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ABSTRACT

Siress field due to circular inhomogeneity in an infinite strip has been
investigated in this paper.  Stresses which are given in terms of infinite integrals
have been calculated numerically for some particular cases. When the ratio of
the radius of circular inclusion to the semi-widith of the strip is.l, the stress
distribution at the equilibrium boundary in the strip is approximately the sume as
the stress distribution due to circular inclusion in the infinite medium.

INTRODUCTION

Two-dimensional inclusion problems have been mainly investigated by
using point-force technique coupled with complex variable methods': 2,
strain-energy method?, and theory of Hilbert problem*. The above methods
are found unsuitable for the present problem. Point-force technique requires
the knowledge of complex potentials which give the elastic field due to a
point force in an infinite strip containing inhomogeneity and strain energy
method needs considerable guessing of the equilibrinm boundary. However
theory of Hilbert problem coupled with the superposition principle could be
applied to obtain the siress field everywhere.

The solution is obtained by the superposition of two stress systems.
The first system corresponds to the inhomogeneity in an infinite medium.
The second stress system is obtained by applying on the edges of the sirip,
normal and shearing tractions opposite to those obtained in the first system.

FIRST STRESS SYSTEM

The problem of circular inhomogeneity in an infinite medium may be
solved as follows :

Consider a circular region (|z| =r'; z=x+iy) situated in an infinite
elastic plane. This circular region will be called inhomogeneity if 1ts
elastic constants are different from those of the outer region and inclusion
if the elastic constants are the same as those of outer region. The outer
region will be called matrix. The elastic constants of inhomogeneity are
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taken as u, and k; and those of matrix x4, and k,, where u is the rigidity
modulus and k=3-4¢ for plane strain case and k=(3-0)/(l +0o) for
generalized plane stress, o being Poisson’s ratio. We shall denote the
inhomogeneity and matrix by S* and S~ regions respectively.

Let the inhomogeneity in the absence of matrix undergo a prescribed
deformation (€, x, €, ) which in the presence of the matrix will attain 4

different-equilibrium configuration.  The following conditions must be
satisfied at the boundary |z| /" :
Ut ~u" = —€,x=g(1)
v — v = =€,y =g,(1) {1}
Bt () +1g’ +()+¢* (1) =p=(1)+1 ¢~ () +4-(1) [2]
and Mkt () =gt @7 (1) — kg (D)
= iy ™ (1) = iyt @'7(1) =y (1) + 20,1, 8, (1) +i 85 (1) (3]

where the + and —supercripts stand for the $* and S~ regions respectively, 7 is

the boundary point, ¢(1) and (1) ate analytie functions as used by
Muskhelishvili®.

[f we put
Qz)=¢*(2)—2¢' ("' }2)—¢~(r'¥z), z€s*
and 2(z)=¢(2) -—29;"" (r'“]z) —-%*(r'z/z), Z€ES "™

then, £2(z) is holomorphic in the whole plane except possibly at the origin
and infinity. '

Further. if
w(z) = uk T (2) + #,z%"‘(r’ 2[2) + M, J"(r' 2[2), zest
and w(z) = mkp~(2) + #zz;”'(r’ 2[2) + uzg_{r"(r' ). res”
then it may be seen from (3) that w (2) satisfies the equation
wr()—w () =214, g, (1)+i g, (1) on|z]|=r (4]

The function w(z) 1s sectionally holomorphic everywhere except at the
point of infinity where it has pole of order one.

Using the fact that the stresses should vanish at infinity and are bounded
at the origin, 2 (z) and w (z) can be determined. The analytic functions
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$ (z) and ¢ (2) for S* and S~ can be easily found from £2(z) and o (z)
and are given by

2y ppr'? (€, +€y) + M My (€ —€p) r'
Z(zﬂg-ﬂg'l'#:kl) z (Mg + My ky)

If the center of inhomogeneity is taken as (0, y,), the corresponding stresses
for inhomogeneity and matrix can be found out and are given by

2 py My (€, +€2) My Mg (€, _Gz)

* [5]

Y~ (2)= -

T Vit m = :
(T} 2 My = Mgt Mg Ky Mo+ iy Ky
(1,),}* = — 24 My (€1 t€) | My My (€—€,)

¥l 2 Jhy— Mgyt MoK, My + My Ky
{(Txy)l}+_

4Ax1{x -3 (y=y0) } N B{xl’_(y__yn)z}
x4y —yo)} 3 {(F+(r=yp}?
_3C {xX'+(r—yo)* =6 X (y—o )1}
{32+ (y =y}
2 Ix? — p) . _ 5
(1,0} _4A(y—J) {3x*—(y-30%} _ B{x’'-(y—19)}

1T}

P+ (r=ypP} {2+ (y—rp?}?
3C{ X+ (y—pe)* =6 X7 (v yo)’}
{x P ,}'n) }
8 Ax(y-y){x’=(y—y)’} 2Bx(y—)yo
T +
{( IJ‘)} {Y +(y Yo )2} {Iz_l_(}r-—."?o}z}z
12 C x (y }’o) {(y J’o)z"x } [6]

(x4 (y-y)}*

vhere the subscript 1 refers to the first system of stresses ; subscripts +
and — refer to the inhomogeneity and matrix respectively and the constants
A, B. and C have following values

Al im My Mo ii(el_ez)
Mgt Mty Ky

?
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Bo . 2 M o r' (€ +€5)
2 py— Myt kg py

Y

au'i"["kl #z
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INHOMOGENEITY IN AN INFINITE STRIP

We shall now consider inhomogeneity in 'a two-dimensionol infinite
elastic strip (Fig. 1). The edges of the strip are given by Y= +a. The centre
of inhomogeneity is taken at (0, Yj) and as before the inhomogeneity in the
absence of matrix undergoes a prescribed deformation (e€,x, €,y). The
elastic constants of inhomogeneity and matrix are the same as in the previous
section. On the edges of the strip normal and shearing tractions should be
zero. In order to satisfy the edge conditions, we superimpose on the first
stress system a second stress system which is obtained by solving a strip

problem (containing no inhomogeneity) in which the edges y=+4 are
subjected to the surface tractions - {(7,,);} ~ and— {(7,),}

ey
. —_— - | T
Gl
R
l
Fic. 1

Infinite Strip with Circular Hole and the Coorninate System.

The second system may be obtained as. follows : e

The solution of the equations of equilibrium in two-dimensional case n
terms of biharmonic function @ is known 2, The exponential Fourier transform

of a function f(x,y), denoted by f(y, £) is defined as
TOh)=[ et f(x, »)dx
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Assuming that e (3’P/3x’) (r=0, 1, 2, 3) vanish as x—zoo and taking the
exponetial Fourier transform of the biharmonic equation In P and the
corresponding stresses in terms of @, we get

D = (P+0y)e "8 + (R + Sy)e'tVs
(To0)o = (PEL+ Oyl —20€)e~1 1+ (RE? + SyEt + 25€)e 417
(T,)a=—E{(P+ Qp)e~!t” + (R + Sy)e'tV}

and

('F;_.S, =if[{-¢P-Q(pf~1)}e "4 {RE+S(I +yéy}eltty] (7]

where bar denotes the Fourier transform; subscript 2 refers to the second
system of stresses and P, Q, R, and S are functions of £ and are to be deter-

mined with the help of boundary conditions.

The boundary conditions are

{(Tyy)l}r—“-tas F[{(Tj’?)l}—ly=*ﬂ’ {(Txy)l}y'::tﬂ: "[{(Txy}l} —]‘F":l-ﬂ‘
It may be seen that

[{(Tyh} " Jyoa =7V (248 (yy—a) + BE +3 of’]

[{(T, )} ), moa = e~ @4 2483 a+yg) + BE + 3067

(T} ™ Laa =i meDH24E {1 +E(yy—a)} + BE + 1]

(T} hamg =i me™ @424 (€ + ) = 1] ~ BE - Lef’]

The constants P, O, R and S come out to be

P~ — _ATS) (2B + C£2) (e~ 2% ef70 {sin h 2£a+2af (] +2af) €247}
47 A

— e 4 {sin h2€a +2a€ cos h2£a} ] — Y] [e=29¢ etro &y, sin h2a

+ 20€ (Ey,—2a*E* + 2ay, £%) €8} + e~ 8" {2ay £ cos h 2£a
+(2a® €%+ €y,) sinh 2£a}l]
Q=— Z?EE;(ZB + C£€3) [4aé e570 _ 2e= ¢tV gin ki 2¢a]

_ 4 EA
4(¢)
+ e~ 80{(28y,~ 1) sin h 2¢a+2af cos h 2¢a}]

[e=2%% b0 {(4ayy £ +2at — 4a%£2) €%t —sin h 2£a}
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™
4(¢)
—e~2te=tro{(1+2a¢) sin h 2£a +4a%E%%*¢ +2a¢ cos h 2£a} ]
N 4 A¢
A (€)
+e~ e {yy sin h 28a+ 208Xy + 2akyy + 24%€)} ]
2

55,(2B+C§3)[eb’“ sin h 2£a—Zafe™ 4] [8]

R = (2B + C&?) Teb>*(sin h2¢a +2af cos h 2¢a)

[ef {(yn—2az§) sin i 28a+ 2aéyy cos h 2§a}

4 A&
A L)
+e 2=t lsin h 28a+ 208 (2af + 28y, — 1)} ]

where A(£)=4£{sin® h 2¢a—4a’¢*}. On substituting these values of P, Q, R
and S in (7) and using inversion formula, we get

S=+

(€7 {(2&yy+ 1) sin h 2£a—2af cos h 2¢a}

(T,,)2= — —:;-}f’ {(P+Qy)e~+" + (R + Sy)e¥} cos(£x)dé,
.0
(Tax)a= -‘!I_Tf{(sz +QyE*—208)e™ 4 + (RE2 + Spf? + 2SE)et?} cos(éx) d €,
0

(Ty)p= -;r-_ff[—{P§+Q(y§—~l)}e‘4-"+{R§+S(l+}‘§)}e‘3’ sin (¢x)d¢. [9]

Resultant stresses in the strip for inhomogeneily and matrix are given by
(Tyy)_ = {(Tyy)l} T+ (T2 and (Tyy)+ = {(Ty.v)l} b (Ty.v)2 and similarly for
(Tse) 5 (Tax)"s () dnd (T,,)". [10]

It may be seen that on substituting y=+4a in (10), (7xy)* come out to
be zero. Also as a —»oc, (7,,),=(T,,);=(T,,),=0 and we get the results of
circular inhomogeneity in an infinite medium. Continuity of normal and
shearing stresses at the equilibrium boundary and discontinuity in displace-
ments can also be verified.

The problem of arbitrary distribution of loads on the edges of the strip
can also be solved by the above method.

NUMERICAL EVALUATION OF INTEGRALS AND DIiSCUSSION

It may be noted that the infinite integrals in (9) are all convergent. The
singularities of integrands in (9) can arise from the zeros of A (€) which are
at £=0. However in the limit as £&—0, the integrands tend to some finite
limit.



38 S. C. GurTta

The order of convergence of the integrands in (%) is given by

0(§4€Iy!al+l.vnial-2lt) as f-—rm ' [“]

The upper limit of infinite integrals in (9) may be taken as some finite
vnlue of £ which is not arbitrary and depends upon the result in (11). The
integrals can be evaluated by using Filon’s method ® which is more suitable
because of the presence of oscillatory functions sin (£x) and cos (£x).

Graphs of 7,,, Ty and T, (r, 6 are the polar co-ordinates) versus 68 at
the equilibrium boundary have been drawn in Figs. 2, 3, and 4 respectively
for the case €,=€,=€ and M,=m,=u and K,=K,=K. Centre of the
inclusion is taken at the origin. From symmetry considerations € has been
given values from 0 to 7/2 only. When the ratio r’fa is 0.1, stresses in
the strip due to circular inclusion are almost the same as for circular

inclusion in the infinite medium.
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( 706 dngerix YEPSUS 8 on the Equilibrium Boundary for the Case ex=¢2=¢. Dotted Line is the
Graph of Circular Inclusion in an Infinite Medium,
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7,, Versus 8 on the Equitibrium Boundary for the Case ex=e1=¢. Dotted Line is the Graph
for Circular Inclusion in an Infinite Medium.

REFERENCES
}. Eshelly, J. D, = ‘@ Proc. R. Soc., 1957, 241, 376.
2, Jaswon, M. A. and Bhargava R.D. . . Proc. Camb. Phil. Soc., 1961, 57, 669.
3. Bhargava, R. D. .. o Appl. Scient. Res., 1963, 11, 80.
4. Bhargava, R, D. and Gupta, S.C. .. Bull. Pol. Des. Scie., 1969, 17, 239.
5. Muskhelishvili, N. 1. .. Some basic problems of the mathematical

theory of elasticity. P. Noordhoff, Ltd.
Gromingen, 1953.

6. Zdenck Kopal . . . Numertical analysis N. Y. Wiley, 2nd ed (1961).



