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Abstract

In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for
solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative
examples.

Introduction

This is an (expository) article on Galois theory which is inspired and influenced by several
lectures1 of Prof. D. P. Patil and a short course of lectures2 by Prof. U. Storch.

The basic idea of Galois was to associate with any polynomial (over a field) a group of
permutations of its roots (zeroes), the so-called Galois group. This group consists of all
the permutations which preserves the relations among the roots and hence it provides
a new tool to measure to what extent which roots of the given equation are permuted.
Galois’ brilliant insight was that this group provides an effective measure of the difficulty
of understanding the roots of an equation and he derived the conditions for an equation to
be solvable by radicals. In particular, the solvability of the equation by radicals can be
translated in terms of the Galois group which leads to the notion of solvable groups.

In order to make the article self-contained, in Section 1 we review classical and modern
Galois theory with historical evolution in many footnotes and give many illustrative
examples. In Subsection 1.C we prove Jordan’s Lemma (see 1.C.1) which played a
very crucial role in the development of modern Galois theory and justify this by its
use. We also give the formulation of the Galois’ Great Theorem (see 1.D.2) in arbitrary
characteristic and its complete proof in Subsection 1.D. As an application we prove a
Theorem (see 1.D.8) of Hölder on solvability by real radicals and deduce its consequences.
In Section 2 we prove the solvability of the affine group of an affine line over Fp and give

∗The authors gratefully acknowledge Prof. D. P. Patil, Department of Mathematics/ Computer Science and Automation, for
encouraging us to write this article; providing many innovative proofs of classical results in modern language and historical comments.
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a characterisation of transitive solvable subgroups of the permutation group Sp, where
p is a prime number. With these fertile ideas developed in Section 1 and Section 2, in
Section 3 we prove the classical theorem of Galois on the solvability of equations of
prime degree over an arbitrary field k.

§1 Review of Galois Theory

In this section we shall review classical and modern Galois theory with historical evolution
and provide many examples to illustrate concepts.

1.A Field Extensions

We begin with basic notations and definitions of field extensions which will be used in
later subsections and sections.

For a field extension K|k, let Gal(K|k) := Autk-alg K denote the group of k-algebra
automorphisms σ : K → K of the field K. This group is called the G a l o i s g r o u p3 (or
s y m m e t r y g r o u p) of K|k ; its elements are the field automorphisms of K which fix
the elements of k. For an arbitrary subgroup H ⊆ Gal(K|k), the subfield FixH K := {x ∈
K | σ(x) = x for all σ ∈ H} of K which contains k is called the f i x e d or i n v a r i a n t
f i e l d of H in K. The classical Galois theory deals with the interplay between the
subgroups of Gal(K|k) and intermediary subfields of K|k. Throughout this article we
consider only finite field extensions K|k, i. e. the field K is a finite dimensional vector
space over the subfield k ; the k-vector space dimension Dimk K of K, which is also
called the d e g r e e of the field extension, is usually denoted by [K : k]. In this case, every
element x ∈ K is a l g e b r a i c o v e r k, i. e. there exists a non-zero polynomial f in the
polynomial algebra k[X ] over k with f (x) = 0. More generally, a field extension K|k is
a l g e b r a i c if every element of K is algebraic over k. The m i n i m a l p o l y n o m i a l
µx,k ∈ k[X ] o f x o v e r k is the monic polynomial of least degree in k[X ] for which
µx,k(x) = 0. Equivalently, µx,k is the monic generator of the kernel of the substitution
(k-algebra) homomorphism εx : k[X ]→ K, f (X) → f (x). In particular, since K is a field,
µx,k is irreducible in k[X ] and the smallest subring k[x] is equal to the smallest subfield
k(x) containing k and x , i. e. k[x] = k(x) and [k(x) : k] = deg µx,k.

Two elements x,y ∈ K of a field extension K ⊇ k are called c o n j u g a t e s o v e r k, if
they are algebraic over k and have the same minimal polynomial, i. e. µx,k = µy,k. If the
degree of the minimal polynomial deg µx,k = n, then the number of conjugates of x over
k is at most n. Moreover, if x and y are conjugates over k, then the fields k(x) and k(y)
are isomorphic over k. Therefore, if g ∈ k[X ] is an irreducible polynomial, then there

3 This definition of the Galois group is very different from the one given by É v a r i s t e G a l o i s (1811-1832). In fact, he defined
the Galois group of splitting fields and it consisted of certain permutations of the roots which respect the algebraic structure of
the roots, i. e. which come from the automorphisms of the splitting field (see Footnote 4 and Example 1.C.12). Isomorphisms of
fields were first defined by R i c h a r d D e d e k i n d (1831-1916) in 1877. By 1894 Dedekind was also aware of the relevance of
automorphisms to Galois theory. Dedekind’s influence can be seen in the three volumes of Lehrbuch der Algebra by his student
H e i n r i c h We b e r (1842-1913) which appeared in 1884; starting with the Galois definition of the Galois group it gives a careful
account of Galois theory leading to automorphisms of splitting fields.



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in 4 9

exists – upto k-algebra isomorphism – at most one simple extension k(x)|k such that x
is a zero of g. More generally:

1.A.1 Lemma Let K|k and K|k be two field extensions of k and let x ∈ K , x ∈ K be
algebraic over k. Then µx,k = µx,k if and only if there exists a k-algebra isomorphism
k(x)−−−−−−−∼−−−−−−−− k(x) .

1.A.2 Canonical Operation of the Galois group Let K|k be an algebraic field exten-
sion with Galois group G := Gal(K|k). Then the group G operates canonically on the
field K by (automorphisms of k-algebras): G×K → K, (σ ,x) → σ(x). The o r b i t Gx
of an element x ∈ K under this operation4 is the set of zeroes of the minimal polynomial
µx,k in K. By Lemma 1.A.1 this set is precisely the set of conjugates of x over k in
K. In particular, #Gx ≤ [k(x) : k] = deg µx,k. The fixed point set FixG K is a subfield
of K containing k and is called the f i x e d f i e l d of K|k under the operation of G.
In particular, [K : FixG K] divides [K : k]. For basic results on group action, see [6,
Section 1].

1.A.3 Algebraic closure and embeddings (see also Footnote 34) Let K|k be a field
extension. We say that K is an a l g e b r a i c c l o s u r e of K if K|k is an algebraic
extension of k and if K is algebraically closed field, i. e. if every non-constant polynomial
in K[X ] has at least one root in K, or equivalently, it factors completely into linear
polynomials in K[X ]. The following fundamental theorem guarantees the existence and
the essential unicity of an algebraic closure of a given field k : Let k be a field. Then there
exists an algebraic closure of k and any two algebraic closures of k are isomorphic over
k. Moreover, the second half of this theorem is included in the following stronger result:
Let Ω be an algebraically closed field and let K|k be an algebraic extension of a field k.
If σ0 : k → Ω is a homomorphism of fields, then σ0 can be extended to a homomorphism
of fields K → Ω.

With these results, for every field k we fix the algebraic closure k of k. Then every
algebraic extension K|k can be embedded in k as a subfield. Therefore for any two
algebraic extensions K|k and K|k of a field k, we can always consider their compositum
in the algebraic closure k of k. See also Footnote 31.

1.B Galois Extensions

In this subsection we shall review classical Galois theory from the modern point of view5

which will lead to the Fundamental Theorem of Galois Theory 1.B.11. This theorem
allows us to translate many questions about fields into finite groups.

4 For a field extension K|k, σ ∈ Gal(K|k) and a polynomial h ∈ k[X ], it follows that σ(h(x)) = h(σ(x)) for every x ∈ K.
In particular, if x ∈ K is a zero of h in K, then σ(x) is also a zero of h in K.

5 The first steps towards the new subjects such as the theory of groups and various algebraic structures, in particular, field theory,
were the works of L e o p o l d K r o n e c k e r (1823-1891) and Dedekind. Moreover, linear algebra was brought to the theory of
fields as the field extension is regarded as a vector space over the smaller field. These ideas became more popular in the first decades of
the twentieth century. Evolution was made by E m i l A r t i n (1898-1962) by his definition of Galois group ((ii) of Theorem 1.B.5),
which was given in 1920’s as the starting point of Galois theory. The first exposition of this appeared in the famous treatise of B a r t e l
L e e n d e r t Va n d e r Wa e r d e n (1903-1996) – “Moderne Algebra”. Artin published his own account of Galois theory in 1938
and 1942 (see [2]). The latter was enormously influential with more emphasis on fields and groups while polynomials and equations
play a secondary role and are used as tools in the proofs. The main theorems do not involve polynomials in their statements and hence
the Fundamental Theorem of Galois Theory can be proved without ever mentioning polynomials.
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Let K|k be a finite field extension, then from the well-known Dedekind-Artin Lemma6

it follows that # Gal(K|k) ≤ [K : k]. A finite field extension K|k is called a G a l o i s
e x t e n s i o n if the equality # Gal(K|k)=[K : k] holds.

1.B.1 Example The Galois group of the field C of complex numbers over the field of real
numbers R is Gal(C|R) = {idC,σ}, where σ : C → C is the complex conjugation z → z.
Therefore the field extension C|R is a Galois extension. The field extension C|Q is infinite and
its Galois group Gal(C|Q) is also infinite! For a field k of characteristic p > 0, the Galois group
Gal(k(X)|k(X p)) = {idk(X)}, where k(X) (respectively, k(X p) ) denotes the rational function
field in indeterminate X (respectively, X p). The degree of k(X)|k(X p) is p and hence the field
extension k(X)|k(X p) is not a Galois extension.

1.B.2 Example ( S i m p l e G a l o i s e x t e n s i o n s ) For a simple (algebraic) field extension
k(x) of a field k , the natural map Gal(k(x)|k) → Vk(x)(µx,k), σ → σ(x) is injective, where
Vk(x)(µx,k) = {x = x1,x2, . . . ,xn} denotes the set of zeroes of µx,k in k(x).
In particular, # Gal(k(x)|k) ≤ deg µx,k = [k(x) : k]. Therefore equality holds, i. e. k(x)|k is
Galois extension if and only if µx,k = (X − x1) · · ·(X − xn) ∈ k(x)[X ] splits into simple linear
factors over k(x); equivalently, µx,k is separable7 over k. Moreover, in this case, Gal(k(x)|k) =
{σx1 , . . . ,σxn}, where σxi : k(x) → k(x) are the substitution automorphisms x = x1 → xi, i =
1, . . . ,n.

1.B.3 Example ( C y c l o t o m i c e x t e n s i o n s ) A field extension Q(ζn)|Q, where ζn =
e2πi/n, n ∈ N∗, is called a c y c l o t o m i c e x t e n s i o n8. A study of cyclotomic extensions
involves the study of cyclotomic polynomials and Gauss’ theory of periods. These results are ap-
plied to determine which regular polygons are constructible by straightedge and compass9. More
generally, one can also consider n-th roots of unity10 over an arbitrary field k of characteristic

6 A c h a r a c t e r of a monoid M in a field K is a monoid homomorphism χ from M into the multiplicative group K×(:= K \{0})
of the field K. Every set {χ1, . . . ,χn} of distinct characters of a monoid M in a field K is linearly independent over K. In particular,
every set {σ1, . . . ,σn} of distinct automorphisms of a field K is linearly independent over K.

7 Recall that a polynomial f is s e p a r a b l e if f = 0 and GCD( f , f ) = 1, where f  is the derivative d
dX ( f ) of f , or equivalently,

if the discriminant Disc( f ) of f is = 0. Recall that if x1, . . . ,xn are all zeroes of f , then the d i s c r i m i n a n t Disc( f ) is defined
by the equation Disc( f ) = ∏1≤i< j≤n(xi − x j)

2 which is a symmetric polynomial in the zeroes x1, . . . ,xn of f and hence is a
polynomial in the elementary symmetric functions (see Footnote 22) S1(x1, . . . ,xn), . . . ,Sn(x1, . . . ,xn) , i. e. the coefficients of f and
hence Disc( f ) ∈ k. For n = 3, the discriminant is implicit in Cardano’s formulae (see Footnote 34). By 1770 J o s e p h - L o u i s
L a g r a n g e (1736-1813) and A l e x a n d r e - T h é o p h i l e Va n d e r m o n d e (1735-1796) knew properties of Disc( f ) and its
square root ∆ f :=


Disc( f ) =∏1≤i< j≤n(xi − x j) for small values of n. This ∆ f is also known as the Vandermonde determinant of

x1, . . . ,xn and is denoted by V(x1, . . . ,xn). The general form of the discriminant was defined independently by A u g u s t i n - L o u i s
C a u c h y (1789-1857) in 1815 and by J o h a n n C a r l F r i e d r i c h G a u s s (1777-1855) in 1816.

8 Both Lagrange and Vandermonde made significant use of roots of unity. The first systematic study of cyclotomic extensions is
due to Gauss. Most of Gauss’ results appear in Disquisitiones Arithmeticae published in 1801. Gauss studies the extension Q(ζp)|Q,
where p is a prime number. He constructs primitive elements for intermediary subfields, essentially describes Galois correspondence
and uses these results to show that the equation xp −1 = 0 is solvable by radicals (over Q).

9 The idea of geometric constructions using straightedge and compass goes back to the ancient Greeks. Some of the most famous
problems in Greek geometry are duplication of the cube, trisection of angles and squaring the circle. In 1837 P i e r r e L a u r e n t
Wa n t z e l (1814-1848) showed that the duplication of the cube and the trisection of the angle cannot be done by straightedge and
compass by using the irreducibility of certain cubic polynomials. More generally: Every constructible number is algebraic over
Q and the degree of its minimal polynomial over Q is a power of 2, where constructible numbers are complex numbers which are
obtained as the points of intersections of lines and circles by using a finite sequence of straightedge and compass constructions starting
with the numbers 0 and 1. The set C of constructible numbers form a subfield of C and is closed under the operation of square roots,
i. e. if x ∈ C, then

√
x ∈ C. In 1796 Gauss proved: The regular n-gon is constructible if and only if ϕ(n) is a power of 2, equivalently,

n = 2m p1 · · · pr, where p1, . . . , pr are pairwise distinct Fe r m a t - p r i m e s. – The natural number Fm = 22m
+1 is called then-t h

F e r m a t - n u m b e r, named after P i e r r e d e F e r m a t (1601-1665) who thought they might all be primes. Fermat-numbers
which are prime are called F e r m a t - p r i m e s. The only known Fermat-primes are F0,F1,F2,F3,F4; 641 = 54 +24 = 5 ·27 +1
divides 54 ·228 +232 and 54 ·228 −1 and therefore divides the difference 232 +1 = F5. Further, the Fermat-numbers Ft , 5 ≤ t ≤ 36
are not primes. It is conjectured that there are only finitely many Fermat-primes, but it is still open.

10 Let k be a field. The elements W(k) := {x ∈ k× | ordx < ∞} of the multiplicative group k× of k of finite order are called the
r o o t s o f u n i t y in k. For n ∈N, the elements of the subset Wn(k) := {ζ ∈ k× | ζ n = 1} ⊆ W(k) are called the n - t h r o o t s
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coprime to n. The splitting field of the polynomial Xn − 1 over k is k(ζn) and k(ζn)|k is a
Galois extension with Galois group Gal(k(ζn)|k)−−−−−−−−∼−−−−−−−−− (Zn)

× (= the unit group of the ring Zn
of integers modulo n.)

1.B.4 Example ( F i n i t e f i e l d s11 ) Let Fq and Fqn be finite fields with q and qn elements,
respectively. Then [Fqn : Fq] = n and the F r o b e n i u s a u t o m o r p h i s m ffq : Fqn → Fqn ,
x → xq of Fqn over Fq generates the Galois group Gal(Fqn |Fq). In particular, Fqn |Fq is a Galois
extension of degree n with cyclic Galois group.

1.B.5 Theorem ( A r t i n ) For a finite field extension K|k the following statements are
equivalent:

(i) K|k is Galois extension.
(ii) FixGal(K|k)K = k.
(iii) K is the splitting field of a separable polynomial f ∈ k[X ].

1.B.6 Trace and Norm Let K|k be a finite Galois extension with Galois group G :=
Gal(K|k). Then for every x ∈ K, we have

(1) The characteristic polynomial χx,k = ∏σ∈G(X −σ(x)). In particular, the trace12 of
x over k is trK

k (x) := tr(λx) = ∑σ∈G σ(x) and the norm of x over k is NK
k (x) :=

Det(λx) = ∏σ∈G σ(x), where λx : K → K denotes the multiplication by x which is
clearly a k-linear map on the k-vector space K.

(2) The minimal polynomial µx,k of x over k is µx,k = ∏y∈Gx(X − y). Further, χx,k =�
µx,k

#Gx . In particular, deg µx,k = [k(x) : k] = #Gx = [G : Gx].

1.B.7 Resolvents Let K|k be a finite field extension with Galois group G := Gal(K|k).
An element y ∈ K is called a G a l o i s r e s o l v e n t13 of K|k if K = k(y) and K|k is
Galois extension. Equivalently (see Example 1.B.2), the minimal polynomial µy,k ∈ k[X ]
of y over k splits completely into simple linear factors µy,k = (X −y1) · · ·(X −yn)∈K[X ]

o f u n i t y in k. Clearly W(k) and Wn(k) are subgroups of k× and W(k) =


n∈N Wn(k). Further, Wn(k) is a finite and hence
cyclic subgroup of k×; its order #Wn(k) divides n. An element ζ ∈ Wn(k) of order n is called a p r i m i t i v e n - t h r o o t
o f u n i t y. If Chark = p > 0, then Wnp(k) = Wn(k). Further, if k is algebraically closed, then for every n ∈ N coprime to p,
#Wn(k) = n and hence k contains a primitive n-th root of unity ζ and any such primitive n-th root of unity is a generator of Wn(k).
If Chark = p > 0, for arbitrary n ∈N, #Wn(k) = n · p−vp(n). Moreover, it follows immediately from Chinese Remainder Theorem
that Wn(k)∼= ∏q=Chark Wqvq(n) (k).

The polynomial Xn − 1 over a field k of characteristic coprime to n is separable and its zeroes (in the algebraic closure k )
Wn(k) = V(Xn −1) form a subgroup of k \{0} and hence is cyclic of order n ; a generator ζn of this group is called a p r i m i t i v e
n-th root of unity. Therefore k(ζn) is the splitting field of Xn − 1 over k and Xn − 1 = ∏ζ∈Wn (X − ζ ) = ∏d|n Φd(X) , where
Φd(X) = ∏ ζ∈Wn

ordζ=d
(X −ζ i) ∈Z[X ] with degΦd = ϕ(d), where ϕ denotes the Euler’s totient function, is the prime decomposition

of Xn − 1 in Z[X ]. The polynomial Φn(X) = ∏ ζ∈Wn
ordζ=n

(X − ζ i) = ∏ 0≤i<n
gcd(i,n)=1

(X − ζ i
n) ∈ Z[X ] is called the n-th c y c l o t o m i c

p o l y n o m i a l which is the minimal polynomial of ζn over Q and hence # Gal(Q(ζ )|Q) = [Q(ζn) : Q] = ϕ(n) = #(Zn)
×. The

first published proof that Φn is irreducible over Q appeared in 1854 and is due to Kronecker. Gauss proved this for n = p prime by
using Gauss’ lemma.

11 Galois was the first to consider finite fields as field extensions of their prime subfields, but he said nothing about their existence.
He simply performed computations in them.

12 One can also directly define the t r a c e trK
k (x) and the n o r m NK

k (x) of an element x in a Galois extension by these formulae
without using the characteristic polynomial χx,k of λx : K → K. Further, since these elements are invariant under all σ ∈ Gal(K|k),
they belong to k. The k-linearity of the t r a c e m a p trK

k : K → k and the multiplicativity of the n o r m m a p NK
k : K → k follow

directly from these formulae.

13 This terminology (which is of course not due to Galois) stems from the observation that in order to solve the equation π(x) = 0 it
is sufficient to determine y, since the roots x1, . . . ,xn of π(x) = 0 are rational functions in y with coefficients in k. It is preferable to
call the minimum polynomial µy,k the Galois resolvent (polynomial) rather than the element y. See also Footnote 36.
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with y = y1, . . . ,yn ∈ K and n = [K : k]. In particular, an element y ∈ K is a Galois
resolvent of K|k if and only if Gy at y is trivial, i. e. Gy = {idK}.

1.B.8 Theorem ( P r i m i t i v e E l e m e n t14 T h e o r e m ) Let K|k be a finite Galois
extension with Galois group G := Gal(K|k). Then K has a Galois resolvent over k, i. e.
there exists an element y ∈ K such that the isotropy group Gy at y is trivial.

The proof is immediate from the observation15 from Linear Algebra applied to the
subspaces Vσ = {x ∈ K | σ(x) = x}, σ = idK of the vector space K over k.

1.B.9 Example Let F be a field of characteristic p > 0, U,V be indeterminates over F and
let k := F(U,V ) be the field of rational functions in U and V over F .
Let f := (X p −U)(X p −V ) ∈ k[X ]. Then the splitting field of f over k is K := k(u,v), where
up =U and vp = V . Further, [K : k] = p2, [k(y) : k] = p for every y ∈ K \ k , in particular, K|k
has no primitive element and it is not a Galois extension. Further, Gal(K|k) = {id},
since f = (X p −U)(X p −V ) = (X −u)p(X −v)p in K[X ]. Moreover, the intermediary subfields
k(u+ λv), λ ∈ F are all distinct. In particular, if F is infinite, then K|k has infinitely many
intermediary subfields (see also Footnote 14). However, if p = 3 and if K is the splitting field
of g := (X2 −U)(X3 −V ) over k, then there exists a primitive element for K|k, but K|k is
not separable. In fact, K = k(u,v), where u2 = U , v3 = V and [K : k] = [k(u,v) : k(v)] · [k(v) :
k] = 2 · 3 = 6, Gal(K|k) = {id,σ}, where σ(u) = −u and σ(v) = v. Moreover, the element
u+ v is a primitive element for K|k with the minimal polynomial (X − u− v)3(X + u− v)3 =
X6 −2V X3 −U3 +V 2 ∈ k[X ].

1.B.10 Conjugate subfields Let K|k be a field extension. Let k ⊆ L ⊆ K be an interme-
diary subfield and let σ ∈ Gal(K|k). Then the image σ(L) of L under σ is again an
intermediary subfield of K|k and is called a c o n j u g a t e s u b f i e l d of L in K.

Let K|k be a Galois extension. It is clear that L = σ(L) if and only if Gal(K|L) =
σ Gal(K|L)σ−1 in the Galois group Gal(K|k) or, equivalently, σ belongs to the nor-
maliser of the subgroup Gal(K|L) of Gal(K|k). In particular, the number of intermediary
subfields conjugate to L of K|k is the index [Gal(K|k) : N], where N is the normaliser
of Gal(K|L) in Gal(K|k). More precisely, the Galois group Gal(K|k) operates on the
set of conjugate subfields of L and the isotropy group at L is the normaliser of Gal(K|L)
in Gal(K|k). Therefore: for an intermediary subfield k ⊆ L ⊆ K of a Galois extension
K|k, the following statements are equivalent:

(i) L = σ(L) for every σ ∈ Gal(K|k).
(ii) Gal(K|L) is a normal subgroup of Gal(K|k).
(iii) L|k is a Galois extension.
(iv) L|k is a normal extension (see Footnote 18).

1.B.11 Theorem ( F u n d a m e n t a l T h e o r e m o f G a l o i s T h e o r y - G a l o i s
c o r r e s p o n d e n c e ) Let K|k be a finite Galois extension. Then for every intermediary
subfield L of K|k, the field extension K|L is again a Galois extension and the maps

14 An element y is called a p r i m i t i v e e l e m e n t of the field extension K|k if K = k(y). Galois resolvents of the Galois
extension K|k are primitive elements of K|k. More generally, all finite separable extensions have primitive elements, but not
conversely. A characterisation: A finite field extension K|k has a primitive element if and only if there are only finitely many
intermediary subfields was proved by E r n s t S t e i n i t z (1871-1928).

15 If V1, . . .Vm are proper subspaces of a finite dimensional vector space V over a field k with #k ≥ m, then V1 ∪ ·· · ∪Vm  V .
Proof by induction on m. Choose v ∈Vm \ (V1 ∪·· ·∪Vm−1) and w ∈V \Vm. Then consider the distinct vectors av+w, a ∈ k.
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L → Gal(K|L) and H → FixH K are inclusion-reversing bijective maps of the set of in-
termediary subfields of K|k and the set of subgroups of the Galois group Gal(K|k) which
are inverses of each other, i. e.L = FixGal(K|L)K and Gal(K| FixH K) = H. Moreover,
under these bijections, the degrees of intermediary subfields over k correspond to the in-
dices of corresponding subgroups in Gal(K|k), i. e. [L : k] = [Gal(K|k) : Gal(K|L)] and
[Gal(K|k) : H] = [FixH K : k]. Furthermore, an intermediary subfield L of K|k is Galois
over k if and only if the corresponding subgroup Gal(K|L) is normal in Gal(K|k) and in
this case the restriction homomorphism Gal(K|k)→ Gal(L|k) induces an isomorphism
Gal(K|k)/Gal(K|L)−−−−−−−∼−−−−−−−− Gal(L|k).

1.B.12 Remark The Example 1.B.9 shows that the Galois correspondence can break down
spectacularly for purely inseparable splitting fields.

1.B.13 Remark Gauss studied the extension Q(ζp)|Q, where p is an odd prime and ζp is a
primitive p-th root of unity and described the intermediate field by using Gauss periods and used
these results to show that the pure equation xp −1 = 0 is solvable.

1.C Galois Group of a Polynomial

In this subsection we shall study the Galois groups of the splitting fields of polynomials
with separable reduction. As suggested by the Fundamental Theorem of Galois The-
ory 1.B.11 we study the roots of polynomial equations by using the key notion of group
action in group theory. We illustrate many classical concepts, results and examples using
the modern language of group actions.

Let k be a field, f ∈ k[X ] and f = aπν1
1 . . .πνr

r be the prime factorisation of f in k[X ],
where a ∈ k×, ν1 . . .νr > 0 are positive natural numbers and π1, . . . ,πr ∈ k[X ] are distinct
prime factors of f in k[X ]. Then the (simple) product Red f := π1 . . .πr is called the
r e d u c t i o n of f . We assume that Red f is separable16 over k. Then by a classical
theorem of Kronecker17, there exists a finite field extension K|k such that the polynomial
f splits into linear factors over K , i. e. in K[X ] one has f =(X−x1)

ν1 · · ·(X−xn)
νn with

pairwise distinct x1, . . . ,xn ∈K (since Red f is separable). The subfield K = k(x1, . . . ,xn)
is generated over k by the set V( f ) = {x1, . . . ,xn} of all zeroes of f in the algebraic
closure of k (see Footnote 34) and is called the (m i n i m a l) s p l i t t i n g f i e l d of
f over k. It is a finite Galois extension and is uniquely determined 18 by f upto k-
algebra isomorphism. The group Gal(K|k) of all k-automorphisms of K is called the

16 Equivalently, all prime factors π1, . . . ,πr of f are separable over k, in this case we say that f has a s e p a r a b l e r e d u c t i o n.

17 The construction of the splitting field of an arbitrary polynomial f ∈ k[X ] over an arbitrary field k is due to Kronecker. He was
inspired by Galois’ approach to the Galois group and drew ideas from Lagrange, Gauss and Galois to create a field extension K|k in
which f splits completely using a single quotient rather than using a sequence of quotients. Kronecker’s construction of the splitting
field contains a lot of information about the roots of the polynomial f and it leads directly to an algorithm for computation of the
Galois group of f .

18 For a proof of the uniqueness theorem on splitting fields of an arbitrary polynomial f ∈ k[X ], we restate the assertion of the
Lemma 1.A.1 in a sightly more general form which will be used in the inductive step.
Lemma Let τ : k −−−−−−−−−−−∼−−−−−−−−−−−− k be an isomorphism of two fields, f ∈ k[X ] and let f  := τ( f (x))∈ k[X ] be the corresponding polynomial
in k[X ] (obtained by applying τ to the coefficients of f ). Further, let x (respectively, x ) be a zero of f (respectively, f  ) in some
field extension of k (respectively, k ) . Then the isomorphism τ can be extended uniquely to an isomorphism ρ : k(x)→ k(x) such
that ρ(x) = x.
Using the above lemma one can now prove the uniqueness theorem on the splitting fields, more precisely:
Uniqueness of splitting fields Let τ : k −−−−−∼−−−−−− k be an isomorphism of fields, f ∈ k[X ] and let f  := τ( f (x)) ∈ k[X ] be the
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G a l o i s g r o u p o f t h e p o l y n o m i a l f or t h e e q u a t i o n f (x) = 0 over k
and is usually denoted by Gk( f ). Note that V( f ) = V(Red f ), #V( f ) = deg(Red f ) and
Gk( f ) = Gk(Red f ). It is clear that #Gk( f ) = [K : k]≤ #V( f )≤ (deg f )!.

Since the image σ(x) of any zero x of f under a k-algebra automorphism σ ∈ Gk( f ) is
again a zero of f (see Footnote 4), the canonical operation of the Galois group Gk( f )
on K induces an operation of Gk( f ) on the finite set V( f ) = {x1, . . . ,xn}. Further,
since any k-algebra homomorphism of K is uniquely determined by the images of
the k-generators x1, . . . ,xn, this induced operation of Gk( f ) is also faithful, i. e. the
substitution homomorphism Gk( f )→S(V( f )) , σ → (x → σ(x)) is an injective group
homomorphism19 and hence is a faithful representation of the Galois group Gk( f ) of f

corresponding polynomial in k[X ] (obtained by applying τ to the coefficients of f ). Further, let K|k (respectively, K|k ) be splitting
fields of f (respectively, f ) over k (respectively, k) , then the isomorphism τ can be extended to an isomorphism ρ : K → K such
that ρ(x) ∈ V( f ) for every x ∈ V( f ).

This uniqueness allows us to use the term “the splitting field” of f ∈ k[X ] over k. The splitting fields of polynomials lead to
an important property of field extensions, namely, the normality : An algebraic field extension K|k is called n o r m a l if every
irreducible polynomial in g ∈ k[X ] which has a zero in K splits completely in K[X ] into linear factors, or equivalently, if K contains
a splitting field of f over k. An algebraic field extension K|k is normal if and only if the minimal polynomial µx,k of every element
x ∈ K splits completely in K[X ] into linear factors, or equivalently, for every element x ∈ K all the conjugates of x over k are also
contained in K.

We note several important consequences of the definition of normal field extension: Let K|k be a finite normal field extension. Then:

(1) The field extension K|k is a splitting field of some polynomial f ∈ k[X ] over k.
(2) If x,y ∈ K are conjugates over k, then there exists a k-algebra automorphism σ ∈ Gal(K|k) such that σ(x) = y. In particular,

if g ∈ k[X ] is an irreducible polynomial which has a zero in K, then the set of zeroes V(g) of g is contained in K and the Galois
group Gal(K|k) operates transitively on V(g). – This assertion played a crucial role in the development of Galois theory. See its
use in the modern proof of the Lemma IV of [4] given in the Remark in the Footnote 19, see also Lemma 1.C.1.

(3) If L is an intermediary subfield, then every k-algebra homomorphism L → K can be extended to a k-algebra automorphism of
K, i. e. the restriction map Gal(K|k)→ Homk-alg(L,K), σ → σ |L is surjective.

The most important property of the splitting fields of polynomials is the converse of the assertion (1) above:

(4) Any splitting field over k of a polynomial f ∈ k[X ] is a finite normal extension of k. For a proof, we may assume that
f = (X − x1) · · ·(X − xn) is monic of degree n ≥ 1 and K = k(x1, . . . ,xn). Let g ∈ k[X ] be an irreducible polynomial over k and
let y ∈ K be a zero of g in K. To prove that g splits completely into linear factors in K[X ], we make use of the Fundamental
Theorem on Symmetric Polynomials (see Footnote 22). Since y ∈ K = k(x1, . . . ,xn) = k[x1, . . . ,xn] there exists a polynomial
ϕ(X1, . . . ,Xn) ∈ k[X1, . . . ,Xn] such that y = ϕ(x1, . . . ,xn). Consider the polynomial Φ(X) := ∏σ∈Sn

�
X −ϕ(xσ(1), . . . ,xσ(n))


∈

K[X ] which splits completely into linear factors in K[X ]. Then Φ(X) ∈ k[X ] by the Fundamental Theorem on Symmetric
polynomials. Now, since Φ(y) = 0 and g = µy,k is the minimal polynomial over k, g must divide Φ(X) in k[X ] and hence g
will also split completely into linear factors in K[X ].

Finally, we note the following characteristic property of finite normal field extensions:

(5) A finite field extension K|k is normal over k if and only if it satisfies the following condition: if K|K is a field extension of K,
then every k-algebra homomorphism σ : K → K maps K into K.

19 This natural description of the Galois group Gk( f ) goes back to Galois (see also Footnote 3 and Footnote 5 for a brief
description of the passage from Galois’ group to the modern Galois group Gal(K|k) = Autk-alg K ). What is interesting is that
Galois had no notion of automorphisms although automorphisms are implicit in his development of the theory. How did he
decide which permutations in S(V( f )) exactly form the Galois group Gk( f ) of f ? His approach was based on the primitive
element (which we have called Galois resolvent of the splitting field K = k(V( f )) of f , see 1.B.7) y of K|k and its minimal
polynomial µy,k ∈ k[X ] which is separable, since k(y)|k is a Galois extension. Let y1, . . . ,ym ∈ K be the zeroes of µy,k (all are in
K ) and m = deg(µy,k) = [K : k] = # Gal(K|k) = #Gk( f ). Since K = k(y) , the zeroes x1, . . . ,xn of f can be expressed in the form
x1 = ϕ1(y), . . . ,xn = ϕn(y) where ϕ1, . . . ,ϕn ∈ k(Y ) are rational functions in one indeterminate Y over k. Then the image of the
canonical map Gal(K|k)→S(V( f )) consists of the following permutations (these rows are used to denote the images of x1, . . . ,xn ;
the elements in each row are distinct by the Lemma: (see [4, Lemma I, p.47]) Let ϕ ∈ k(X) be a rational function over k and let y
be a zero of an irreducible polynomial g ∈ k[X ]. If ϕ(y) = 0, then ϕ(z) = 0 for every zero z of g.) which were described by Galois :

id = σ1 =
�
ϕ1(y1), ϕ2(y1), . . . , ϕn(y1)


,

σ2 =
�
ϕ1(y2), ϕ2(y2), . . . , ϕn(y2)


,

...
...

...
...

...
σm =

�
ϕ1(ym), ϕ2(ym), . . . , ϕn(ym)


,

i. e. Gal(k(y)|k) = {σ1, . . . ,σm}, where σi : k(y)→ k(y) is the k-algebra automorphism of k(y) defined by σi(y) = yi, i = 1, . . . ,m.
Under the canonical homomorphism Gal(k(y)|k)→S(V( f )) , σi is mapped to the permutation that takes x1 = ϕ1(y1), . . . ,xn =
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in the permutation group Sn, n = deg(Red f ). This embedding of Gk( f ) as a subgroup
of Sn depends on the numbering of the zeroes of f . Different numberings will give
conjugate subgroups and hence one should be careful to formulate properties of Gk( f )
as a subgroup of Sn and take into account the possibility of conjugation. Further, the
orbits of the canonical operation of the Galois group Gk( f ) on the zero set V( f ) of f
are precisely the zero sets V(π1), . . . ,V(πr), where π1, . . . ,πr are distinct prime divisors
of f . This is immediate from the following:

1.C.1 Lemma ( J o r d a n20 ) Let f ∈ k[X ] be a monic separable polynomial over k and
let Gk( f ) be the Galois group of f over k. Then the following are equivalent:

(i) f is irreducible over k.
(ii) Gk( f ) acts transitively on the set V( f ) of zeroes of f in the algebraic closure k

of k.

In particular, if f ∈ k[X ] is an irreducible separable polynomial, then the degree deg( f )
divides the order #Gk( f ) of the Galois group of f over k.

Proof: Let K be the splitting field of f over k contained in the algebraic closure k
of k. Then, since f is separable over k, K|k is a Galois extension with Galois group
Gal(K|k) = Gk( f ).

(i) ⇒ (ii) : Since f is irreducible over k, it is the minimal polynomial µx,k of every
x ∈ V( f ). Therefore (by parts (4) and (2) in Footnote 18) for every x,y ∈ V( f ) there
exists σ ∈ Gal(K|k) = Gk( f ) such that σ(x) = y.

(ii) ⇒ (i) : Let x ∈ V( f ). Then, since f (x) = 0, µx,k divides f . Conversely, f divides
µx,k, since f is separable and every other y ∈ V( f ) is a zero of µx,k because µx,k(y) =
µx,k(σ(x)) = σ(µx,k(x)) = 0 for some σ ∈ Gk( f ) by (ii).

Therefore, the classification of the Galois operations defined by irreducible separable
polynomials of degree n is equivalent to the classification of the conjugacy classes of the
transitive subgroups of Sn. See [6, Subsection 1.14] for the list of transitive subgroups of
Sn, n ≤ 5.

ϕn(y1) to σi(ϕ1(y1)) = ϕ1(yi),σi(ϕ2(y1)) = ϕ2(yi), . . . ,σi(ϕn(y1)) = ϕn(yi) , respectively, which is the i-th row displayed above.
Finally, it is easy to check that the image does not depend on the choice of y and the rational functions ϕ1, . . . ,ϕn.

Remark: The key property of the Galois resolvent y of f (Galois used a variation of Lagrange’s notion of the resolvent polynomial,
(see Footnote 36) and following Lagrange, he used the letter “V ” for this resolvent “as function of the roots”) is: Every root of the given
equation f can be expressed rationally as a function of y, i. e. K = k(x1, . . . ,xn) = k(y), or equivalently, y is a primitive element of
the splitting field of f over k. This is the Lemma III of Galois’ memoir [4, p. 49] which he submitted to the French Academy in
1831. Galois’ proof was so terse that S i m e o n D e n i s P o i s s o n (1781-1840) complained that the proof was insufficient but
could be completed by using Lagrange’s methods (see Lagrange’s Rational Function Theorem in Footnote 36). In Galois’ situation
y is a root of the Galois resolvent polynomial which need not be irreducible over k. Galois made a crucial observation that the
roots y = y1, . . . ,ym ∈ K of the minimal polynomial µy,k of y over k interact with the roots of the original polynomial f : If a
rational function ϕ(y) in y over k is one of the roots of f , then ϕ(y2), . . . ,ϕ(ym) are also roots of f . This was the Lemma IV
in [4, p. 49-51]. For its proof, first note that, since K|k is normal over k (see Footnote 18), µy,k splits completely over K, i. e.
y = y1,y2, . . . ,ym ∈ K. By (2) in Footnote 18, there exists σ ∈ Gal(K|k) such that σ(y) = y2. Then the proof is immediate from the
equalities 0 = σ(0) = σ( f (x)) = σ( f (ϕ(y))) = f (σ(ϕ(y))) = f (ϕ(σ(y))) = f (ϕ(y2)). Galois’ proof of Lemma IV is different and
it does not mention automorphisms explicitly. His proof is described in [3, pp. 51-52].

20 It seems Galois knew this lemma, though M a r i e E n n e m o n d C a m i l l e J o r d a n (1838-1922) was the first to state it
explicitly. Jordan gave the first complete account of Galois Theory in 1870 in his text “Traité des substitutions et des équations
algébriques”, Gauthier Villars, Paris, 1870.
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1.C.2 Corollary Let f ∈Q[X ] be an irreducible polynomial over Q which has at least
one real and one non-real zero. Then the Galois group GQ of f is non-abelian.

Proof: By assumption there are x ∈ R and z ∈ C \R which are zeroes of f . By
Lemma 1.C.1 there exists τ ∈ GQ( f ) such that τ(x) = z. This τ does not commute with
the complex conjugation which is clearly an element of GQ( f ).

1.C.3 Example Let n ∈ N, n ≥ 4 and let a,b ≥ 2 be square free natural numbers with
gcd(a,b) = 1. The the Galois groups GQ(Xn−a) and GQ(Xn±aX −b) are not abelian by 1.C.2.

1.C.4 Corollary Let k be a field, f ∈ k[X ] and f = aπν1
1 . . .πνr

r be the prime factori-
sation of f in k[X ], where a ∈ k×, ν1 . . .νr are positive natural numbers and π1, . . . ,πr ∈
k[X ] are distinct prime factors of f in k[X ]. If Red f = π1 · · ·πr is separable, then the
canonical group homomorphism Gk( f )→S(V(π1))×·· ·×S(V(πr)) is injective.

The index of Gk( f ) in S(V( f )) is called the a f f e c t21 of f . If this is 1, i. e. if
Gk( f ) = S(V( f )) then f is also called a p o l y n o m i a l w i t h o u t a f f e c t or
a f f e c t - f r e e p o l y n o m i a l. A reduced polynomial without affect is necessarily
irreducible. Explicit examples of affect-free polynomials (over Q) are given at the end of
Section 3.

1.C.5 Example ( G a l o i s g r o u p o f t h e g e n e r a l e q u a t i o n ) Let k be an arbitrary
field and let fn := (X −X1)(X −X2) · · ·(X −Xn) = Xn +∑n

j=1(−1) jS jXn− j be the g e n e r a l
m o n i c p o l y n o m i a l o f d e g r e e n over k, where S j := ∑

1≤i1<i2<···<in≤n
Xi1Xi2 · · ·Xin , j =

1, . . . ,n, are e l e m e n t a r y s y m m e t r i c p o l y n o m i a l s in X1, . . . ,Xn. We consider fn as
a polynomial in X over the (fixed) subfield KSn := k(S1, . . . ,Sn) of the field K := k(X1, . . . ,Xn)
of rational functions in X1, . . . ,Xn over k and say that fn(x) = 0 is the g e n e r a l e q u a t i o n
o f d e g r e e n o v e r k. The field extension K|KSn is the splitting field of the separable
polynomial fn ∈ KSn [X ] and is called the g e n e r a l G a l o i s e x t e n s i o n o f d e g r e e n.
Moreover,we have the natural isomorphism of groups Gal(K|KSn)−−−−−−−−∼−−−−−−−−− Sn.22 Further, the fixed
field KAn of the alternating group23 An is the subfield KSn(∆ f ) generated by the square root ∆ f

of the discriminant Disc fn over KSn and Gal(K|KAn) = An.

1.C.6 Example ( C y c l i c e x t e n s i o n s a n d p u r e e q u a t i o n s ) A Galois extension
K|k is called c y c l i c if its Galois group Gal(K|k) is a cyclic group. Let K|k be a cyclic
Galois extension of degree n and let σ be a generator of the Galois group Gal(K|k). We give

21 The term “affect” in this context was introduced by Kronecker. Instead of “affect” Weber used the term “degree of the affect”.

22 From the modern point of view this is best stated using the language of group actions. The symmetric group Sn operates
canonically on the polynomial ring k[X1, . . . ,Xn] as: for σ ∈Sn and for f ∈ k[X1, . . . ,Xn], let σ f be the polynomial obtained from f
by permuting the variables according to σ , i. e. σ f (X1, . . . ,Xn) := f (Xσ1, . . . ,Xσn). Further, the map k[X1, . . . ,Xn]→ k[X1, . . . ,Xn],
f → σ f is a k-algebra automorphism and hence it extends to an automorphism σ̃ of its field of fractions k(X1, . . . ,Xn). Moreover,
the set of fixed elements KSn of this operation of Sn are precisely the elements of k(S1, . . . ,Sn) and hence the notation KSn .
Although this is stated in modern language the content is precisely the classical F u n d a m e n t a l T h e o r e m o n S y m m e t r i c
P o l y n o m i a l s which states that: every symmetric polynomial in X1, . . . ,Xn is a polynomial in elementary symmetric polynomials
S1, . . . ,Sn. This fact goes back to S i r I s a a c N e w t o n (1643-1727) and was used freely by the predecessors of Galois. This
proves that the group homomorphism Gal(K|KSn )→Sn is surjective and hence an isomorphism (see 1.C). Therefore the Galois
theory of the general equation of degree n was already known to Lagrange, P a o l o R u f f i n i (1765-1822) and N i e l s - H e n r i k
A b e l (1802-1829), see also Footnotes 34 and 35. What was missing was the notion of normal subgroup as it was not visible in their
work and hence they could not formulate the notion of a solvable group. The rudiments of group theory play a big role in Abel’s work
but the normal subgroups make no appearance.

23 The isotropy group G∆ fn
of ∆ fn is called the a l t e r n a t i n g g r o u p on {1, . . . ,n}, usually denoted by An. This was the

definition of the alternating group during the time of Lagrange, Ruffini, Cauchy and Abel. ∆ fn depends on the indexing of the roots
X1, . . . ,Xn of fn; new indexing may change the sign of ∆ fn . The s i g n a t u r e Signσ of a permutation σ ∈Sn is then defined by the
formula : σ(∆ fn ) = (Signσ)∆ fn .
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a relation between the following two endomorphisms, namely, the norm N := NK
k : K → k ⊆ K,

x → NK
k (x) = ∏n−1

i=0 σ i(x) and σ/ idK : K× → K×, x → σ(x)/x of the multiplicative group K×

of the field K:

(H i l b e r t T h e o r e m 9 024– Multiplicative form) The sequence K× −−−−−−−−
σ/ id
−−−−−−−−− K× −−−−−−−−

N
−−−−−−−−− K× is

exact. Proof: Clearly N ◦ (σ/ id)(x) = N(σ(x)/x) = N(σ(x))/N(x) = 1 for every x ∈ K, i. e.
N ◦ (σ/ id) is trivial. Conversely, let y ∈ K× be such that N(y) = 1. Since id,σ , . . . ,σn−1

are linearly independent over K by the Dedekind-Artin Lemma (see Footnote 6), the k-linear
endomorphism ρ := ∑n−1

i=0


∏i−1

j=0 σ j(y−1)


σ i of K is non-zero. Further, since 1 = N(y−1) =

∏n−1
j=0 σ j(y−1), clearly y−1σρ = ρ and hence y = σρ(z)/ρ(z) for every z ∈ K with ρ(z) = 0.

Remark: In general the sequence K× −−−−−−−−−−−−−−−−−
N
−−−−−−−−−−−−−−−−−− K× −−−−−−−−−−−−−−−−−

σ/ id
−−−−−−−−−−−−−−−−−− K× is not exact. Moreover, the

composition (σ/ id)◦N is the trivial homomorphism, but the homology group Ker(σ/ id)/ Im N
is the n o r m r e s i d u e g r o u p K×/N(K×). For example, R×/N(C×)∼=Z×.

Let n ∈N+ and let k be a field of characteristic p ≥ 0 which does not divide n . Suppose that k
contains all n-th roots of unity. Then

(1) The Galois group of a pure irreducible separable polynomial Xn −c ∈ k[X ], c = 0 , is cyclic
of order n . In fact, for any zero x of Xn − c, the map Gk(Xn − c) → Wn, σ → σ(x)/x is
an isomorphism of groups, where Wn = Wn(k) (see Footnote 10) is the cyclic group of n-th
roots of unity in k. – Moreover, this isomorphism is independent of the choice of the zero x
and therefore is a canonical isomorphism.

(2) Conversely, if K|k is a cyclic Galois extension of degree n, then K is a minimal splitting
field of a pure polynomial (necessarily irreducible) Xn − c ∈ k[X ]. For a proof, let ζ ∈ k be
a primitive n-th root of unity and let σ be a generator of the Galois group Gal(K|k). In
view of the proof of (1), we need to find an element x ∈ K such that σ(x)/x = ζ . This is
possible by Hilbert Theorem 90, since NK

k (ζ )=Det(λζ )= ζ n = 1. Then σ(xn)= (σ(x))n =
(ζ x)n = xn and hence c := xn is an element of k. Further, the polynomial Xn − c ∈ k[X ]
splits completely in K, since all the n distinct zeroes ζ ix = σ i(x), i = 0, . . . ,n− 1 are in
K. Moreover, Gal(K|k) operates transitively on the set of zeroes V(Xn − c) of Xn − c and
hence Xn − c is irreducible over k by 1.C.1.

1.C.7 Example ( G a l o i s g r o u p o f p u r e e q u a t i o n s ) Let k be a field, n ∈ N be a
positive natural number which is coprime to Chark and let f = Xn − c ∈ k[X ], c = 0. Let K
be a (minimal) splitting field of f over k and let L be a (minimal) splitting field of Xn − 1
over k contained in K. If x ∈ K be an arbitrary zero of f , then K = L(x) and the map
Gk( f ) = Gal(K|k) → Wn Aut Wn defined by σ → (σ(x)/x,σ |Wn) is an injective group ho-
momorphism, where Wn := Wn(L) (see Footnote 10). In particular, the Galois group Gk( f ) of
f is solvable, since it is a subgroup of the solvable group25 Wn Aut Wn.

24 This theorem of D a v i d H i l b e r t (1862-1943) is the 90-th Theorem from the well-known Zahlbericht im Jahresbericht der
Deutschen Mathematiker-Vereinigung 4 (1897).

25 The (full) holomorph of (the cyclic group) Wn is the semidirect product Ln := Wn Aut Wn and it is solvable. For a proof note
that N := Wn ×{id} is a normal subgroup (∼= Wn ∼= (Zn,+)) and H := {1}×Aut Wn ∼= (Zn)

×. Therefore from the short exact
sequence 0 → N → Ln → H → 0, it follows that Ln is a solvable group of order nϕ(n). – The group Ln is isomorphic to the group
of linear automorphisms of Zn[X ] and hence also known as a (full) l i n e a r g r o u p. Let ζ be a generator (primitive n-th root of
unity) of Wn. Then the map (u,Φ) → (X → aX + r) is an isomorphism of groups, where r and a are uniquely determined by the
equations u = ζ r and Φ(ζ ) = ζ a, respectively. – Recall that a finite group G is s o l v a b l e if there is a sequence of subgroups
{1} = Gm  Gm−1  · · ·  G0 = G such that for each i = 1, . . . ,m , Gi is normal in Gi−1 and pi = [Gi−1 : Gi] is a prime number.
Subgroups and quotient groups of a solvable group are solvable. Finite abelian groups are solvable. In some cases the solvability of a
group is determined just by its order. For example, every group of a prime power order is solvable. In 1904 W i l l i a m B u r n s i d e
(1852-1927) generalized this to: every group of order pnqm, where p and q are distinct primes, are solvable. In 1963, Wa l t e r
F e i t (1930-2004) and J o h n G r i g g s T h o m p s o n (1932- ) proved the following surprising result: every group of odd order is
solvable. This is a highly non-trivial theorem and its proof involves very sophisticated mathematics consisting of 255 pages.
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Let f (t) ∈ Q[t] be a non-constant separable polynomial which splits into linear factors over Q.
Then the Galois group GQ(t)(Xn − f (t)) is not abelian (use similar argument as in 1.C.2). But
the Galois group GC(t)(Xn − f (t)) is in fact, cyclic of order n.

1.C.8 Example ( C y c l i c e x t e n s i o n s a n d A r t i n - S c h r e i e r26 e q u a t i o n s ) Let
K|k be a cyclic Galois extension of degree n and let σ be a generator of the Galois group
Gal(|k). Then the trace form tr = trK

k : K → k is tr = ∑n−1
i=0 σ i and the additive counterpart of the

above Hilbert Theorem 90 is:

(H i l b e r t T h e o r e m 9 0 – Additive form) The sequence K× −−−−−−−−
σ − id
−−−−−−−−− K× −−−−−−−−

tr
−−−−−−−−− K× is ex-

act. Proof: Clearly tr ◦(σ − id)(x) = tr(σ(x)− x) = tr(σ(x))− tr(x) = 0 for every x ∈ K,
i. e. tr ◦(σ − id) is trivial. Conversely, let y ∈ K× be such that tr(y) = 0. Consider θ :=

∑n−1
i=0


∑i−1

j=0 σ j(y)


σ i of K is non-zero. Since 0 = tr(y) =∑n−1
i=0 σ i(y), clearly −y tr+σθ = θ .

By Dedekind-Artin Lemma tr = 0 and hence for every z ∈ K with tr(z) = 0 we have y =
σ (θ(z)/ tr(z))−θ(z)/ tr(z).

Remark: The sequence K× −−−−−−−−−−−−−−−−−
tr
−−−−−−−−−−−−−−−−−− K× −−−−−−−−−−−−−−−−−

σ − id
−−−−−−−−−−−−−−−−−− K× is always exact. This follows imme-

diately from the fact that the trace map tr is k-linear and (since tr = 0) has image k.

In the critical case of Galois extensions of degree p of a field of characteristic p > 0, the Artin-
Schreier polynomials are used to replace the pure polynomials. See, for example, the next sub-
section.

Let k be a field of characteristic p > 0.

(1) The polynomial X p−X −c ∈ k[X ], c = 0 either factors into linear factors over k , or is irre-
ducible over k. Moreover, in the latter case, its Galois group is cyclic of order p. In fact, for
any zero x of X p−X −c, the map Gk(X p−X −c)→ Zp, σ → σ(x)−x is an isomorphism

The definition of the solvability of a group is closely related to the ideas of simple groups. – A group G is called s i m p l e if its only
normal subgroups are the trivial subgroups {e} and G. For example, the cyclic groups of prime order are simple. The term “simple
group” is due to Jordan. He was the first to prove that: the alternating group An is simple for n ≥ 5. The simplicity of A5 is also
implicit in the work of Ruffini and Abel on the unsolvability of the quintic equation. Observe that non-abelian finite simple groups are
not solvable and hence there are many non-solvable groups. The alternating group An and the symmetric group Sn are solvable if
and only if n ≤ 4. With this we can determine the normal subgroups of Sn, they are precisely: {e}, An and Sn.

The relation between simple and solvable groups is even more interesting. The key observation is that all finite groups are “built”
by using simple groups by means of composition series. – if G is a finite group, then a c o m p o s i t i o n s e r i e s of G is a
sequence {e}= Gm−1  Gm−1  · · · G1  G0 = G such that Gi is normal in Gi−1 and the quotient group Gi−1/Gi is simple for
all i = 1, . . . ,m. The simple quotient groups Gi−1/Gi, i = 1, . . . ,m, are called the c o m p o s i t i o n f a c t o r s of G. For example,
for n ≥ 5, {e}  An  Sn is a composition series of Sn. A given finite group may have more than one composition series, for
example, the sequences {e}  H([2])  Z6 and {e}  H([3])  Z6 are composition series of the cyclic group Z6. However, the
composition factors are Z3 , Z2 (respectively, Z2 , Z3). The J o r d a n - H ö l d e r T h e o r e m asserts that: Any two composition
series of a finite group have the same length and that the corresponding composition factors are isomorphic upto a permutation.
Therefore the quotient groups in a composition series of a group are the simple groups from which the group is built. In particular, a
finite group is solvable if and only if its composition factors are the “simplest” simple groups, namely the abelian ones. The idea
of a composition series is due to Jordan. He proved that any two composition series of a group have the same length and that the
indices [Gi−1 : Gi] are unique upto a permutation. Once the concept of the quotient group was better understood, O t t o L u d w i g
H ö l d e r (1859-1937) proved the Jordan-Hölder theorem.

The simple groups coming from finite fields were first studied by Jordan. In 1870 he gave an incomplete proof that: The special
projective linear group PSL(n,Fp) of Fn

p is simple except n = 2 and p = 2 or 3. In this proof Jordan used the Jordan canonical
form to study matrices in the general linear group GL(n,Fp). The canonical form uses the eigenvalues of the matrix which are the
zeroes of the characteristic polynomial and hence the eigenvalues lie in finite field extensions of Fp. This shows that more general
finite fields arise naturally while studying the group GL(n,Fp). Jordan further studied the groups GL(n,Fpm ). The complete proof of
the above assertion was given by L e o n a r d E u g e n e D i c k s o n (1874-1954) in 1897.

It is proved in 2.1 that the one dimensional affine linear group Aff(Fp) over Fp is solvable. In the early twentieth century this affine
group was called “metacyclic”. These days the term “metacyclic” is used more generally for any group G which has a normal
subgroup N such that both N and the quotient group G/N are cyclic. In group theory this notion was introduced by F e r d i n a n d
G e o r g F r o b e n i u s (1849-1917).

26 This Example goes back to Artin and O t t o S c h r e i e r (1901-1929) and therefore polynomials of the type X p −X − c over a
field k of characteristic p > 0 are called A r t i n - S c h r e i e r p o l y n o m i a l s.
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of groups and hence its Galois group is cyclic of order p. Moreover, this isomorphism is
independent of the choice of a zero x and therefore is a canonical isomorphism.

(2) Conversely, if K|k is a cyclic Galois extension of degree p, then K is a minimal splitting
field of a polynomial (necessarily irreducible) X p −X − c ∈ k[X ] . For a proof, let σ be a
generator of the Galois group Gal(K|k). In view of the proof of (1), we need to find an
element x ∈ K such that σ(x)− x = 1. This is possible by Hilbert Theorem 90 (additive
form), since trK

k (1) = p · 1 = 0. Then σ(xp − x) = (σ(x))p −σ(x) = (x+ 1)p − (x+ 1) =
xp − x and hence c := xp − x is an element of k. Further, since x ∈ k, K = k(x) and the
polynomial X p −X − c ∈ k[X ] is the minimal polynomial of x over k.

1.C.9 Example ( E q u a t i o n s w i t h G a l o i s g r o u p Q – T h e Q u a t e r n i o n g r o u p )
Let Q := {±1,±i,±j,±k} denote the quaternion group of order 8. All proper subgroups of Q
are normal, abelian and their factor groups are also abelian. Let

√
2,
√

3 denote the positive
square roots of 2,3, respectively and let α := (1+

√
2)(

√
2+

√
3)
√

2
√

3 ∈R, L :=Q(α)⊆R.
Further, let ω :=

√
α ∈ R be the positive square root of α and let K := L(ω) = Q(ω). Then

K|Q is a Galois field extension with Galois group Q. It is easy to check that the minimal poly-
nomial µω,Q ∈Q[X ] is µω,Q = X8 −24X6 +108X4 −144X2 +36 ∈Q[X ] and the Galois group
GQ(µω,Q) over Q is Q. – This is the simplest equation (over Q ) with Galois group Q . More-
over, every equation f (x) = 0 over a field k with separable reduction and Gk( f ) =Q has a prime
factor g of degree 8 with Gk(g) = Q. For a proof, it is enough to prove that the canonical opera-
tion of Q on the set of zeroes V( f ) has at least one orbit of cardinality 8. Let H := H(i)⊆ Q be
the subgroup generated by i. Then, since ord i = 4, it follows that the restriction of the operation
of Q to H on the set of zeroes V( f ) has at least one orbit Hx of cardinality 4. Then Q-orbit of
x has cardinality 8, since {±1} is the only subgroup of Q of index 4 which is also a subgroup
of H.

When exactly the Galois group of an equation is a subgroup of the alternating group, can
be answered in the following:

1.C.10 Lemma Let k be a field of characteristic = 2 and let f ∈ k[X ] be a polynomial
with separable reduction Red f . Then the Galois group Gk( f ) is contained in the
alternating group if and only if the discriminant Disc(Red f ) is a square in k.

Proof: Without loss of generality we may assume that f = Red f and n = deg f > 1. Let
x1, . . . ,xn be the distinct zeroes of f . Then Disc f = a2n−2V2, where a∈ k× is the leading
coefficient of f and V := V(x1, . . . ,xn) is the Vandermonde determinant of x1, . . . ,xn.
For every σ ∈ Gk( f ), we have σV = V(σ(x1), . . . ,σ(xn)) = (signσ)V. Therefore, since
V = 0 and 2 = 0 in k, it follows that Gk( f ) ⊆ An if and only if V is invariant under
all σ ∈ Gk( f ), i. e. V∈ KGk( f ) = k, or equivalently, Disc f = (an−1)2V2 is a square in
k.

The above proof also shows that if characteristic of k is 2, then the discriminant of an
equation is always a square in k.

If Disc(Red f ) is not a square in k, then k[V] is a quadratic field extension of k and the
corresponding subgroup of Gk( f ) is the normal subgroup of index 2 and coincides with
the intersection of Gk( f ) and the alternating group An.

1.C.11 Example ( G a l o i s g r o u p s o f e q u a t i o n s o f d e g r e e ≤ 3 ) Let us consider
the special equations of degree 2 and 3 over a field k of characteristic = 2. For an irreducible
separable quadratic polynomial f = aX2 + bX + c over k, we have Gk( f ) = S2 if and only if
Disc f = b2 −4ac is not a square in k. This matches with the Lemma 1.C.10. For an irreducible
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separable cubic polynomial f over k, the only possibilities for the Galois group Gk( f ) are A3
and S3 and by Lemma 1.C.10 the decision can be made only by using the discriminant Disc f .

1.C.12 Example Let f :=X4−4X+2∈Q[X ]. Then f is irreducible over Q by the Schönemann-
Eisenstein criterion. Further, f =(X−x)(X+x)(X−y)(X+y) and V( f )= {±x,±y}, where x=

2+
√

2 and y =


2−
√

2 and hence K = Q(x,y) is the splitting field of f over Q. Further,
[K : Q]≥ 8, since y ∈Q(x). The transposition τ := x,y ∈S(±x,±y) is not an element of the
Galois group GQ( f ), since if τ(x)= y, then we must also have τ(−x)=−τ(x)=−y. This means
that the transposition τ does not respect the algebraic structure of the zeroes of f and hence it is
not in the image of the canonical injective group homomorphism Gal(K|k)→S(V( f )), i. e. τ
is not the restriction of an automorphism of the splitting field K over k. We can use Lemma 1.C.1
and Lemma 1.C.10 to compute the Galois group GQ( f ) over Q. First, by Lemma 1.C.1 GQ( f ) is
a transitive subgroup of S(±x,±y) =S4. Moreover, Disc f = (4xy)2(x−y)4(x+y)4 = 28 ·22 ·2
is not a square in Q and hence GQ( f ) ⊆ A4 by Lemma 1.C.10. Therefore (by the list given in
[6, Subsection 1.14]) GQ( f ) = D4 (= the dihedral group of order 8).

1.C.13 Example ( G a l o i s g r o u p s o f e q u a t i o n s o f d e g r e e 4 ) Let k be a field
and let f = X4 + a1X3 + a2X2 + a3X + a4 ∈ k[X ] be a monic irreducible separable polynomial
over k. Further, let x1,x2,x3,x4 be the (distinct) zeroes of f and K = k(x1,x2,x3,x4) be the
splitting field of f over k. Then the degree [K : k] = # Gal(K|k) = #Gk( f ) is a multiple of 4.
Using x1,x2,x3,x4 we define y1 := x1x4 + x2x3 , y2 := x1x3 + x2x4 , y3 := x1x2 + x3x4. Then we
have

V(x1,x2,x3,x4) = (y1 − y2)(y3 − y1)(y3 − y2) = V(y1,y2,y3) .

All permutations of x1,x2,x3,x4 clearly permute y1,y2,y3 as well. Therefore elementary sym-
metric functions in y1,y2,y3 are symmetric polynomials in x1,x2,x3,x4 which are polynomials
in a1,a2,a3,a4 with coefficients in k and hence belong to k. Further, the cubic polynomial

g := (Y − y1)(Y − y2)(Y − y3)

belongs to k[Y ] ; in fact, one can easily check that

g = Y 3 −a2Y 2 +(a1a3 −4a4)Y −a2
1a4 +4a2a4 −a2

3 .

The cubic resolvent g ∈ k[Y ] defined above is called a c u b i c r e s o l v e n t of f . It follows
immediately from V(x1,x2,x3,x4) = V(y1,y2,y3) that Disc f = Disc g.

Instead of y1,y2,y3 one can also use y1 + y2 , y1 + y3 , y2 + y3 or similar symmetric terms, to
get similar but different cubic resolvents. However, in our discussion below we use our special
construction given above and hence g will be called the cubic resolvent of f . The splitting field
of g over k is the intermediary field L := k(y1,y2,y3) of K|k ; its degree [L : k] ≤ 6 and hence
K  L ⊇ k. Further, since D := Disc g = Disc f = 0, g is separable, i. e. y1,y2,y3 are distinct.
With this information, it follows easily that:

Gal(K|k)∩V4 = Gal(K|L) and Gk(g) = Gk( f )/Gk( f )∩V4 ,

where V4 := {id,1,23,4,1,32,4,1,42,3} denotes the Klein’s 4-group (in S4). The
Vandermonde determinant V(x1,x2,x3,x4) belongs to L and hence D is a square in L.

We assume that k is a field of characteristic = 2. Then:

(a) Gk( f ) =S4 if and only if g(Y ) is irreducible over k and Disc( f ) is not a square in k.
(b) Gk( f ) = A4 if and only if g(Y ) is irreducible over k and Disc( f ) is a square in k.
(c) Gk( f ) = V4 if and only if g(Y ) splits into linear factors over k.
(d) Gk( f ) = Z4 if and only if g(Y ) has exactly one zero z ∈ k and the polynomial

F := F1 ·F2 ∈ k[X ] splits into linear factors over L, where
F1 := X2 − zX +a4 , F2 := X2 +a1X +(a2 − z) ∈ k[X ], or equivalently, Disc F1 = z2 − 4a4
and Disc F2 = a2

1 −4(a2 − z) are squares in L.
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(e) Gk( f ) = D4 if and only if g(Y ) has exactly one zero z ∈ k and the polynomial F :=
F1 · F2 ∈ k[X ] does not split into linear factors over L, where F1 := X2 − zX +a4 , F2 :=
X2 +a1X +(a2 − z)∈ k[X ], or equivalently, at least one of Disc F1 = z2−4a4 and Disc F2 =
a2

1 −4(a2 − z) is not a square in L.

Finally, we illustrate the above results by the following concrete examples:

(1) Let f :=X4+bX2+c∈ k[X ] be a biquadratic separable irreducible polynomial over k. Then
b is a zero of the cubic resolvent g = Y 3 −bY 2 −4cY +4bc = (Y −b)(Y 2 −4c) of f and
Disc( f ) = Disc(g) =27h(a)2 ·Disc(h) = (b2 − 4c)2 · 16c, where h := g/(Y − b) = Y 2 − 4c.
Therefore the Galois group Gk( f ) is one of the groups D4,Z4 or V4. Moreover, Gk( f ) = V4
if and only if Disc( f ) is a square in k, or equivalently, c is a square in k. If c is not a square
in k, then b is the only zero of g in k, L = k(

√
c) and F = (X2 − bX + c)X2. Therefore

F splits into linear factors over L if and only if 28 (b2 − 4c)c is a square in k and hence
Gk( f ) = Z4 or D4 according as (b2 −4c)c is a square in k or not.
Let p,q be distinct odd prime numbers and let f = X4 − pX2 + q ∈ Q[X ]. Then f is irre-
ducible over Q, since p2 − 4q is not a square in Q. Further, since both q and q(p2 − 4q)
are not squares in Q, it follows that GQ( f ) = D4.
Let m,n ∈ Z be such that m2 + n2 is not a square in Q. Then the Galois group of the
polynomial f = X4−2(m2+n2)X2+n2(m2+n2) is Z4, since 4m2n2(m2 +n2)2 is a square
in Q.

(2) Let f = X4 +aX3 +bX2 +aX +1 ∈ k[X ] be a self-reciprocal separable irreducible polyno-
mial over k (and hence the rational function f/(X +X−1) is a polynomial in (X +X−1)).
Then 2 is a zero of the cubic resolvent

g = Y 3 −bY 2 +(a2 −4)Y +4b−2a2 = (Y −2)(Y 2 +(2−b)Y +a2 −2b)
of f and Disc( f ) = Disc(g)=28h(2)2 ·Disc(h) = (8− 4b+ a2)2(2+ 2a+ b)(2− 2a+ b)
= (8−4b+a2)2 f (1) f (−1), where h = g/(Y − 2) = Y 2 + (2− b)Y + a2 − 2b. Therefore
the Galois group Gk( f ) is V4 if and only if δ := f (1) f (−1) = (b+ 2)2 − 4a2 is a square
in k. Further, in the case k = Q, this assertion is equivalent with: there exists a positive
integer c ∈Z such that (2a,c,b+2) ∈Q3 lies on the cone X2+Y 2 = Z2 , i. e. (2a,c,b+2)
is a Pythagorean triple, i. e. the integers 2a,c,b+ 2 are sides of the right-angled triangle
with b+ 2 as hypotenuse. If δ is not a square in k, then 2 is the only zero of g in k,
L = k(

√
δ ) and F= (X −1)2(X2 +aX +(b−2)). Therefore by Footnote 28 Gk( f )= Z4 or

D4 according as (8−4b+a2) ·δ is a square in k or not.
In both the examples above the equation f (x) = 0 can be solved by extracting square roots
twice!

(3) Let f (X) = X4 + pX + p ∈Q[X ]. Then f is irreducible over Q by Schönemann-Eisenstein
criterion, see Footnote 45. The cubic resolvent g = X3 −4pX − p2 ∈Z[X ] is irreducible if
and only if it has no integer roots, or equivalently, ±p are not zeroes of g. Therefore g is
irreducible over Q if and only if p �= 3,5. Further, Disc( f ) =Disc(g) =−p3(99p−64)< 0
and hence GQ( f ) =S4 if p �= 3,5.

If p= 3, then g = (Y +3)(Y 2−3Y −3), −3 is the only rational zero of g, L =Q(
√

21) and
F = (X2+3X +3)(X2 +3) has no real zeroes and hence F does not split over L. Therefore
GQ( f ) = D4.

If p = 5, then g = (Y − 5)(Y 2 + 5Y + 5), 5 is the only rational zero of g, L = Q(
√

5) and
F = (X2 −5X −5)(X2 −5) splits into linear factors over L. Therefore GQ( f ) = Z4.

27 Let f ∈ k[X ] be a polynomial of degree ≥ 2 over an arbitrary field k with a zero a ∈ k and h := f/(X −a) ∈ k[X ] . Then
Disc( f ) = h(a)2 · Disc(h). One can check this equality by using the formula:Disc ( f ) = (−1)(

n
2)a2n−2

0 ∏n
j=1 f �(x j), where f =

a0(X − x1) · · · (X − xn) and f � = (d/dX) f is the derivative of f .

28 Two quadratic extensions k(
√

α) and k(
�

β) of a field k are equal if and only if α ·β is a square in k.
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(4) Let f := X4+X +b ∈Z[X ] be a biquadratic irreducible polynomial over Q. Then the cubic
resolvent g of f is the cubic polynomial g = Y 3 − 4bY − 1 which is irreducible over Q,
since the only possible zero of g in Q is ±1. Further, Disc( f ) = Disc(g) = 256 · b3 − 27.
Therefore the Galois group GQ( f ) = S4 or A4. Moreover, GQ( f ) = A4 if and only if
Disc( f ) is a square in Q , or equivalently, in Z, since b ∈ Z, i. e. there exists an integer
c ∈ Z such that the point (b,c) ∈ Z2 lies on the elliptic curve Y 2 = 256X3 − 27. Since
elliptic curves over Q have at most finitely many integer solutions29, it follows that there are
at most finitely many integers b ∈Z such that GQ( f ) = A4.

(5) One can use the above results to compute the Galois groups of the following polynomials
over Q: X4+X3+X2+X +1, 5X4+4X3+4X +5, X4−3X3+3X2−3X +1, X4+4X3+
12X2 +24X +24, 4X4 +48X3 +108X2 +72X +9 and 12X4 −15X3 +20X2 −30X +60.

1.D Solvable Equations – Radical Extensions

In this subsection we come to the question whether formulas, similar to the roots of
quadratic, cubic, quartic polynomials already given in the mid-sixteenth century (see
Footnote 34), exist for the roots of polynomial equations of arbitrary degree. This
question occupied mathematicians for a long time and was one of the driving forces for
further development of mathematics. It was finally answered in the negative by Abel in
1826 and it provided a decisive impetus for the work of Galois.

Let k be a field of characteristic p ≥ 0. A zero of the pure polynomial Xn − c ∈ k[X ] ,
c = 0, where n ∈N+ not a multiple of p, in a field extension K of k is called a r a d -
i c a l over k and is usually denoted by n

√
c or c1/n called an n-t h r o o t of c. The

field extension k(x) = k[x] is called a s i m p l e r a d i c a l e x t e n s i o n of k. If the
polynomial Xn − c is irreducible in k[X ] , then x is called an i r r e d u c i b l e r a d i -
c a l o f d e g r e e n over k. In the case Chark = p > 0, a zero x of an Artin-Schreier
polynomial X p −X − c ∈ k[X ] is called a r a d i c a l over k and the field extension
k(x) = k[x] is called a s i m p l e r a d i c a l e x t e n s i o n of k. If the polynomial
X p −X − c is irreducible over k, i. e. if x ∈ k (see 1.C.8), then the radical x is called
i r r e d u c i b l e.

We say that a finite field extension K|k is a r a d i c a l e x t e n s i o n if there exists a
chain of fields: k = K0  K1  · · · Km = K such that for each r = 1, . . . ,m , the field
extension Kr of Kr−1 is a simple radical extension. Since the simple radical extensions
are separable, radical extensions are separable. Moreover:

1.D.1 Lemma The Galois closure30 of a radical extension K|k is again a radical
extension.

Proof: This is immediate from the fact that the Galois closure K of K over k is the

29 The famous theorem of C a r l L u d w i g S i e g e l (1896-1981) asserts that: The number of integral points on a rational
nonsingular curve of genus strictly greater than 0 is finite. In particular, this applies to nonsingular cubic curves, i. e. elliptic curves,
but not to the singular cubic, e. g. Y 2 = X3 has infinitely many integer solutions.

30 For every finite separable K|k there exists a smallest extension K of K such that K|k Galois over k. Moreover, such a extension
is unique upto an isomorphism over K and hence K|k is called the G a l o i s c l o s u r e of K|k. In fact, if x ∈ K is a primitive
element of K over k, then the K is a (minimal) splitting field of the minimal polynomial µx,k of x over k.
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compositum31 (in the algebraic closure k of k ) of the conjugate fields σ(K), σ ∈
Gal(K|k) which are also radical extensions and the compositum of two radical extensions
is also clearly a radical extension.

The following precise characterisation of solvable equations given in the theorem below
was proved by Galois in 1830 in the case of equations without repeated roots over a field
of characteristic 0. However, we will give a proof in arbitrary characteristic based on the
one in [8, Band 2, § 93, Beispiel 7]. For this reason one needs to modify the definition
of a radical extension in an appropriate way so that the proof of the following theorem
works for fields of positive characteristic as well. See remarks after the proof of the
Theorem 1.D.2.

1.D.2 Theorem ( G a l o i s– G r e a t T h e o r e m 32 ) Let k be a field and let f ∈ k[X ]
be a polynomial with separable reduction. Then the following statements are equivalent :

(i) The Galois group Gk( f ) of f over k is solvable.
(ii) There exists a field extension L|k of finite degree such that f splits over L and there

exists a chain of fields k = K0  K1  · · · Km = L such that for each r = 1, . . . ,m,
the field extension Kr of Kr−1 is a cyclic Galois extension of prime degree.

(iii) There exists a Galois field extension L|k of finite degree such that f splits over L
and there exists a chain of fields k = K0  K1  · · ·  Km = L such that for each
r = 1, . . . ,m, the field extension Kr of Kr−1 is a (simple) Galois radical extension of
prime degree.

(iv) There exists a radical extension L|k of finite degree such that f splits over L .

Proof: We shall prove (ii) ⇐⇒ (i) ⇒ (iii) ⇒ (iv) ⇒ (i). The equivalence (i) ⇐⇒ (ii) is
an easy consequence of the Fundamental Theorem of Galois Theory 1.B.11. For instance
the implication (i) ⇒ (ii) is trivial and for (ii) ⇒ (i) note that the Galois group Gal(L|k) is
solvable by (ii) and hence the Galois group Gk( f ) is a homomorphic image of Gal(L|k).

(iv) ⇒ (i) : We may assume that L|k is a Galois extension by 1.D.1 and choose a
(minimal) splitting field K of f over k. Then Gk( f ) = Gal(K|k)∼= Gal(L|k)/Gal(L|K)
by Theorem 1.B.11, since K|k is normal by (4) in Footnote 15. Therefore it is enough
to prove that: The Galois group of a radical Galois extension L|k is solvable. We
shall prove this assertion by induction on the length m of a chain of fields k = K0 
K1  · · ·  Km = L of simple radical extensions such that Kr−1 ⊆ Kr = Kr−1[xr], r =
1, . . . ,m . Let K

1 be the Galois closure of K1 in L. Then K
1  K

2  · · · K
m = L with

K
r := K

r−1[Kr] = K
r−1[xr], r = 2, . . . ,m, is a chain of simple radical extensions of length

m− 1 from K
1 to L and hence Gal(L|K

1) is solvable by induction hypothesis. Now,
since Gal(L|k)/Gal(L|K

1)
∼= Gal(K

1|k) is also solvable by Examples 1.C.7 and 1.C.8,
it follows that Gal(L|k) is solvable. The assertion (iv) is weaker than (iii).

31 For subfields E and L of some common field Ω, their c o m p o s i t u m E[L] or EL is the (unique) smallest subfield of Ω
containing both E and L. It is simply the intersection of all subfields which contain the given subfields E and L.

32 This spectacular research paper on the theory of equations was submitted to and rejected by the French Academy of Sciences in
1830 and it was not published until 1846, fourteen years after his death. The most important thing to say here is that Galois’ analysis
of solvability by radicals led to the concept of solvable group and gave a drastically simpler approach to all of these questions. Namely,
once one proves that Sn is not solvable for n ≥ 5, then one immediately concludes that the general equation of degree ≥ 5 is not
solvable by radicals and that Lagrange’s approach for the quintic must fail.
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Now we come to the proof of the most significant implication (i) ⇒ (iii) : Let K be the
splitting field of f over k and let n := #Gk( f ) = Gal(K|k). Let q be the biggest prime
factor of n and let L be a (minimal) splitting field of Xq! −1 and f with K ⊆ L. Finally,
let K ⊆ L be the minimal splitting field of Xq!−1 over k. Then the extensions K|k and
L|k are Galois extensions, since the polynomials Xq!−1 and f have separable reductions
and the Galois group Gal(L|K) is a subgroup 33 of the Galois group Gal(K|k) = Gk( f ).
Therefore Gal(L|K) is solvable. It is enough to construct a chain of fields as in (iii) from
k to L, in two steps, namely, from k to K and from K to L .

Construction of chain of fields from K to L as in (iii) : Since Gal(L|K) is solvable and
its order divides #Gk( f ) = n, all primes p1, . . . , pm occurring as indices in any solvable
chain of subgroups {1} = Gm  Gm−1  · · ·  G0 = Gal(L|K) such that for each
i = 1, . . . ,m , Gi is normal in Gi−1 and pi = [Gi−1 : Gi] of Gal(L|K) must be ≤ q (by
choice of q). Now, since K contains all s-th roots of unity for all s ≤ q, from Examples
1.C.6 and 1.C.8, it follows that the chain L = LGm  LGm−1  · · ·  LGal(L|K) = K of
subfields is a required chain as in (iii).

Construction of chain of fields from k to K as in (iii) : We shall do this construction
by induction on q. For inductive step from q−1 to q, we may assume that q ≥ 2 and
by induction hypothesis k contains all s-th roots of unity for all s < q. Then K is the
splitting field of Xq −1 over k and hence the Galois group Gal(K|k) is abelian of an
order which divides ϕ(q) by Example 1.B.3. Therefore the construction of chain of fields
from k to K as in (iii) can be carried out as in the above case from K to L.

1.D.3 Remark In the proof of the implication (i)⇒(iii) of the Theorem 1.D.2 one realizes that
in the case p = Chark > 0, there is no non-trivial Artin-Schreier extension as a part of the chains
of subfields constructed above as in (iii) if the biggest prime divisor q of #Gk( f ) is smaller than
p, in particular, if deg(Red f ) < p. The condition that p is coprime to #Gk( f ) is not enough.
For example, if k =F2 and if k = K0 ⊆ K1 ⊆ ·· · ⊆ Km = K is a chain of field extensions such that
K|k is Galois extension and for all r = 1, . . . ,m, Kr|Kr−1 is Galois radical extension of prime
degree, but not Artin-Schreier extension, then K does not contain the field L with 8 elements.
This follows from the fact that Gal(L|k) = Z3 cannot be the Galois group of a radical extension
Kr|Kr−1, since K does not contain primitive 3-rd roots of unity.

1.D.4 Remark To notice the crucial problem in characteristic p > 0, observe that the pure
equation g = X p − ap = (X − a)p is not separable and hence a cannot lie in any non-trivial
Galois extension. The inseparability of g can be explained by the fact that the group Wp(k) of
p-th roots of unity in a field k of characteristic p > 0 is the trivial group {1}.

A polynomial f ∈ k[X ] which has a separable reduction (similarly, the corresponding
equation f (x) = 0) is called s o l v a b l e b y r a d i c a l s if f satisfies the equivalent
assertions of the above theorem. The solutions of a solvable equation f (x) = 0 can hence
be determined by only extracting roots (radicals) and using the basic arithmetic operations.
Equations of degree ≤ 4 are always solvable by radicals because their Galois groups are
subgroups of S4 which is solvable and hence are solvable (see Footnote 23). There are
explicit formulae34 for all solutions of equations of degrees ≤ 4. Pure equations xn −a

33 This follows from the observation: Let K|k and K|k be finite field extensions. Suppose that K|k is normal and L := K[K] (is
the smallest subfield of an algebraic closure of k containing both K and K ). Then the restriction (which is defined by normality of
K|k , see (5) in Footnote 15) Gal(L|K)→ Gal(K|k) is an injective group homomorphism.

34 The solutions of the quadratic equation X2 + bX + c = 0 (over a field k of characteristic = 2) are found by the method of
completing squares which was conceived around 500 A.D. by the Indian mathematician S h r e e d h a r a c h a r y a: x± = 1

2 (−b±
√

D)
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are solvable by radicals (see Example 1.C.7). Reducing mixed equations to pure equations
is what we call solvability by radicals. Further, abelian equations are solvable by radicals.
– An equation f (x) = 0 is called an a b e l i a n e q u a t i o n35 over a field k if its Galois
group Gk( f ) is abelian. Over finite fields the equations are always abelian and hence
solvable by radicals, since in this case its Galois group is cyclic (see Example 1.B.4) and
hence solvable. At this point it seemed reasonable to believe that the equations of degree
5 could be solved by similar means, i. e. starting with the coefficients of the equation one
should use rational operations together with extraction of square, cubic and fifth roots.
However, in spite of much effort36 by the most prominent mathematicians in the world,

where D = b2 −4c = (x+− x−)2 is its discriminant. The solutions of the cubic equation X3 +aX2 +bX + c = 0 (over a field k of
characteristic = 2, = 3) were not discovered until the 16-th century. Around 1515 S c i p i o n e d e l F e r r o found a solution but did
not publish it. In 1535 the solution was rediscovered by N i c o l o F o n t a n a, nicknamed Ta r t a g l i a, who also kept it a secret
until it was published in 1545 by G e r o n i m o C a r d a n o in his famous work “Ars magna”. The first step is to reduce the cubic to
the form X3 + pX +q = 0 by means of the substitution X → X − a

3 . The discriminant of this cubic equation is D =−4p3 −27q2.

For the solution first substitute X = U +V with indeterminates U,V and u := 3


1
2 (−q+ 1

9

√
−3D) , v := 3


1
2 (−q− 1

9

√
−3D) ,

where one can choose the 3-rd root in u freely, but manipulate the choice of the 3-rd root in v so that uv =−p/3. Then x = u+ v
is the solution of the given cubic equation (called the C a r d a n o ’s f o r m u l a); the other solutions are εu+ ε2v and ε2u+ εv,
where ε is a primitive cubic root of unity. Today these formulae are known as C a r d a n o ’s f o r m u l a e. Soon after in 1545,
the explicit solutions of equations of degree four were found by L u d o v i c o F e r r a r i, the brilliant assistant of Cardano. These
solutions involve nothing more than the rational operations of addition, subtraction, multiplication and division as well as extractions
of square and cube roots. In the above solutions Cardano and Ferrari implicitly assumed the existence of roots; this evolved into
the existence of complex roots which come in complex conjugate pairs when the coefficients are real numbers. Then the version
of the F u n d a m e n t a l T h e o r e m o f A l g e b r a asserts that: Every non-constant polynomial f ∈R[X ] factors into linear
and quadratic factors with coefficients in R. The first attempt to prove the Fundamental Theorem of Algebra was due to J e a n l e
R o n d d’ A l e m b e r t (1717-1783) in 1746 using analytic techniques. In 1749 Euler tried a more algebraic method (still somewhat
incomplete) using induction on the exponent 2 in deg f . Euler’s proof has some major gaps and Lagrange eventually gave a complete
proof in 1772 by correcting all the flaws in Euler’s arguments. However, in 1799 Gauss pointed out a critical flaw, namely that
Lagrange implicitly takes for granted the existence of “imaginary” roots and gave the first essentially complete proof along the lines
of d’Alembert’s proof. In 1815 Gauss gave another proof of Fundamental Theorem of Algebra using the methods of Lagrange which
apply to the general polynomial fn, see Example 1.C.5 and Footnote 22. These methods are powerful and can be applied to any
field. This leads to the language of field extensions and to the following definition: A field k is called a l g e b r a i c a l l y c l o s e d
if every non-constant polynomial in k[X ] splits completely into linear factors over k. Therefore: The field C of complex numbers
is algebraically closed. Using Kronecker’s impressive method of construction of splitting fields, one proves that: For any field k
there exists a field extension k of k which is unique upto a (non-unique) isomorphism such that k is algebraic over k and k is
algebraically closed. Such a field extension k of k is called the a l g e b r a i c c l o s u r e of k. Strictly speaking we should say “an
algebraic closure” rather than “the algebraic closure”.

35 This definition was given by Kronecker in 1853 in the special case when its Galois group is cyclic and in the more general case
it was given by Jordan. Kronecker’s interest in abelian equations is related to his amazing conjecture which states that: The roots
of an abelian equation over Q can be expressed rationally in terms of a root of unity. This was proved by Weber in 1886 and is
now called the K r o n e c k e r - We b e r T h e o r e m. The modern version of this theorem is stated as: For a finite Galois extension
K|Q with K ⊆C, the following statements are equivalent: (i) Gal(K|Q) is abelian. (ii) There exists a root of unity ζn = e2πi/n such
that K ⊆Q(ζn). Proof of the implication (i)⇒(ii) uses ideas from algebraic number theory. See Footnote 29 for more comments on
abelian equations.

36 After the solutions of cubics and quartics by Cardano and Ferrari, many mathematicians such as F r a n ç o i s Vi è t e (1540-
1603), J o h a n n v a n Wa v e r e n H u d d e (1628-1704), R e n é D e s c a r t e s (1596-1650), E h r e n f r i e d Wa l t e r v o n
T s c h i r n h a u s (1651-1708), L e o n h a r d E u l e r (1707-1783) and É t i e n n e B é z o u t (1730-1783) simplified and improved
these solutions and found entirely new solutions. Many of these methods were analyzed by Lagrange in his famous article Réflexions
sur la résolution algébrique des équations published in 1770-1771. One of Lagrange’s main observations is that the auxiliary
polynomials and radicals which are used in the solutions of cubics and quartics come from some rational functions of the roots and
hence can be explained in terms of the resolvent polynomials: as in Footnote 19 we shall use the language of group actions, although
Lagrange didn’t use this terminology. Fix a rational function f ∈ K and consider its orbit G f = { f = f1, f2, . . . , fr} with distinct
f1 = σ1( f ), f2 = σ2( f ), . . . , fr = σr( f ) and σ1,σ2, . . . ,σr in Sn. Then the polynomial θ(X) = ∏r

i=1(X − fi) ∈ KSn [X ] is separable
and irreducible and is called the r e s o l v e n t p o l y n o m i a l of f . Lagrange essentially proved that: #G f divides n! = #Sn, i. e.
the index [Sn : G f ] = n!/#G f is an integer (this is a special case of Lagrange’s theorem in elementary group theory; nowadays it is
stated as: The order of a subgroup H in a finite group G divides the order of G.) and hence the cardinality of the orbit G f of f is the
index of the isotropy subgroup G f of f (this is a special case of the orbit-stabilizer theorem of group actions). To see how Lagrange
began to think in terms of resolvent polynomials, consider the polynomial of degree n! defined by Θ(X) = ∏σ∈Sn (X −σ f )∈ KSn [X ] .
Comparing this with θ(X) note that Θ(X) = θ(X)#G f . In particular, the degree of the resolvent polynomial θ is the index [Sn : G f ].
With this observation Lagrange hoped to solve equations by finding functions of the roots that gave a resolvent of small degree.
Although Lagrange’s methods work wonderfully for equations of degree ≤ 4, they fail for equations of degree ≥ 5; since finding
resolvents of small degree is equivalent to finding subgroups of Sn of small index. But for n ≥ 5 such subgroups are hard to find.
Under the Galois correspondence for the general Galois extension K|KSn , the intermediate subfield KSn ( f ) := KG f corresponds
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no solution was found for over two and a half centuries. The first mathematician to state
definitively that no solution existed (by group theoretic methods) was Ruffini.37 Ruffini’s
proof was not accepted universally, but it did help to turn the direction of research away38

from the problem of finding a solution to the problem of showing that in general no such
solution exists for an equation of degree ≥ 5. It was in this setting that the young Abel
entered the picture. In 1824 Abel39 proved that the equations of degree ≥ 5 are in general
not solvable by radicals.

to the isotropy subgroup G f , i. e. Gal(K|KSn ( f )) = G f and KSn ( f ) = FixGal (K|KSn ( f )) K. This also proves the remarkable
L a g r a n g e ’ s R a t i o n a l F u n c t i o n T h e o r e m (which is mentioned in [7, Appendix 4, page 99] without proof): Let f and
g ∈ K be two rational functions. Then G f ⊆ Gg if and only if KSn (g)⊆ KSn ( f ). i. e. g is a rational function in f with coefficients
in KSn . This shows that Lagrange had an implicit understanding of the Galois correspondence for the general Galois extension

K|KSn . However, Lagrange proved this assertion differently by using the formula: ψ(X) = θ(X)


g1

X − f1
+ · · ·+ gr

X − fr


, where

θ(X) is the resolvent of f and gi := σi(g), i = 1, . . . ,r. This formula is closely related to the so-called L a g r a n g e ’s i n t e r -
p o l a t i o n f o r m u l a. Since θ(X) ∈ KSn [X ] and is divisible by X − f1, . . . ,X − fr , it follows that ψ(X) is a polynomial in X and
its coefficients are symmetric. i. e. ψ(X) ∈ KSn . Further, since θ(X) = (X − f1) · · ·(X − fr), θ ( f ) = θ ( f1) = ∏r

j=2( f1 − f j) and
ψ( f ) = ψ( f1) = g1 ∏r

j=2( f1 − f j), it follows that g = g1 = ψ( f )/θ ( f ) ∈ KSn . Lagrange could see what was important and thereby
enabled his successors to sort out the details of what he did.

37 In 1779 Ruffini published a massive two volume treatise entitled “Teoria Generale delle Equazioni” in which he claims to
show that the general equation of the fifth degree cannot be solved by radicals. For many reasons Ruffini’s proof was received with
skepticism by mathematical community, but an eminent mathematician Cauchy was very appreciative of his work and found his
arguments convincing. Ruffini’s work also includes advances in the theory of permutations, which were crucial for his proof, and these
results were soon generalized by Cauchy. It turns out that there was a significant gap in Ruffini’s proofs, but he did show that S5 has
no subgroup of index 3 or 4 and for n = 5 he proved the irreducibility of resolvent polynomials. In 1815 Cauchy generalized Ruffini’s
result by showing that the index of a subgroup H of Sn is either 2 or at least the largest prime ≤ n. In 1845 J o s e p h L o u i s
F r a n ç o i s B e r t r a n d (1822-1900) proved that for n ≥ 5 either H = An or [Sn : H]≥ n, by assuming Bertrand’s Postulate which
asserts that : For every natural number n > 1, there exists a prime number p such that n < p < 2n. This postulate was proved by
P a f n u t y L v o v i c h C h e b y s h e v (1821-1894) in 1850. Finally, in 1879 Kronecker proved this by using simplicity of the
alternating group An, n ≥ 5; further he also proved that if H ⊆ An is a subgroup, then either H = An or [An : H]≥ n (For a proof
see also [6, Subsection 1.10]).

38 The works of Euler and Bézout around the middle of the eighteenth century were grounded on the opinion that general equations
were solvable by radicals and that finding the solutions of fifth degree equations was only a matter of clever transformations.

39 Abel was fascinated by the theory of equations and published three articles on this subject, a fourth one appeared among his
posthumous work (see item XVIII of volume II of [1]). He was at work on a major new memoir on this theory when he died, tragically,
from tuberculosis in 1829 at the age of 27. Abel published his first proof of this theorem at his own expense in 1824 [1, Volume 1,
No. 3] and a longer more elaborate version appeared in the first issue of Crelle’s journal in 1826 [1, Vol. 1, No. 7]. It is clear that
Abel’s proof could not have used Galois theory (as Galois was thirteen years old in 1824, see Footnote 22). How then did Abel prove
this theorem? Having proved that the general equation of degree ≥ 5 cannot be solved by radicals, the thrust of his later work was to
find conditions on special equations which ensure that they are solvable by radicals. Abel realized that Gauss’s method for cyclotomic
equations could also be applied to the equations which arise from the division of the l e m n i s c a t e (which is the curve in the plane
defined by the polar equation r2 = cos2θ and by using the cartesian equation (x2 + y2)2 = x2 − y2) and in complete analogy with
Gauss’ results (for example, by inscribing a regular n-gon in the unit circle, it is easy to see that the constructibility of regular n-gon
with straightedge and compass is equivalent to dividing the unit circle into n equal arcs by straightedge and compass), he proved that
the lemniscate can be divided into 2n +1 equal parts by straightedge and compass whenever 2n +1 is a prime number. The n-division
points on the lemniscate led to some remarkable polynomials analogous to the cyclotomic polynomials and the Galois theory of these
polynomials enables one to understand when exactly the n-division points can be constructed by straightedge and compass. To prove
this assertion Abel was led to the study of doubly periodic functions of a complex variable and the theory of complex multiplication.
Pushing his investigations further, Abel gave conditions on the roots x = x1, . . . ,xn of a separable equation f (x) = 0 over a field k, so
that it is solvable by radicals, namely: There are rational functions θi ∈ k(X), i = 2, . . . ,n such that xi = θi(x) for all i = 2, . . . ,n and
θi(θ j(x)) = θ j(θi(x)) for all 2≤ i, j ≤ n. These conditions precisely mean that K = k(x) is the splitting field of f and the Galois group
Gk( f ) is commutative. More precisely, since µx,k divides f , renumbering x1, . . . ,xn if necessary, assume that V(µx,k) = {x1, . . . ,xm}
with m ≤ n. Then Gk( f ) = {σ1, . . . ,σm}, where for 1 ≤ j ≤ m, σ j : k(x) → k(x) are defined by σ j(x) = x j = θ j(x). Further,
(σiσ j)(x) = σi(σ j(x)) = σi(θ j(x)) = θ j(σi(x)) = θ j(θi(x)) = θi(θ j(x)) = θi(σ j(x)) = σ j(θi(x)) = σ j(σi(x)) for all 1 ≤ i, j ≤ m
(note that the 3-rd and 7-th equalities use the observation: σ(h(x)) = h(σ(x)) for every rational function h ∈ k(x) = k[x] and every
σ ∈ Aut(k(x)|k)) (see also Footnote 4) and hence Gk( f ) is commutative. It is because of this result that in 1880 Weber applied the
term “abelian” to commutative groups. Abel never published a general criterion for an equation to be solvable by radicals, but in
a letter to A u g u s t L e o p o l d C r e l l e (1780-1855) (dated October 18, 1828) he wrote: If every three roots of an irreducible
equation of prime degree are related to one another in such a way that one of them may be expressed rationally in terms of the other
two, then the equation is solvable by radicals. Abel gives no indication of how he came to this result or how he proved it! It is
remarkable that this statement is almost identical to the one given in 3.2 which was proved by Galois in 1830 but was not published
until 1846.
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1.D.5 Remark Let f ∈ k[X ] be a separable polynomial over a field k. If one root of f is
contained in a radical extension of k, then the equation f (x) = 0 is solvable.

1.D.6 Example Let k ⊆ R be a subfield and let f ∈ k[X ] be an irreducible polynomial of
degree 3 which has only real zeroes or, equivalently, the discriminant Disc f is positive, cf.
Proposition 3.5. For example, X3 −6X +2, X3 −39X +65, X3 −2pX + p, p is a prime number.
Then there is no radical extension L|k such that f splits over L. Otherwise, by Galois’ Great
Theorem 1.D.2 there is a tower of subfields F ⊆ F1 ⊆R and a prime number q such that F1 =
F(x) with xq ∈ F , f is irreducible over F and is reducible over F1. It follows that q = 3 and all
3-rd roots of unity belong to the minimal splitting field of f over F ⊆R, which is a contradiction.

1.D.7 Example ( C a s u s I r r e d u c i b i l i s40 ) The polynomial f := X3−15X −4∈Q[X ] has
only real zeroes, since its discriminant Disc f > 0; obviously, x = 4 is a root and by Cardano’s
formulae 4 = 3

√
2+11i+ 3

√
2−11i for appropriate choices of cube roots. Note that (2+ i)3 =

2+11i and (2− i)3 = 2−11i and hence the cube roots in the above formula are 2+ i and 2− i;
their sum is 4. Therefore complex numbers appear in the radicals of Cardano’s formulae when
the discriminant is positive (see Footnote 34). The puzzle is that we are using complex numbers
to express the real roots of a real polynomial.

If an irreducible cubic has all real roots then one cannot obtain the roots by adjoining radicals of
real numbers only; to prove this assertion we have to use Galois theory!

Let k ⊆R be a subfield. We say that a field extension L|k is a r e a l r a d i c a l e x t e n s i o n if
L|k is a radical extension and L ⊆R. Further, x ∈R is said to be o b t a i n e d b y r e a l r a d -
i c a l s over k if there is a real radical extension L|k such that x ∈ L. In 1891 Hölder proved41

the following generalised version of the casus irreducibilis:

1.D.8 Theorem ( H ö l d e r ) Let k ⊆R be a subfield and f ∈ k[X ] be an irreducible polynomial
over k with splitting field K ⊆R. Then the following statements are equivalent:

(i) f has a root which is obtained by real radicals over k, i. e. there is a real radical extension
L|k such that L contains a root of f .

(ii) All roots of f are contained in a real radical extension L|k which is obtained by adjoining
square roots only.

(iii) K|k is a radical extension.
(iv) [K : k] is a power of 2.

Proof: Most of the implications are easy to prove, for instance, (ii) ⇒ (i) is trivial, (iii) ⇒
(i) follows from K ⊆ R and (iv) ⇒ (ii) and (iii) are easy consequences of the Fundamental
Theorem of Galois Theory 1.B.11. Therefore it is enough to prove the implication (i) ⇒ (iv):
Suppose on the contrary that some root x of f lies in a real radical extension L|k and that
[K : k] = # Gal(K|k) is not a power of 2. Then choose an odd prime p which divides # Gal(K|k)
and hence by Cauchy’s theorem, there exists σ ∈ Gal(K|k) of order p. We may further use
Theorem 1.C.1 to assume that σ(x) = x, replacing σ by its suitable conjugate as follows: Let
V( f ) = {x = x1, . . . ,xn}, n := deg f , be the set of zeroes of f . Since f is irreducible over k,
the Galois group Gk( f ) = Gal(K|k) operates transitively on V( f ) by Theorem 1.C.1 and hence
for each i = 1, . . . ,n, there exists τi ∈ Gal(K|k) such that τi(x) = xi. Now, since σ = idK , there
exists i such that σ(xi) = xi, we may replace σ by the conjugate τ−1

i στi.

40 Historically, this term was used for the irreducible cubic. One of the first persons to talk about casus irreducibilis was R a f a e l
B o m b e l l i (1526-1572) in his book L’algebra published in 1572. He was the first to give systematic rules for adding and multiplying
complex numbers. For quadratic equations Cardano pretended that complex solutions did not exist. But for cubics with all real roots
Cardano’s formulae must involve complex numbers and it is impossible to ignore complex numbers in this case.

41 See [Hölder, O. L.: Über den Casus Irreducibilis bei der Gleichung dritten Grades, Math. Annalen, 38 (1891), 307-321.]
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Let F := FixH(σ) K denotes the fixed field of the subgroup H(σ) of Gal(K|k) generated by σ .
Then by Galois Correspondence 1.B.11, K|F is a Galois extension with [K : F ] = #Gal(K|F) =
#H(σ) = p. Furthermore, since x ∈ K \F and [K : F ] = p is prime, it follows that K = F(x) and
hence by the following Lemma 1.D.9, K cannot be contained in a real radical extension of F .

Now, since x ∈ L , where L|k is a real radical extension, it follows that the compositum F [L] is
also a real radical extension of F and K is contained in the real radical extension K = F(x) ⊆
F [L] of F which contradicts the previous paragraph.

1.D.9 Lemma Let E|F be a Galois extension with E ⊆ R and let [E : F ] = p for some odd
prime number p. Then E cannot be contained in a real radical extension of F.

Proof: We shall first prove that: Adjoining a real prime radical42 does not change the degree,
i. e. [E(y) : F(y)] = [E : F ] for every y ∈ R \F with yq ∈ F, q a prime number. Consider the
diagram of field extensions:

F(y)  E(y)
 

F  E .

If y ∈ E, then F(y) = E, since y ∈ F and [E : F ] is prime. The polynomial Xq − yq ∈ F [X ] has
no zero in F , since F ⊆R, y ∈ F , and hence43 µy,F = Xq − yq is the minimal polynomial of y
over F . Further, q = [F(y) : F ] = [E : F ] = p is an odd prime and since E = F(y)|F is Galois
(and hence normal), E is the splitting field of the minimal polynomial µy,F = Xq − yq. But, then
(y = 0) the primitive q-th root of unity ζq ∈ E which is impossible, since E ⊆ R. This proves
that y ∈ E and hence [E(y) : E] = q and [E(y) : F(y)] = p = [E : F ].

Now, suppose that L|F is a real radical extension of F i. e. L is obtained by adjoining successive
real prime radicals. Then by the assertion proved above, we have [L[E] : L] = [E : F ] = p, where
L[E] is the compositum of L and E. In particular, L[E] = L and hence E ⊆ L.

1.D.10 Corollary Let k ⊆R be a subfield and let f ∈ k[X ] be an irreducible polynomial over
k of degree deg f which is not a power of 2. If f splits completely over R, then no root of f
can be obtained by real radicals over k.

For example, for any prime number p, the cubic polynomial f = X3 − 2pX + p ∈ Q[X ] is irre-
ducible over Q by Schönemann-Eisenstein criterion (see Footnote 45) and has three real roots,
since f (0) > 0 and f (1) < 0. It is amusing to find the roots of this cubic by using Cardano’s
formulae and see where non-real numbers come in!

We note the following striking consequence of the Theorem 1.D.8:

1.D.11 Corollary Let f ∈Q[X ] be an irreducible polynomial over Q which splits completely
over R. Then all roots of f lie in a radical extension of Q obtained by adjoining square roots.
In particular, roots of f are constructible numbers (see Footnote 9).

We finally end this subsection by stating without proof the following result of A l f r e d L o e w y
(1873-1935) which was proved in 1920:

42 If q is a prime number, then any zero of Xq −a ∈ k[X ] is called a p r i m e r a d i c a l o v e r k.

43 (A b e l - K r o n e c k e r) : Let q be a prime number. Then the polynomial f =Xq−a∈ k[X ] is irreducible over a field k if and only
if a is not a q-th power in k , i. e. f has no zero in k. For a proof of the non-trivial direction, if f is reducible over k, then there exists a
field extension L|k of degree m < q such that f has a zero x ∈ L. Then, from xq = a, it follows that NL

k (x)
q = NL

k (x
q) = NL

k (a) = am

is a q-th power in k and hence a is a q-th power in k, since gcd(m,q) = 1.

Abel proved this result shortly before his death in 1829 in the special case when k contains a primitive q-th root of unity. The general
case was proved by Kronecker in 1879. There is a general version of this result due to A l f r e d o C a p e l l i (1855-1910) : A
polynomial f = Xn −a ∈ k[X ] over a field k is reducible over k if and only if n has a divisor d > 1 such that either a is a d-th
power in k or n is divisible by 4 and a is of the form −4b4 with b ∈ k.
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1.D.12 Theorem ( L o e w y ) Let f ∈ k[X ] be an irreducible polynomial over a subfield k of R,
of degree 2mn, n odd. Then at most 2m roots of f can be obtained by real radicals over k.

§2 Solvability of the affine group

In this section we deal with group theoretic results which are used in the next Section.
We determine transitive solvable subgroups of the permutation group Sp, where p is a
prime number. These transitive subgroups are precisely subgroups of the affine group of
the finite field of cardinality p.

First let us recall: For an arbitrary field K, a map σ : K → K is called a f f i n e l i n -
e a r if there exist a, b ∈ K, a = 0 such that σ(x) = ax+ b for all x ∈ K; moreover,
the pair (a,b) ∈ K× ×K is uniquely determined by σ and hence we shall denote σ
by σa,b. The set Aff(K) of all affine linear maps from K into K form a group under
composition and is called the a f f i n e g r o u p o f K. In fact, σa,b ◦σa,b = σaa,ab+b

and σ−1
a,b = σa−1,−a−1b and hence it is a subgroup of the symmetric group S(K). A

subgroup G of S(K) is called an a f f i n e s u b g r o u p if G ⊆ Aff(K), i. e. if every
element of G is affine linear. With this now we prove the following theorem:

2.1 Theorem Let p be a prime number. Then the affine group Aff(Fp) of the finite field
Fp of cardinality p is solvable.

Proof: The map ϕ : Aff(Fp)→ F×p := Fp \{0} defined by ϕ(σa,b) = a is a surjective
group homomorphism with kernel Kerϕ = {σ1,b ∈Aff(Fp) | b∈Fp} which is isomorphic
to the additive group (Fp ,+) of the field Fp. Further, the quotient group Aff(Fp)/Kerϕ is
isomorphic to the multiplicative group (F×p , ·). In particular, both Kerϕ and the quotient
group Aff(Fp)/Kerϕ are solvable. Therefore Aff(Fp) is solvable.

For a proof of Galois’ Theorem 3.1 we need the following important lemma which deals
with transitive subgroups of Sp.

2.2 Lemma Let p be a prime and let G ⊆ Sp be a transitive subgroup. Then

(1) Every non-trivial normal subgroup N of G also acts transitively on {1, 2, · · · , p}.
(2) If G is solvable, then G has a unique subgroup44 H of order p (which is necessarily

normal in G).
(3) If G has a normal subgroup H of order p , then G is an affine subgroup. In particular,

G is solvable.

44 This unique subgroup H of order p of G is the (unique) p-Sylow subgroup of G. Therefore G and also every normal subgroup
N = {1} of G is isomorphic to the semi-direct product of the group Zp with a (cyclic) subgroup of (Zp)

×. Moreover, the map
Aff(Fp)→ Fp F×p , σa,b → (b,a) is an isomorphism. (note that we have identified Aut(Fp,+) = F×p , with this identification the
product on the semidirect product Fp F×p is given by the formula: (a,b) · (a,b) = (a+ba,bb).) In particular, #G = pt where
t is a divisor of p−1. The group G is uniquely determined by its order pt and is also called the F r o b e n i u s g r o u p usually
denoted by Fpt . The Frobenius group Fp(p−1) is isomorphic to the affine group Aff(Fp).
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Proof: (1) The class equation for the natural operation of N on Ip := {1, . . . , p} is

p = #Ip = ∑
Ip\N

#Na ,

where Na denotes the orbit of a ∈ Ip and the sum runs over the quotient set Ip\N. Further,
since G is transitive, there exists σ ∈ G such that σ(a) = b. Therefore, since N is normal
in G, we have Nb = (σNσ−1)b = σNa and hence σ induces a bijection σ : Na → Nb.
This proves that any two orbits have the same cardinality, namely #N > 1, since N is
non-trivial. Further, since p is prime, from p = #N ·#Ip\N, we get #Ip\N = 1, i. e. N
is transitive.

(2) We may assume that #G > p. Since G is transitive on Ip, we have Ip = Ga for all
a ∈ Ip and hence p is the index of isotropy Ga which divides #G. Now, since G is
solvable and #G > p, there exists a normal subgroup N  G, N = {1}. By part (1) N
is also transitive on Ip. Therefore, by induction on #G, N has a unique subgroup H
of order p. Note that H must be a characteristic subgroup of N, i. e. ϕ(H) = H for
every automorphism ϕ : N → N of N. In particular, H is normal in G, since every inner
automorphism of G induces an automorphism of N. It remains to prove the uniqueness
of H. Suppose that H  is another subgroup of G of order p. Then H ∩H  = {1} and the
quotient group HH /H ∼= H /(H  ∩H) = H  and hence HH  is a subgroup of order p2.
In particular, p2 divides #G, but #G divides p! which is a contradiction.

(3) Let H be a normal subgroup of G of order p. Then, since p is prime, H must be
cyclic generated by a p-cycle τ ∈ G . We may assume that τ = {0, 1, . . . , p− 1}. By
identifying {1, . . . , p} with Fp = {0,1, . . . , p−1} by i ←→ i−1, i = 1, . . . , p and using
the relation ≡p addition modulo p, we may further assume that

(2.2.3.1) τ(x) = x+1 for all x ∈ Fp .

This shows that G is a subgroup of S(Fp) and τ is translation by 1 which is affine linear.
Moreover, since the subgroup H =H(τ) is normal in G, for every σ ∈G, στσ−1 ∈H(τ),
i. e. στσ−1 = τa for some a ∈ Ip. Therefore, στ(x) = τaσ(x) for all x ∈ Fp and hence
by (2.2.3.1) σ(x+ 1) = σ(x)+ a, i. e. σ(x) = ax+ b for all x ∈ Fp, where b = σ(0).
This proves that G is an affine subgroup of S(Fp). Therefore, since subgroup of a
solvable group is solvable, G is solvable by 2.1.

§3 Solvable Equations of Prime Degree

In this section, as an application of Galois theory, we prove the following theorem of
Galois which determines the Galois groups of irreducible equations of prime degree that
are solvable.

3.1 Theorem ( G a l o i s ) Let f ∈ k[X ] be an irreducible separable polynomial of prime
degree p over a field k. If f is solvable by radicals over k, then the Galois group Gk( f )
of f over k is an affine subgroup of the symmetric group Sp on p symbols.

Proof: Since f is separable and irreducible over k , by 1.C.1 the Galois group Gk( f )
operates transitively on the set V( f ) = {x1, . . . ,xp} of the zeroes of f . With this we
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identify Gk( f ) with a transitive subgroup of Sp. Further, p = deg f = [k(x1) : k] divides
[k(x1, . . . ,xp) : k] = #Gk( f ) and hence by Cauchy’s theorem, Gk( f ) has an element τ of
order p . Then, since p is prime, τ must be a p-cycle. Since f is solvable by radicals,
by 1.D.2 Gk( f ) is solvable and hence by 2.2 (2) the subgroup H = H(τ) generated by τ
must be the unique normal subgroup in Gk( f ) of order p . Therefore by 2.2 (3) Gk( f ) is
an affine subgroup of Sp.

In order to justify the use of group theory and to demonstrate its power, we now come to
some consequences of Theorem 2.1 (proved in Section 2) which do not refer to groups in
their statements but for their proofs we make use of group theory. Some results of this
nature were already quoted by Galois. For example, the following result is Proposition 8
in his memoir [4, p. 69] (see also [3, p. 113]).

3.2 Theorem ( G a l o i s ) Let f ∈ k[X ] be an irreducible separable polynomial of prime
degree p over a field k. Then f is solvable by radicals if and only if all zeroes of f
can be rationally (over k ) expressed from any two zeroes x,y of them, i. e. k(x,y) is the
splitting field of f over k. Moreover, in this case Gk( f ) is isomorphic to a subgroup of
Aff(Fp) and there exists an intermediary subfield L of the minimal splitting field K|k of
f over k such that

(1) L|k is a cyclic Galois extension of degree m which divides p−1.
(2) Every normal extension E|k with k ⊆ E  K is contained in L .
(3) The field extension K|L is a cyclic Galois extension of degree p .

Proof: Since f is separable and irreducible over k , by 1.C.1 the Galois group Gk( f )
operates transitively on the set V( f ) = {x1, . . . ,xp} of zeroes f . With this we identify
Gk( f ) with a transitive subgroup of Sp.

Suppose that f is solvable by radicals, then Gk( f )⊆ Aff(Fp) by 3.1. In particular, for ar-
bitrary x,y ∈ V( f ), Gal(K|k(x,y))⊆ Gk( f )⊆ Aff(Fp) and so every σ ∈ Gal(K|k(x,y))
is of the form σ(z) = az+b for all z ∈ Fp , (a,b) ∈ F×p ×Fp . But since σ(x) = x and
σ(y) = y, it follows that a = 1 and b = 0, i.e. σ = idFp . This proves that the Galois group
Gal(K|k(x,y)) of the field extension K|k(x,y) is trivial and hence K = k(x,y), since the
field extension K|k(x,y) is Galois by the Fundamental Theorem of Galois Theory 1.B.11.

Conversely, suppose that K = k(x,y) for arbitrary x,y ∈ V( f ). Then k(x,y)|k is a Galois
extension with Galois group Gk( f ) and hence #Gk( f ) = [k(x,y) : k(x)][k(x) : k]. Further,
since f is irreducible and f (x) = 0, f = µx,k ; moreover, g := f/(X − x) ∈ k(x)[X ] and
g(y) = 0, it follows that µy,k(x) divides g in k(x)[X ]. Therefore p divides #Gk( f ) and
#Gk( f ) = deg µy,k(x) deg µx,k ≤ p(p− 1). Now, by Cauchy’s theorem there exists an
element τ ∈ Gk( f ) of order p and hence the subgroup H := H(τ) of Gk( f ) generated
by τ is of order p . Further, we claim that H is normal in Gk( f ). Assuming the contrary,
there exists σ ∈ Gk( f ) such that σHσ−1 = H  = H . But then H ∩H  = {1} and so
p2 = #HH  ≤ #Gk( f ) ≤ p(p− 1) a contradiction. This proves that H is normal in
Gk( f ) and hence by 2.2 (3) Gk( f ) is solvable. Therefore f is solvable by radicals.

For the last part take L := FixH K , where H ⊆ Gk( f ) is a normal subgroup of order p
which exists by 2.2 (2) and use the Fundamental Theorem of Galois Theory.
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Using the above theorem we can easily write examples of non-solvable equations over
the field of rational numbers Q. For example:

3.3 Corollary ( K r o n e c k e r ) Let f ∈ k[X ] be an irreducible polynomial of prime
degree p , where k is a subfield of the field R of real numbers. If f is solvable by radicals
(over k ), then either all zeroes of f are real, or f has exactly one real zero. In particular,
if f has at least two real zeroes but not all zeroes are real, then the equation f (x) = 0 is
not solvable by radicals.

The above condition on the zeroes of f ∈Q[X ] can be easily checked arithmetically with
the help of the discriminant Disc f of f and the Proposition 3.5 below:

3.4 Corollary Let f ∈Q[X ] be an irreducible polynomial of prime degree p . If f is
solvable by radicals, then the discriminant Disc f of f is





> 0, if p ≡ 1 (mod 4),
> 0, if p ≡ 3 (mod 4) and if all zeroes of f are real,
< 0, if p ≡ 3 (mod 4) and if f has exactly one real zero.

3.5 Proposition Let f ∈R[X ] be a monic separable polynomial of degree n. If f has
exactly r real zeroes, then n− r is even and moreover, the signature of the discriminant
Disc f of f is determined by the integer (n− r)/2, i. e. SignDisc f = (−1)(n−r)/2.
Moreover, 4 divides n− r if and only if the discriminant of f is positive.

Proof: Let x1, . . . ,xr ∈ R and let z1,z1, . . . ,zs,zs ∈ C \R be all (distinct) zeroes of f .
Then the discriminant of f is Disc f = D1D2D3D4D5, where
D1 := ∏

1≤i< j≤r
(xi − x j)

2,

D2 := ∏
1≤i≤r
1≤k≤s

(xi − zk)
2(xi − zk)

2,

D3 := ∏
1≤k≤≤s

(zk − z)2(zk − z)2,

D4 := ∏
1≤k≤≤s

(zk − z)2(zk − z)2,

D5 := ∏
1≤k≤s

(zk − zk)
2 and hence the signature of Disc f is determined by D5 which

is the product of squares of (n− r)/2 purely imaginary complex numbers. Therefore
SignDisc f = (1)(n−r)/2.

It is easy to use the Corollary 3.3 to produce polynomials in Q[X ] which are not solvable
by radicals. For example:
3.6 Example Let p ≥ 5, q be prime numbers and let a ≥ 2 be an integer. Then the polynomial
f = X p − aqX − q ∈ Z[X ] is irreducible over Q by Schönemann-Eisenstein criterion45. More-
over, we claim that f has exactly three real zeroes. To prove this, first note that f (x) < 0 for

45 Let f (X) = anXn + . . .+a1X +a0 ∈Z[X ] be a non-constant polynomial of degree n. If there is a prime number p such that
p |ai, i = 0,1, . . . ,n−1 but not an and p2 does not divide a0, then f is irreducible over Q. In 1846 T h e o d o r S c h ö n e m a n n
(1812-1868) and independently in 1850 F e r d i n a n d G o t t h o l d M a x E i s e n s t e i n (1823-1852) published this criterion.
Although it is often called the Eisenstein criterion, Schönemann’s name should be included, since he proved it first. Using this criterion
a slick proof of the irreducibility of the cyclotomic polynomial Φp was given by Eisenstein.
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x << 0, f (−1) = −1+q(a−1) > 0, f (0) = −q < 0 and finally, f (x) > 0 for x >> 0. There-
fore, by Intermediate Value Theorem, f has at least three real zeroes. But f (X) = pX p−1 −aq
has exactly two real zeroes and hence, f must have exactly three real zeroes by Rolle’s theorem.
Therefore by 3.3 the equation f (x) = 0 cannot be solved by radicals.

3.7 Example Let p ≥ 7 and let f = (X2 + 1)(X − 1)(X − 2) · · ·(X − (p − 2))− 1 ∈ Z[X ].
Then f is irreducible46 over Z and hence over Q . Moreover, f has exactly p− 2 real zeroes.
Therefore there is an element of order p in GQ( f ) and the complex conjugation belongs to
GQ( f ). With this now it is easy to verify that GQ( f ) =Sp. In particular, f is affect-free and is
not solvable by radicals over Q.

3.8 Remark We mention here without proofs (see [Schur, I: Gleichungen ohne affect, Sitzungs-
berichte der Preussischen Akademie der Wissenschaften (1930), pp. 443-449.]) some interesting
examples of I s s a i S c h u r (1875 - 1941).

Let n ≥ 4, p be a prime number with n/2 < p < n (such a prime number exists by Bertrand’s
postulate, see Footnote 37) and let g := X(X − 2)(X − 4) · · ·(X − 2p+ 2)− p− 1, h := X(X +
2) · · ·(X +2m−2) ∈Z[X ] with m = n− p and f = gh+2p ∈Z[X ]. Then f is irreducible over
Q by Schönemann-Eisenstein criterion and has exactly n−2 real zeroes. Further, modulo p, f
is separable and has the prime factor X p −X −1. This shows that p divides #GQ( f ) and hence
GQ( f ) =Sn , i.e. f is affect-free and not solvable by radicals over Q.

For n≥ 1, let En := 1+X +X2/2+ · · ·+Xn/n!∈Q[X ] be the polynomial obtained by truncating
the power series eX . Then En has exactly one real zero if n is odd and no real zero if n is even.
Moreover, En is irreducible over Q. Further, the Galois group GalQ(En) of En over Q is the
alternating group An if n ≡ 0 (mod 4) and Sn otherwise.

3.9 Remark It follows from 1.B.11 and 1.C.6 that for every finite group G, there is a Galois
extension K|k with Gal(K|k) is isomorphic to G. In fact, choose n ∈ N∗ with G ⊆ Sn and
take K := Q(X1, . . . ,Xn) and k := KG. – Over a finite field K a finite group G can be realized
upto isomorphism as a Galois group of a finite extension L of K if and only if G is cyclic (see
Example 1.B.4. In explicit examples one is often interested in Galois groups of polynomials over
Q. For any finite abelian group G, there exists a Galois extension K|Q with Gal(K|Q)∼= G. We
have also seen in Examples in Remark 3.8 that the symmetric group Sn and the alternating group
An occur as the Galois group of a finite field extension of Q. Therefore the important question:
Which groups can occur as the Galois group of a finite field extension of Q? This question is
known as the I n v e r s e G a l o i s P r o b l e m and is still unsolved in spite of being actively
studied by many mathematicians.
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