073		
A	25	
- T	. 4.2	

0.1588 0.1588	1	2.2225 0.9525	2.8575 1.905	4.67 4.31	7.23 cut-off	(7.67) (6.97)
						7.15
0.1588	1.6	2.2225	3.175	4.44	(7.23)	(7.83)
0.1588	1	0.9525	2.2225	4.35	cut-off	(7.23)

TABLE 7 Radiation Characteristics (Case A)

				Radiation	Charao	ter istres	(Case A)				14	
		Corrugated	Dielectric I	Rod			Uniform ro	od of rad cm.	dius	Uniform R	od of rad	dius
	Structure	e Parameters		sitiou and f minor lobe level	dıh of major	er of lobes	sition and f minor lobe intensity	dth of major	er of lobes	sition and f minor lobe level	Jth of major	er of lobes ¹ db.
<i>t</i> (cm)	s(cm)	a(cm)	b(cm)	Angular po intensity o of highest	3 <i>db</i> Beam wi lobe	Total Numb above -20	Angular po intensity o of highest	3 <i>db</i> Beam wi lobe	Total Numb above -20	Angular po intensity o of highest	3 <i>db</i> Beam wi lobe	Total numb above -20
0.1588	1.4	.9525	1.5875	30° (0.121) -9.16 <i>db</i> .	10°	3	-	_	-	34° (.51) – 2 87 <i>db</i> .	7°	8
0.1588	1.3	0.9525	1 905	28° (0.117) – 9.29 <i>db</i> .	1¦°	4				28° (.867) – .61 <i>db</i> .	9°	14°
0.3175	0.5	1.27	1.4288	28° (.83) -066 <i>db</i> .	11°	5	34° (.47) – 3.27 <i>db</i> .	8°	7	28° (.79) — .98db.	10°	7°
0.1588	0.5	1.27	1 508	28° (0.72) –1.39 <i>ab</i> .	10°	5	34° (0.47) -3.27db.	8°	7	36° (.45) – 3.425dq	9°	7°
0.3175	0.5	1.905	2.54	42° (0.031) – 15.01 <i>db</i> .	10°	4	28° (0.867) 0.61 <i>db</i> .	9°	14	26° (.65) -1.88db.	8°	18°
0.1588	1	2.2225	2.8575	40° (0.037) – 14.37 <i>db</i> .	10°	4	32° (0.349) – 4.56 <i>db</i> .	8°	18	8° (0.26) – 5.8 <i>db</i> .	7°	18

Corrugated Dielectric Rod

TABLE 8 Radiation Characteristics (Case B)

endi a		Corri	agated Rod				Uniform ('a'	Rod Rad cm.	lus	Uniform die of radi	electric l ius 'b'	Rod
	Structure	Parameters	in - 11 14 14 14 14 14	sition and f minor lobe st intensity	dth of major	er of lobes	sition and fminor lobe intensity	dth of major	er of lobes db	sition and f minor lobe intensity	dth of major	er of lobes
(cm)	s(cm)	<i>a</i> (cm)	b(cm)	Angular po intensity o of highe	3 db Beam wi lobe	Total Numb above -20	Angular po intensity of of highest	3 <i>db</i> Beam wi lobes	Total number above -20	Angular po intensity of of highest	3 <i>db</i> Beam wi lobe	Total numbe above -20
.1588	1.4	.9525	.5875	30° (.132) – 8.79 <i>db</i> .	10°	3	ALE			34° (.728) –1.376 <i>db</i> .	7°	10
.1588	1.3	.9525	1. 9 05	28° (.12) -9.17 <i>db</i> ,	11°	4		-	_	28° (.89) — .5db.	9°	13
.3175	0.5	1.27	1.4288	28° (.87) — .58 <i>db</i> .	11°	12	34° (.577) –2.38 <i>db</i>	8°	10	28° (.98) – .069 <i>db</i> .	10°	10
.1588	0.5	1.27	1.508	28° (.808) — .92 <i>db</i> .	10°	10	34° (.571) –2.38 <i>db</i> .	8°	10	36° (.634) —1.97 <i>db</i> .	9 °	9
.3175	0.5	1.905	2.54	42° (.042) –13.76 <i>db</i> .	10°	6	28° (*89) – .5 <i>db</i> ,	9°	13	26° (.7) - 1.55 <i>db</i> •	8° •	13
.1588	1	2.2225	2.8575	40° (.045) - 13.4db,	10°	4	32° (.86) – .64 <i>db</i>	9° ;	11	32°. (.65) — 1.86db.	7 °	7

.

TABLE 9

			Comparis	on of Gain		
	Corr	ugated Dieleo	ctric Rod		Uniform Rod of radius 'a' cm.	Uniform Rod of radius 'b' cm.
St	ructure P	Parameters (c	m)	Gain (db) (Case A)	Gain (db) (Case A)	Gain (db)
1	S	a	<u> </u>	Case B	Case A	(Case A) Case B
0.1588	1.0	0 9525	1 27	(17.97)		(12.33)
				17.99		13.29
0.1588	1.2	.9525	1.5875	(16.82)		(8.808)
				17.00	_	11.44
0.1588	1.6	.9525	1.905	(16.25)	<u>та на</u> 173—134	(3.051)
				16.33	-	7.736
0.3175	0.5	1.905	2.54	(6.55)	(3.051)	Very small
- 1973 - 1973 - 1973 -				6.45	7.736	6.5

0.1588	1.0	2.2225	2.8575	(17.24)	(1.415)	Very small
				17.35	7.0	6.0
0.1518	1.0	0.9525	1.4288	(12.25)		10.27
				12.44		11.53
A 1500	1.6	2 2225	3.175	(16.54)	1.415	Very small
0.1388	1.0	2.2227	9 0 94193	16.6	7.0	5.5
0.2175	0.5	0.6	2.54	(11.78)	-	Very small
0.3175	0.5	0.0		11.78	-	6·0
	5) E					
		t. <u>z-4</u> -622				

K. N. SHANKARA AND S. K. CHATTERJEE

12. APPENDIX

A.1 Specifications of uniform dielectric rods used for experiment :

L = length of rod (cms)

a = radius of rod (cms)

 $\lambda_0 = 3.14$ cms.

• • •

 Structure Number	<i>L</i> /λο	a/Xo	Remarks
1 u	12	0.4045	٠
2 u	10	0.4045	*
3 u	8	0.4045	٠
4 u	6	0.4045	*
5 u	4	0.4045	*
6 u	2	0.4045	
7 u	10	0.455	

8	3 บ	10	0.505	
9	u	10	0.606	
10) ប	10	0.708	
L 1	L 128	10	0.808	**
12	2 u	10	0.91	**

*Not used for surface wave field measurement. **Not used for radiation field measurement.

249

A.2 Specifications of corrugated dielectric rod.

L=31.4 cm = 10 (cm) t= thicness of discs (cm) s= spacing of discs (cm) a= radius of inner rod (cm) b= radius of discs (cm)

 $\lambda_0 = 3.14 \text{ cm}, (1/16)'' = 0.15875 \text{ cm}, (1/8)'' = 0.3175$

Structure Number	(cms)	s/λo	a/λ.	b/ 20
1 C	.15875	.1273	.303	.505
2 C	.15875	.3184	.303	.505
3 C	.15875	.414	.303	.505
4 C	.15875	.5095	.303	.505
5 C	.15875	.6369	.303	-505
6 C	.3175	1592	.2546	-8089
7 C	.3174	.1592	.3184	.8089
8 C	.3175	.1592	.4045	.8089
9 C	.3175	.1592	.6066	.8089
10 C	.15875	.3184	.303	.4045
11 C	.15875	.3184	.303	_455
12 C	.15875	.3184	.303	6066
13 C	.15875	.3184	.303	.7085
14 C	.15875	.3184	.3184	-4045
15 C	.15875	.1592	.4045	.455
16 C	.15875	.5095	.7085	1.011
17 C	.15875	.1592	.2546	-4045
18 C	.15875	.3184	.2022	.4045
19 C	.15875	.6369	.1011	.4045

A.3 Construction of circle diagram.

The procedure for constructing the circle diagram is as follows (See Fig 29).

(i) The position of the variable short is varied by equally spaced smalle intervals $(\lambda g/16)$ and at each setting the position of the first minima D_j and the voltage standing wave ratio are noted. The observations are numbered 1, 2, 3, \cdots 8. The reflection coefficient is calculated in each case by using the following relations

$$\left| \Gamma_{j} \right| = \frac{\gamma_{j} - 1}{\gamma_{j} + 1}$$

and $\theta_j = 4\pi d_j \lambda g$, where d_j represents the shift in the first voltage minimafrom the reference plane.

(ii) The rflection coefficients obtained are plotted. The circle accommodating the plotted points is drawn with C as centre.

(iii) The points 1 and 5, 2 and 6, \cdots are joined, the point of intersection of these lines 0 is noted.

(iv) The iconocentre 0' is then determined in the following manner. The points C and 0 are joined by a straight line A line perpendicular to C 0 through 0 is drawn to intersect the locus at L and another through C perpendicular to C 0 to intersect the at K. The points L and K are joined and the point of intersection of L K with C 0 is 0' the iconocentre. C0' in polar coordinates gives the magnitude of S_{11} . The angle θ' of the point 0' is noted. Then

$$S_{11} = \left| C \ 0' \right| j(\theta' \pm \pi)$$

and $S_{22} = C 0'/R$ where, R is the radius of the locus.

(v) The magnitude of S_{12} is obtained by drawing a line through 0' perpundicular to C 0 to intersect the circle at H. Then

$$S_{12} = 0' H / \sqrt{R}$$

(vi) For any particular setting of the variable short, the angle $\theta_s = 4\pi d_s/\lambda g$ is computed. The data point corresponding to S is marked as M' and a line is drawn M' through O' to intersect the locus at N. From N through C, a line is drawn to intersect the locus at M".

(vii) About C as centre, an angle $\phi = 360^{\circ} - \theta_{s}$ from the line C M" is marked in the counter-clockwise direction. At that angle a line through C is drawn to intersect the circle at P". The line O' C is extended.

(viii) The angle α_2 between the line O'C and CP" is noted. The angle between the positive real axis and that line C P" gives $2\alpha_{12}$. All the angles are measured in the counter-clockwise direction.

- (ix) The phases of S_{22} and S_{12} are as follows arg $S_{22} = \alpha_2 \pm \pi$ \cdot arg $S_{12} = \alpha_{12}$
- A.4 Scattering Matrix of Dielectric Rod: Cascading of S and σ Networks.

The scattering matrix Σ refers to the whole system comprising the mode transducer and the dielectric rod. The scattering matrix of the dielectric rod is determined from the composite matrix as follows. The mode transducer and the dielectric rod are represented by 1-2 and 3-4 respectively (See Fig. A. 4.1).

Let $\begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}$ be the scattering matrix of the mode transducer and $\begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$ represent the scattering matrix of the dielectric rod. Then $\begin{pmatrix} E_{r1} \\ E_{r2} \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$ (A.4.1) and $\begin{pmatrix} E_{r3} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \end{pmatrix} \begin{pmatrix} E_3 \end{pmatrix}$

and
$$(E_{r4})^{-1} \left(\frac{\sigma_{21}}{\sigma_{21}} \sigma_{22} \right) \left(\frac{\sigma_{21}}{E_{4}} \right)$$
 (A.4.2)

which yield

251

$$E_{r1} = S_{11} E_1 + S_{12} E_2 \tag{A.4.3}$$

$$E_{r2} = S_{21} E_1 + S_{22} E_2 \tag{A.4.4}$$

$$E_{,3} = \sigma_{11} E_3 + \sigma_{12} E_4 \tag{A.4.5}$$

$$E_{r4} = \sigma_{21} E_3 + \sigma_{22} E_4 \tag{A.4.6}$$

When the two networks (See Fig. A.4.2), S and σ - are connected so that the terminals 2-2 and 3-3 are joined together

$$E_{r2} = E_3$$
 and $E_2 = E_{r3}$ (A.4.7)

Substituting (A.47) in (A.4.2)

$$\begin{pmatrix}
E_2 \\
E_{r4}
\end{pmatrix} = \begin{pmatrix}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{pmatrix} \begin{pmatrix}
E_{r2} \\
E_{4}
\end{pmatrix}$$
(A.4.8)

Equations (A.4 5) and (A.4.6) can be written as $E_2 = \sigma_{11} E_{r2} + \sigma_{12} E_4$ (A.4.10)

$$E_{r4} = \sigma_{21} E_{r2} + \sigma_{22} E_4$$

Eliminating E_{r2} from (A.4.9) and (A.4.4)

$$E_2 = \frac{\sigma_{11}S_{12}E_1 + \sigma_{12}E_4}{1 - \sigma_{11}S_{22}}$$
(A.4.11)

Substituting (A.4.11) in (A.4.3)

$$E_{r1} = \left[S_{11} + \left(\frac{S_{12}^2}{1 - \sigma_{11}}S_{22}^2\right)\sigma_{11}\right]E_1 + \left[S_{12}\left(\frac{\sigma_{12}}{1 - \sigma_{11}}S_{22}^2\right)\right]E_4 \quad (A.4.12)$$

Eliminating E_2 from (A.4 9) and (A.4.4)

$$E_{r2} = \frac{S_{12}E_1 + \sigma_{12}S_{22}E_4}{1 - \sigma_{11}S_{22}}$$
(A.4.13)

Substituting (A.4.13) in (A.4.6)

$$E_{r4} = \left[S_{12}\left(\frac{12}{1-\sigma_{11}S_{22}}\right)E_{1}\right] + \left[\sigma_{22}\left(\frac{\sigma_{12}}{1-\sigma_{11}S_{22}}\right)S_{22}\right]E_{4} \quad (A.4.14)$$

From Equations (A.4.12) and (A.4.14)

$$\begin{pmatrix} E_{r1} \\ E_{r4} \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \begin{pmatrix} E_{1} \\ E_{4} \end{pmatrix}$$
 (A.4.15)

where, $\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$ is the compositre matrix of the mode transducer and the

dielectric rod. The coefficient Σ_n is given by

$$\Sigma_{11} = S_{11} + \left(\frac{S^2_{12}}{1 - \sigma_{11}}S_{22}\right)\sigma_{11}$$
 (A.4,16)

A.5 Launching Efficiency.

An expression for the launching efficiency of the E_0 -mode transducer is obtained as follows. Assume matched load at the terminal 4-4 (See Fig. A.4.1)

$$E_4 = 0$$
 (A.5.1)

Substituting
$$(A.5.1)$$
 in $(A.4.5)$ and $(A.4.6)$

$$E_{r3} = \sigma_{11} E_3$$
 (A.5.2)

$$E_{r4} = \sigma_{21} E_3$$
 (A.5.3)

Since S and σ networks are cascaded

$$E_{r2} = E_3$$
 (A.5.4)

$$E_2 = E_{r_3}$$
 (A.5.5)

From Equations (A.5.2) and (A.5.5)

$$E_2 = \sigma_{11} E_3 = \sigma_{11} E_{2} \tag{A.5.6}$$

From equations (A.5.6 and (A. .4)

$$E_{r2} = S_{21} E_1 + \sigma_{11} S_{22} E_{r2} \qquad (A.5.7)$$

$$= (S_{21}/1 - \sigma_{11} S_{22}) E_1 \qquad (A.5.8)$$

Power entering the σ – network

$$P_{\sigma 1} = E_{r^2}^2 (1 - |\sigma_{11}|^2)$$

or,
$$P_{\sigma 1} = \frac{S_{12}^2}{|1 - \sigma_{11}S_{22}|^2} (1 - \sigma_{11}^2) |E_1|^2$$
 (A.5.9)

The launching efficiency is defined as the ratio of the power entering σ —network to the power incident on the S-network.

$$\frac{P\sigma_1}{P_{s1}} = \frac{1 - |\sigma_{11}|^2}{|1 - \sigma_{11}S_{22}|^2} |S_{22}|^2$$
(A.5.10)

A.6 Abstract from Elasser's paper (5).

The attenuation of dielectric rod is calculated using perturbation method and the relation is

$$\alpha = 2729 \left(\epsilon_r \phi / \lambda_0\right) Q \, dh/\text{meter}$$

where,

$$\phi = \sigma / \omega \epsilon_1$$

 $\sigma = \text{Conductivity of the medium}$
 $Q = a$ dimensionless quantity

ϵ_r = relative permittivity of the rod.

The following table gives Q as a function of radius of the rod for E_0 -mode. TBALE A.6.1 : Q as a function of radius of the rod.

$2a/\lambda 0$	Q
0.620	0.089
0.634	0.125
0.651	0.156
0.669	0.186
0.708	0.245
0.746	0.342
0.784	0.357
0.822	0 402
0. 876	0.474
0.967	0.555
1.153	0.632
1.352	0.654

K. SHANKARAN AND S. K. CHATTERJEE

13. ACKNOWLEDGMENT

The authors are grateful to Dr. S. Dhawan; Director, and also to U.G.C., New Delhi, for permission and encouragement to conduct the project. The authors also expresses their grateful thanks to Dr. James R Wait, Monitor, Senior Scientist O/T-ITS for his support, encouragement and technical advice. The U.S. Department of Commerce is also thanked for providing PL-480 funds. The authors are also indebted to NOAA for necessary support and encouragement.

14. **REFERENCES**

9. A

1.	K. N. Shankara and S. K. Chatterjee			J. Indian Inst. Sci., (Under publicat		
2.				Ibid.		
3.	G. A. Deschamps	•	H 3 H 2	J. Appl. Physics, 1953, 24, 1046.		
4,	S. K. Chatterjee and	V. Subram	anyam	J. Indian Inst. Sci., 1958, 50, 258.		
5.	W. M. Elasser		ă 🛓	J. Appl Physics, 1949, 20, 1193.		

AUTHOR INDEX Vol. 54 (1972)

	PAGE
Ananthan, V. C.: See Narasimhan, N. and Chatterjee, S. K., 64	
Chatterjee, S. K.: See Girija, H. M. 1: See Narasimhan, N. and Ananthan, V. C., 64: See Shankara, K. N., 118, 146 and 211:	
Durvasula, S.: See Sepaha, S. P. 43	
Durvasula, S. and Prabhu, M. S. S.: Use of Bar Buckling Eigen- functions in the Stability Analysis of Clamped Skew Plates	55
Girija, H. M. and Chatterjee, S. K.: Study of the Surface Wave and Radiation Characteristics of Cylindrical Metallic Corrugated	
Billuctures	1
Iyengar, T. K. S.: Mathematical Design for Experimental Evaluation	
of I.L.L. Operations	35
Khan, R. H., Mahadevan, N. S. and Seshadri, M. R.: Some studies	
on the Flowability of Moulding Sand	194
Krishna Rao, G. S.: See Viswanatha, G. V., 183.	

Mahadevan, N, S.: See Khan, R. H. and Seshadri, M. R., 194.

Manas Chanda and Syamal Kumar Sen: General Scheme for Solving Ordinary Differential Equations under Two-point Boundary Condi-139 tions

Nandagopal, M. R. and Sethuraman, S. K.: Probes for Field Mapping by Electrolytic Tank Analogue-A Comparison of Different 26 . . Probe Designs.

Narasimhan, N., Ananthan, V. C. and Chatterjee, S. K.: Theory of Open Resonator with an Axial Dielectric Rod 64

Prabhu, M. S. S. : See Durvasulu, S. 55.

Rudra Setty, T. M.: Microbial Production of Amino Acids III. Nutritional Studies and the effects of Organic Growth Promoters and Thiamine on DL-Alanine Fermentation by Arthrobacter Strain 186 $C_{19}d$

See Manas Chanda, 139. Sen Syamal Kumar:

AUTHOR INDEX - (concld.)

Sepaha, S. P. and Durvasula, S.: Vibration of Trapezoidal Cantilever Plates with Partial Root Chord Support	43
Seshadri, M. R.: See Khan, R. H. and Mahadevan, N. S., 194.	
Sethuraman, S. K.: See Nandagopal, M. R.; 26.	
Shankara, K. N. and Chatterjee, S. K.: Surface Wave Characteristics of Circular Cylindrical Corrugated and Uniform Dielectric Rod	
Excited in E ₀ -Mode	118
Shankara, K. N. and Chatterjee, S. K.: Corrugated and Uniform Dielectric Rod Aerial Excited in E ₀ -Mode	146
Shankara, K. N. and Chatterjee, S. K.: Experimental Study of Uniform and Corrugated Rod as Surface Waveguide and as Radi-	
ator ·· ·· ·· ··	211
Sethna, Y. I.: Equipment for Sanitization of Water for Drinking Purposes; an Import Substitute	115
Sinha, S. C. and Srinivasan, P.: Free-Transverse Vibrations of an Axially Moving Mass	96
Srinivasan, P.: See Sinha, S. C., 96.	
Viswanatha, G. V. and Krishna Rao, G. S.! Studies in Terpe- noids-XXII. Synthesis of Mansonone	183

20

96 32 18 18

4

1.

1. 1. 1. 1.

TITLE INDEX Vol. 54 (1972)

P	A	G	E
1.000			

Corrugated and Uniform Dielectric Roc	Aerial Excited	in E. Made	
(Shankara and Chatterjee)	· ·	••••••••••••••••••••••••••••••••••••••	146
Equipment for Sanitization of Water Import Substitute. (Shethna)	for Drinking	Purposes; an	115
Experimental Study of Uniform and Waveguide and as Radiator. (Shanka	Corrugated Ro tra and Chatterje	d as Surface e)	211
Free – Transverse Vibrations of an Axial Srinivasan)	ly Moving Mass.	(Sinha and	96
General Scheme for Solving Ordinary Two-Point Boundary Conditions.	Differential Eq (Manas Chanda	uations under and Syamal	120
Mathematical Design for Experimental F	••••••••••••••••••••••••••••••••••••••		139
(lyengar)	· · · · · ·	• • • • •	35
Microbial Production of Amino Acids the Effects of Organic Growth Promot	III. Nutritiona ers and Thiaming	l Studies and e on DL-Ala-	

nine Fermentation by Arthrobacter Strain $C_{19}d$. (Rudra Setty)	186
Probes for Field Mapping by Electrolytic Tank Analogue-A Compari- son of Different Probe Designs. (Nandagopal and Sethuraman)	26
Somes Studies on the Flowability of Moulding Sand. (Khan, Maha- devan and Seshadri)	194
Studies in Terpenoids-XXII. Synthesis of Mansonone-G. (Viswa- natha and Krishna Rao)	183
Study of the Surface Wave and Radiation Characteristics of Cylindrical Metallic Corrugated Structures. (Girija and Chatterjee)	1
Surface Wave Characteristics of Circular Cylindrical Corrugated and Uniform Dielectric Rod Excited in E ₀ -Mode. (Shankara and Chatterjee)	118
Theory of Open Resonator with an Axial Dielectric Rod. (Nara- simhan, Ananthan and Chatterjee)	64

TITLE INDEX - (concld)

.

1.

Use	of	Bar	Buckling	Eigenfunction	is in t	be S	tability	Analysis	s of		
CI	amp	ed S	kew Plates.	(Durvasula	and Pra	abhu)	•	K.	••		55
Vibra	ation	of	Trapezoida	al Cantilever	Platcs	with	Partial	Root C	hord	•	
Su	ippoi	rt.	(Sepaha and	d Durvasula)		۲			• •		43

258

. .

L	J.J.I.K. Pub	lications	
Wealth of India: An e resources of India iss	ncyclopaedia of ti ued in two series :	he economic produc	ts and Industria
Raw Materials Series contains articles on Plant, animal and mineral resources		Industrial Products Series deals with major, small-scales and cottage industries	
Vo <u>l</u> , VIII (Ph-Re) [•] Bharath Ki Sampada [•] (l () is also availabl	Hindi Edition of W	ealth of India) Raw-	Materials Vol.
Vo <u>l</u> , VIII (Ph-Re) [•] Bharath Ki Sampada [•] (l () is also availab Other Publications : Flora of Delhi and Illustrati	Hindi Edition of W le).	Delhi	Materials Vol.
Vo <u>l</u> , VIII (Ph-Re) Bharath Ki Sampada' (l () is also availab Other Publications : Flora of Delhi and Illustrati Marsiea by K. M. Gupta	Hindi Edition of W le).	Delhi	Materials Vol. 1 Rs. 28.00 each Rs. 16.00
Vo <u>l</u> , VIII (Ph-Re) Bharath Ki Sampada' (l () is also availab Other Publications : Flora of Delhi and Illustrati Marsiea by K. M. Gupta Indian Fossil Pteridophytes	Hindi Edition of W le). ons to the Flora of (by J. K. Ma	Delhi heshwari)	Materials Vol. 1 Rs. 28.00 each Rs. 16.00 Rs. 23.00
Vo <u>l</u> , VIII (Ph-Re) Bharath Ki Sampada' (l () is also availab Other Publications: Flora of Delhi and Illustrati Marsiea by K. M. Gupta Indian Fossil Pteridophytes Cedrus by P. Maheshwari an	Hindi Edition of W le). ons to the Flora of (by J. K. Ma by K. R. Suranga d Chhaya Biswas	Delhi heshwari)	Materials Vol. 1 Rs. 28.00 each Rs. 16.00 Rs. 23.00 Rs. 24.00
Vo <u>l.</u> VIII (Ph-Re) Bharath Ki Sampada' (l () is also availab Other Publications: Flora of Delhi and Illustrati Marsiea by K. M. Gupta Indian Fossil Pteridophytes Cedrus by P. Maheshwari an Indian Thysanoptera by T. N	Hindi Edition of W le). ons to the Flora of (by J. K. Ma by K. R. Suranga d Chhaya Biswas J. Ananthakrishnan	Delhi heshwari)	Materials Vol. Rs. 28.00 each Rs. 16.00 Rs. 23.00 Rs. 24.00 Rs. 26.00

Glossary of Indian Medicinal Plants by R. N. Chopra & I. C. Chopra ... Rs. 8.00

