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ABSTRACT 

The paper deals with an approximate method of analysis of undamped 

non-linear spring mass systems subjected to step function excitation. 	The 
non-linear function is replaced by a linear function such that the weighted mean 

square error is minimum. An appropriate weight function, valid for the interval 

of approximation, is proposed and an expression for the approximate period is 

derived. The method is illustrated by an example and the approximate results 

are compared with the exact results. 

I . INTRODUCTION 

The response of undamped non-linear spring mass systems initially at 
rest, subjected to step function excitation has been studied by many investi- 
gators. Bapat and Srinivasan 1 . 2  have obtained exact expressions for 
periods of oscillation for a certain class of non linear systems in terms of 

1 well tabulated special functions. 	They' have also extended Panovko's 
method of direct linearisation and Atkinson's superposition principle to 
obtain approximate expressions for time periods of the system with arbitrary 
hardening type spring characteristics. Ariaratnam 7  and Bauer' extended 
Poincare-Lighthill-Kuo method of perturbation to study non-linear systems 
subjected to pulse excitations. Ergin 6  proposed a bilinear approximation 

to study undamped problems. 

There are many engineering situations, where, the transient response of 
a non-linear system is of great interest such as for example in the design of 
shock mounts. The springs used in the shock mounts are invariably non- 
linear either on account of the material like composite rubber pads in 
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compression or on account of the geometry of spring arrangements. The 
designer of shock mounts would be interested in the response of the 
a bsorbers to step inputs to which it is subjected in application so as to li m i t  
the deflection to tolerable values. There are also many applications of this 
in control theory, when the designer needs, transient response of non-linear 
system in the design of suitable control systems. 

The method of analysis presented here is bas ed on the linearisation of 
the non-linear function such that the weighted mean square error is minimum. 
An appropriate weight function is proposed for the interval of approximation 
and an expression for the approximate period of oscillation is developed. 
The method is illustrated by an example. 

2. METHOD OF APPROXIMATION 

The governing differential equation of undamped non-linear spring mass 
systems excited by a stem function can be written as 

t <0 

t>0 	 Eli 

where x is the displacement from the equilibrium position and f(x) is 
an odd function given by 

It 

1 /221+1  x2i4-1 , 
t=o 

a's being positive F, the magnitude of the step, is a positive constant. The 
initial conditions are 

xls=o=0 	 [2] 

It is 	known 	that 	x always 	remains 	positive 	for the 	stipulated 	initial 
conditions [2] and it oscillates between zero and a maximum value (say A, 

the amplitude), which depends upon the force amplitude F. 	The amplitude, 
A 	can 	be 	found by 	analysing 	the 	first 	integral 	of the 	system l a. 	The 
equation [1] can be written as 

rt 
X + 2 a21+1  x21 + 1  —F-0; 0<xls.A 

1=0 

Or 

s6(A,y)=0; 0<y1 	 (3) 
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y=x1A 
	

and 

(AtY) imo a 21-1-1 A21y2141 	
A 
	 [4] 

The function çb (Ay) is replaced by a linear function of the form (K 1 +K2 y) 
in the interval (0,1) such that the integral 

/( i , K2) 41 K 	=- [0(AvY) - (K 1 4- K 2y)1 1  w(y) dy 

is minimum. Here w( is a positive weight function defined in the interval 
(0,1). The minimisation of I (K 1 , K2) leads to the determination of the 
constants Ki  and K2 . 

In the present analysis the weight function is chosen as 

w(Y)=2 -  yx-2  ; A <2 	 [4] 

where A is a free parameter and the constraint stipulated on ensures the 
condition that w(y) should be positive in the interval (0,1). The constants 
Ki  and K2 can also be determined independently as y° and y' are orthogonal 
in (0,1) with respect to the weight function (4) and they are given by 

and 

ft  (A, y) (2 - Ayx -2) dy 

f1 (2 - yx -2)dy 

ji  # (A, y) (2-A yx -2) ydy 
K2 Op 11) 

I .  
f y2  (2 - A yk -2) dy 

[5.a] 

[5. 14 

Now the equation [3] can be replaced by 

;41(2 (A, 	y + Ki  (A, A)=0 
	

[6] 

K I (A, A) and K2  (A, A) are evaluated from [5.a] and 15.13] and these are 

given by 

K 1  (A, A)= 
[F +  1 a  (A-I).  A2  + 2 a  (A-I) A  

2 	

4  + 

A 	3  (A+2) 	3 3  (A -I-4) 

9(A±t)  A 2 + 15 a (A±/)  A4 + • • • K2  (A, A)=.: + --5- a3 (TIT) 	7 s  + 
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The approximate period of oscillation is given by 

9 .23  (A .4_ 1) 
A' + 

15 as (A+ 1 )  4  
2 n 	 A + — To e 

 	_ 	t[ adtt2 (i + _ 	__) 	7 al (A  +  5)  
5 al  (A+ 3   71r2  (A, A)i 

[1 

3. CHOICE OF THE PARAMETER A- SMALL AMPLITUDE ANALYSIS 

One possible way of choosing an appropriate value for A is by 
comparing the expressions for the approximate period and the exact period 
in a manner similar to that given in s . 	The exactexpression 	, for the 
time period for the system described by [3] can be written as 4 . 

Te r-A/2 f 	
dy  

[Y of (A) e) de - iv  71  (A, e) deio 
(81 

where, 

(A, e)r. 	a21+1 
A21 e214-) 

1=0 

Evaluation of the integrals in the integrand reduces [81 to . 

2 
Te  = 

Val 

	

-1/2. 	
. 

a 	2 	 ) 	1  "54  A(I +v -Fy2  4-y3 +" • - • [ 	I 1 + 	A (1 +y 	7 .t •-7 	• • 2 al 	 3a1  
x y- 112 g_yr1t2 dy 	(91 

For small amplitudes the expression in the square brackets of [9] can 
be expanded in binomial series. Integration after expanding in binomial 
series and retaining only terms of the order of 4 2 , yield 

2n I 	15 03  42 — • • •] T, 	
32a1 

[ 1 01 

The expression for the approximate period (7) can be written as 

T = an f i 	9 (Ai-ly3 A2—  ...I 	 [111 
10 	+ 3 at 

Comparison of [10] and [11] suggests that 	• ' 

81 
1.174 	.1 

69 
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This is less than 2, thus satisfying the stipulated condition on A. The 
analysis given in this section gives an idea of the value of A around which 
variations can be tried. For a system with cubic restoring force characteris- 
tic both [10] and [11] give same value for A=8I/69. The following section 
deals with an example which illustrates the method and brings out the effect 
of A on the period. 

4. EXAMPLE 

Consider a cubic spring mass system : 

'll-o1x+a3 - 	 1121 
with x(0) 0 and i(0)= O. 

The exact period of [12] is given by 

4 V2 K (k) 
Te 	 

Oaf + 8 al  a3  A 2 +3 f7; A 4  jrIT 	 [13] 

where K (k) is the complete elliptic integral of the first kind, A is the 
amplitude and k is given by 

H 1 	
(4  a t  +3 a3  A 2 ) 

2 	2 [4 al + 8 al  a3 /1 2  +3 	A4 1 1  / 2  

From [7] the approximate period is given by 

a  -= 2#77 IV (a s 	4_ 9  a3 ( A +1  te 	
[14]

r 

5 a A +3 I 

Here a t  is taken as [Ill, [13] and [14] are computed for a 3 3c0.2, 1.0 and 2.0. 
Period versus amplitude curves are plotted for different values of A. 
Fgures I, 2, 3 and 4 show the variation r0 [14} with A for different cases. 

5. DISCUSSION 

In the method presented here, the non-linear function is replaced by 
an equivalent linear function and an approximate period dependent on the 
maximum displacement (Amplitude) of the system is obtained. 

For small amplitudes A=(81/69) -a-1.174 provides a sufficiently accurate 
approximation to the period for systems with odd type restoring force 
characteristics. For the example considered here, all the vslues of A i.e., 
1, 1.1, 1.174 and 1.2 give almost the exact result for small nonlinearity and 
small amplitudes (Fig. 1 and 4). The results for A=1.0 and 1.1 are not 

incorporated in fig. 1 as the approximate results are almost close to the 

exact ones. 	A= I seems to provide better results at large applitudes in all 
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the cases considered (Figs. 1,2 and 3). It can be seen that small changes 
in A will not affect the period very much for small amplitudes. It is wroth& 
while to attempt to get an expression connecting A and the amplitude. Then 
it might be poosible to attribute different values of A to different ranges of 
amplitude. 

The method can be applied even if the restoring force characteristic 
contains even powers of the displacement and can be easily extended to 
systems if the damping is of' viscous nature or coulomb nature. Approxi- 
mate expressions for maximum displacement and the response time can be 
arrived at and can be compared with those obtained by other methods. This 
forms a part of the future work. 
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