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ABSTRACT

The paper deals with an approximate method of analysis of undamped
non-linear spring mass systems subjected to step function excitation. The
non-linear function is replaced by a linear function such that the weighted mean
square error is minimum. An appropriate weight funciion, valid for the interval
of approximation, is proposed and an expression for the approximate period is
derived. The method is illustrated hy an example and the approximate results
are compared with the exact results.

I. INTRODUCTION

The response of undamped non-linear spring mass systems initially at
rest, subjected to step function excitation has been studied by many investi-
gators. Bapat and Srinivasan'+? have obtained exact expressions for
periods of oscillation for a certain class of non linear systems in terms of
well tabulated special functions. They? have also extended Panovko’s
method of direct linearisation and Atkinson’s superposition principle to
obtain approximate expressions for time periods of the system with arbitrary
hardening type spring characteristics. Ariaratnam’ and Bauer® extended
Poincare-Lighthill-Kuo method of perturbation to study non-linear systems
subjected to pulsc excitations. Ergin® proposed a bilinear approximation
to study undamped problems.

There are many engineering situations, where, the transient response of
a non-linear system is of great interest such as for example ip thc- design of
shock mounts. The springs used in the shock mounts are invariably non-
linear either on account of the material like composite rubber pads 1n
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compression or on account of the geometry of spring arrangements. The
designer of shock mounts would be interested in the response of the
absorbers to step inputs to which it is subjected in application so as to }imit
the defiection to tolerable values. There are also many applications of this
in control theory, when the designer needs, transient response of non-lineas
system in the design of suitable control systems.

_ The method of analysis presented here is based on the linearisation of
the non-linear function such that the weighted mean square error is minimum.
An appropriate weight function is proposed for the interval of approximation
and an expression for the approximate period of oscillation is developed.
The method is illustrated by an example.

2. METHOD OF APPROXIMATION

The governing differential equation of undamped non-linear spring mass
systems excited by a stem function can be written as

x+f(x)=0; t<0
=F; >0 (1)

where x is the displacement from the equilibrium position and f(x) is
an odd function given by .

fix)=2 o X3+

i=0

a’s being positive F, the magnitude of the step, is a positive constant. The
initial conditions are

x[:=u=0 (2]

#p g =0

It is known that x always remains positive for the stipulated initial
conditions [2] and it oscillates between zero and a maximum value (say 4,
the amplitude), which depends upon the force amplitude F. The amplitude,
A can be found by analysing the first integral of the system'.  The
equation [1] can be written as

x+ Zay,, XM —Fa0; 0<x=<A

n
I=0

or

y + ¢(A,)=0; 0<ysl 13)
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where
y=x[A and
- F
. TR TR
¢ (4.y) i’oazH—l A%y ] [4]

The function ¢ (A,y) is replaced by a linear function of the form (K, +K,y)
in the interval (0,1) such that the integral

1
I(K,, K,) =6f [6(4,y) —(Ky + K0 w(y) dy

is minimum. Here w(y) 1s a positive weight function defined in the interval

(0,1). The minimmisation of [ (K|, K,) leads to the determination of the
constants K, and K,.

In the present analysis the weight function is chosen as
w(p)=2-2Av*2; A<2 [4]

where A is a free parameter and the constraint stipulated on ensures the
condition that w(y) should be positive in the interval (0,1). The constants
K, and K, can also be determined independently as y° and y’ are orthogonal
in (0,1) with respect to the weight function (4) and they are given by

1
[ 4,9y 2-Ay*Yady
Ky (A, A) = —— - [5.a]

[@=Ay*H)dy
0

and

1
[ ¢ (AN Q=Ay*2)pdy

Ky(A, A)="—r - — [5.b]
[y @=-ay*?dy
H
Now the equation [3] can be replaced by
y+Ky (A, A)y+K, (A, A)=0 (6]
K,(A, A) and K, (A, A) are evaluated from [5.a] and [5.b] and these are
given by
F 1 =1 o 2 (A-1) ]
K'(A'AP"[“A“F"{ Y (2 2) 3 (A ke
( Y g _];r).a, A+D gay
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The approximate period of oscillation is given by

27 12 9 ay (A+]) 5 15 aq (A+1) 1127 -}
- - =:2 I + pE= A + A‘ g
i V[K; (A, A)) ﬂl[a'] ( 5 a, (A+3) 7 a, (A+5) 1 )

17

3  CHOICE OF THE PARAMETER A~ SMALL AMPLITUDE ANALYSIS

One possible way of choosing an appropriate value for A is by
comparing the expressions for the approximate period and the exact period
in a manner similar to that given in®. The exactexpression I',, for the
time period for the system described by [3] can be written as*,

!
T,=V2 ][ 2 ay

) y

“Iyfo4, & at- f
0 0

: [8]
n (4, &) dé) "2

where,

.,; (A,§)== 2 a!;'-!-l A:fng'!'l
=0

Evaluation of the integrals in the integrand reduces [8] ta& .- ..

1

T,=— = 1+ — 2 A2 (14+y+y) 3 — 2 AN +p+ A+ +0Y) - -

ﬂ xy~ 1 (1-y)~"2 ay (9]

For small amplitudes the expression in the square brackets of [9] can
be expanded in binomial series. Integration after expanding in binomial
series and retaining only terms of the order of 42, yield

T, = 27 ll__.t_sfiAi_ - ] [10]

The expression for the approximate period (7) can be written as

=0T 5 (At1Ne o 1l
R, [ IO(A+3 afA -

Comparison of [10] and [!1] suggests that = - '

A=’-8—-‘-2#_|.l74 .
69 —
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This i.s le.ss th;.m 2,_ thus satisfying the stipulated condition on ) Th
ana_lyS_lS given in t.hrs section gives an idea of the value of A around' whic;
v_arlations can be tried. | For a system with cubic restoring force characteris
tic both [10] and {l1] give same value for A=81/69. The following sectim;

deals with an example which illustrates the method and bri
of A on the period. and brings out the effect

4. EXAMPLE
Constider a cubic spring mass system :

x+o,x+a,x*=F

[12]
with x(0)=0 and x(0)=0.
The exact period of [12] is given by!
- 42K (k)
‘ a+8a,a, AZ13 @ ANTT4 [13]

where K (k) is the complete elliptic integral of the first kind, A4 is the
amplitude and k is given by
o ! (4 a,+3 a, A%)
2 2 [4ai+8a a3 A +3a; A%/

From [7) the approximate period 1s given by

Ta= 2w[x/(a,) 1/{1 + z Z’(::;)Ai]—l [14]

Here a, is taken as [11], [13] and [14] are computed for 4,=0.2, 1.0 and 2.0.
Period versus amplitude curves are plotied for different values of A.
Fgures 1, 2, 3 and 4 show the variation I',[14] with A for different cases.

S. DISCUSSION

In the method presented here, the non-linear function is replaced by
an equivalent linear function and an approximate period dependent on the
maximum displacement (Amplitude) of the system is obtained.

{ S

For small amplitudes A=(81/69) == 1.174 provides a sufficiently accurate
approximation to the period for systems with odd type restoring force
characteristics. For the example considered here, all the vslues of Ate,
I, 1.1, 1.174 and 1.2 give almost the exact result for small nonlinearity and
small amplitudes (Fig. 1 and 4). The results for A=1.0 and 1.l are not
incorporated in fig. | as the approximate resulis are almost Flose to the
exact ones. A=l seems to provide better results at large applitudes in all
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the cases considercd (Figs. 1,2 and 3). It can be seen that small changes
in A will not affect the period very much for small amplitudes. [t is wroth.
while to attempt to get an expression connecting A and the amplitude. Thep
it might be poosible to attribute different values of A to different ranges of

amplitude.

The method can be applied even if the restoring force characteristic
contains even powers of the displacement and can be easily extended to
systems if the damping is of viscous nature or coulemb nature. Approxi-
mate expressions for maximum displacement and the response time can be
arrived at and can be compared with those obtained by other methods. This

forms a part of the future work.
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