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ABSTRACT 

The field in a dielectric wave guide which consists of two lossless dielectric plates 
placed parallel to each other in free space and excited by an infinite electric line source 
located exactly mid-way between the two plates is formulated in terms of an infinite 
integral. The solution of the infinite integral by using the method of contour inte- 
gration yields the conditions under which the structure behaves as a surface wave 
guide and or leaky wave guide. Theoretical results are confirmed by experiment. 

1. INTRODUCTION 

The analysis of fields in a HSP guide is usually made by solving the 
source-free wave equation 

V 2 1/1 	k2  tli -= 0 

in an appropriate coordinate system, where çb is an eigen function corres- 
ponding to the eigen value k. In the case of open-type of electromagnetic 
structures such as surface wave guides, viz., dielectric rod, dielectric-coated 
metallic plane, Harms-Gouban line, the discrete eigen value solution to the 
source-free wave equation corresponds to surface waves. It has been shown 
by Brown [1] that though a surface wave corresponds to a solution of Max- 
well's equations and is capable of existing independently of any other field, 
in practice, it is not possible to launch a pure surface wave uncontaminated 
by radiation. Hence a surface wave is always accompanied by a radiation 
field. So, the determination of the complete field on surface wave struc- 
ture is essentially an excitation problem. 

The analysis of source-excited electromagnetic fields for different open 
boundary structures by several authors [2-16], have contributed significantly 
to a proper understanding of the phenomena of surface waves, leaky waves, 
and radiated waves. 

Whitmer's [2] analysis of the problem of a dielectric plate of thickness 
d excited by an infinite thin but infinitely extended current filament, embedded 
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inside the dielectric slab consists of solving the following inhomogencous 
wave equation 

v 2  Ev  k 2  Ey  = 8 (x h) 8 (z) 
(2) 

which yields the field Ey  outside the dielectric plate in terms of a contour 
integral ast 

co 
E 	I f f(p q) exp {q (d h)} 7  (p q) exp 	g (d I))} v 	277 	1 	(p q) 2  exp (2qd) (p 	exp (— 20) —cc 

x exi{— p (x d) ihz} dh 	 (3) 
where the transverse wave numbers p and q are given in terms of the axial 
propagation constant h and free space wave number k o as  p2 = h2 k02 
and q2 = h 2  — k 2  respectively. Whitmer's result does not, however, provide 
enough information about the field distribution as a whole around the 
structure. 

Cohn et al. [3] used the method of steepest descent to evaluate the far 
field E yR asymtotically for any direction outside the slab excited by an 
infinite line source as in Whitmer's case. 

, 
27T 	 i7) (4) El  R = V- 	4  . 

01 	 . 

where. 

F(9) = - [fp ° ) exp fig 0  (d b)} — (p g  q8 ) 
277 	°  

x exp {— go  (d b)}111(p9  + q0 ) 2  cxp (2q 0d )  

(p — 0 ) 2  exp 	2q 0d)] 

po 	— ik o  cos 0, go 	[1c 0 2  sin 2  0 — 

Tai [4] has analysed the fields 'produced by a periodic, time-varying current 
filament located above and parallel to a dielectric-coated conducting plane. 
The field in the region above the current filament is 

Elm == 	27,p
Rq sinh p (1) d) p cosh p (b d) 

X tan.h qd}l(q p tanh qd)] exp {(— p (x b)) 

ihz) dh. ( 5 ) 

tistw.— The syinSols are diftereat from time used by Wnitmer but arc consistent with thnsc 

used in the present paper. • 
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Tai's result show that for a thick slab, a surface wave in addition to space 
wave appears in the vicinity of the dielectric-air interface. 

Barone [5] in his analysis of the field due to an electric line source above 
a dielectric slab has shown that in the evaluation of the contour integral, 
if the complex poles on the h-plane are considered, the residues at these poles 
correspond to leaky waves. His analysis also leads to the conclusion that 
though an infinite number of leaky wave resonance exist, it is only a finite 
number of leaky wave resonances in addition to a finite number of character- 
istic surface wave modes that may constitute to the field. 

The object of the present paper is to report on the analysis of the nature 
of the fields in dielectric parallel plane wave guide consisting of two parallel 
dielectric plates placed in air and excited by a line source placed exactly 
midway between the two plates. 

2. FORMULATION OF THE PROBLEM 

In exciting the parallel plane dielectric wave guide (Fig. 1) by an infinitely 
extended electric line source, a uniform current of density 8 (x)F(z)exp 
(— hot) hop °  is assumed in the y-direction. Since, the source is assumed 
to be infinitely extended in the y-direction and the current is uniform, the 
only component of the electric field is E y  which satisfies the following wave 
equations in the six regions (Fig. 1). 

V 2  Ey  +k 0 2 	= 0. 	 (6) 

Outside the sheets in regions I and VI; 

V 2  Ey  -F k 2  Ey  =0 
	

(7) 
inside the dielectric plates in regions 11 and V; 

and 

0 2  Eli 	- 8 (x) 8 (z) 
	

(8) 

in regions III and IV between the two plates; where 

k o 2 = co 2 v0 E 0  = (27002  

k2 co 
a 

2 Ito co fr r.-_ (2firiA) 2 

(9 a) 
(9 /4 

wllere Er  is the dielectric constant of the plates and Ao  == 3° 14 cm. 
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The solutions of equations (6-8) which take into account all the propa- 
gating modes may be expressed in the form of the infinite integral 

Ev  =-- h) exp 	ihz) dh 
-op ( 10) 

Point of 	Point of 
observation 	

observation 
( z < 0 ) 	 ( z > ) 

 

Free space 
( e 

Region VI Po >ea , 43-= 0 
x = +(a + d) 

X = + 
Die lectric 

 

Region V 

Free space 	 04.... 

Lint 
source 

1 

Region wtao Acoer = 0 

.erip a am St 	 S 

Region 	so l eo  ,T=0 

X = 

tO 	• 
x = —(o+d) 

Free space 
	

Region I Po ,E o =° 

FIG. I. Coordinate system used in the analysis. 

uhere, h is the axial propagation constant in the z-direction and v (x, h) 
satisfies the following equations: 

e 2  (x, h) 
(h 2  k 0 2) v (x , h) =0 

bx2  

in regions I and VI; 
3 2  v (Xl.h) 	k2) v 	h) r= 0 

	
(12) 

in regions II and V and 

8 (x) b 2  V (X1 	k 0 2) V (X, 
eX2  

in reions III and IV /  

(13) 
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The components itx  and Itz  of the magnetic field if derived from v x:i 
iwit eir are, 

Hz 	 v (x, h) exp ( -I- ihz) dh 	 (14) (0/1, 0 

C 	exp (ML-) dh Hz = 0 	J 	 (15) 

The solutions of equations (11) and (12) are respectively 

As. op (+ px) 	B t  exp (-- px) 	 (16a) 

and 

A2 eXp 	qx) + B 2  exp (— qx) 	 (16b) 

where 

(h P = 	— k 0 2) 1  

= 

and A1, A 1, B2, B2 are arbitrary constants. The solution of the homogeneous 
counterpart of the inhomogeneous equation (13) is 

A3 exp (+ px) B., exp (— px) 

= v, (x, h) -F v 2  (117, 	 (17) 

The particular integral of the inhomogeneous equation (13) is 

v l 	(x) 	 v 2  8(x A  — v 	- 	dr + V 
2 	W • 27r • 	 W 	"x  2/r  

where, the Wronskian 

W =-- 2A 8B3p 

since, 

f(x) S (x) dx = +51  f(x) 8 (x) dx = f (0) 

(18) 
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the particular integral reduces to 

exp ( P:9 for x< 
4p 

and 

exp ( — Px) for  x >0 4p 

Hence. the most general solution of equation (13) is 

e 

 

A3 exp (+ px) + 13 3  exp (— px). 

 

(19) 

Since there are no reflected waves in regions I and VI and there are reflected 
waves in all the other regions, v (x, It) for different regions are 

v (x, h) 	exp (+ px); 	x < — (a + (I) 

v 2  (x, It) =--- A 2  exp ( -F Ty) + A3 exp ( — qx) 

v 2  (x, It) --= A 4 exp 	p.\') + A3 eXp 	px)  

—a< x< 0 

v 4  (x, h) = A6 exp (± px) 

1 1)5 CY, Ii) = A 8  exp 	qx) ± A 9  exp (— qx) 

a < x < (a + d) 

H e  (x, It) = Atoexp 	Px) 	(a + d)< 	(20) 

The ten arbitrary constants are determined by using proper expression for 
v (x, h) and applying appropriate boundary conditions which are the conti- 
nuity Eta. and 14,.  at x = ± a and x = (a d); continuity of Et.. at 
the source x = 0 and the discontinuity of 11 30  at x --= 0 by an amount equal 
to the lunar current density. The discontinuity of 1-12  or m/bx at x = 0 

is determined from 

?V (X, H
)]

E_ 	ko 2) f 
bX Jae 

v (ex, h) dx = (21) 

which reduce to 

	

by (x, h)10+0_, 	I 

	

J o-o- 	2-7-T 

A 7 exp(spx)0< x< a 

Mb 
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in the limit E 	O. 

The constants A,. = D,/D. 

(appendix A. 1). Hence, v (x, It) in the different regions are 

th — q exp [-F p fx + (a + d)fl/rx ; 	x < — (a + d) 

v2 =a. kp + ch exP E-F q tx + (ii + d)}J - (p — q) exp [-- q 

x {x + + d ithawx 

— (a -I- di< x< —a 

rt(p -F 0 2  exp 	qd) - - 	exp (- qd)) 

x exp {-1-- p (x ± a}} ± (p 2  — q2) {exp (+ qd) — exp (- win 
x exp {— p ( x + a)}]14egpx 

— a< x< 0 

v 4  = [{(p + q) 2  exp (+ qd) — (p — 02  exp (— qd)) 

x exp {— p (x — a)} ± (p 2  — q 2) temp (+ qd) — exp {- qd)) 

x exp {- p (x - a)}Wirpx; 0< x < a 

v, =-- [(p q) exp {— q [x — (a + d)}} — (ft — q) exp j+ q 

x 	— (a -I- d)}]] 2.7rx 

ac x < 

= q exp [- p fx - (a Minx 
(a -I- d)< x 

where 

exp (pa) (p 2  q 2) exp (-I- qd) - exp (— qd). 	(22) 

The main interest is to find the conditions under which the parallel plate- 
dielectric guide acts as a surface wave guide, a leaky wave guide or as a 
radiator. Therefore, only the field 

Ev = irqx  exp [- p {x — (a + d)} ihzi dh 	 (23) 

- 

in the region x > (a d) outside the guide will be evaluated. 
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3. ROOTS OF THE EQUATION I == 

The integrand in equation (23) possesses singularities, viz., (I) the notes . 	 ir■ 

occurnng at 	x 0) = t.) and ( i 0 the 	branch points at It = ± ko  where h _-= p ± k. 	The roots of the equation (22), x = 0, i.e., 
b 2  exp (— 2pa) — (2p 2  b 2) qcoth qd 	— 	

2p- (24) 

b 2  =- k 2 	k o 2  

may be such that the propagation constant h may be real, imaginary or com- 
plex. 

3.1. The real roots of X = 0. Several cases may arise depending on 
the range of h. All the real roots in the range — 00 < h< 	oo cannot 
be found by using one equation since p and q range over real and imaginary 
values as h varies from — co to 	00. Since all the roots of equation (24) 
occurs in pairs it is sufficient to determine the roots in the range 0 < h< 

00. 

Case (i) 0< h< k 0 , 

p = iw 

q =--- 	i (b 2 	w 2)1  

	

= (k 02  — 	 (25) 

Therefore equation (24) reduces to 

(b 2  — w2) 1  cot (1, 2 	w2) 1  . d = 
	1,2  sin 2wa 
 — -  2w 	

(26 a) 

and 

b 2  cos 2wa (2w 2  b2)}/2w = 0 	 (26 b) 

where, the second equation (26 b) can be reduced to 

b2  (1 -I- cos 2wa) = 2w 2  

which cannot have real roots. Hence there can be no real root of A' = 0 

in the range 0< h< 
Case (ii) k o c hc k 	i.e., 0< wc b 

The equation (24) takes the form 
(1) 2 	w2)4 cot (1,2 	10) 1  . d 	(1,2 exp (— 2iva) — (2w 2  b 2)}121v 

(27) • =-- (w) =-- 0 
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where 

p + 	k 091 == ty  

q = 	(b2 	w2)1 • 

and 

(b 2  — w 2) 1  cot (b 2  — w 2)I . d {— h 2  exp (2 wa) --le (20 — 

=f2 	--= o 	 (28) 

where 

p — w 	and 	q = 	(b 2  — w2) 4 . 

Case (iii) k< h < 00 

The equation (24) assumes the form 

(w 2  b2) 1  coth (w 2  0)1  . d [b2  exp 	2wa) — (2w 2  b2W 

2w = 0 
	

(29) 

where 
p = w 

and 

(w 2  — 
b 2)

. 

In this region there is no solution (equation 29). 

In order to determine if the end points of the range (0, ko), (ko, k), 
(k, 00), (0 , 	k o), (— k 0  7 	k) and (— k, — co), i.e., 0, ± k o, ± k are roots 
the corresponding values arc substituted in equation (24) to find whether 
the equation is satisfied. The cases when 0, ± k o, or ± k is a root are 
discussed below. 

Case (iv) h = 0 

p 	/Ic a , 	= 	ib. The equation (24) fields 

k cot kd b 2  sin 2k 9a -- a al• 

and as 

k 2 	k 0 2 	k 2 	k o 2  2k ea = 
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which is not satisfied. Hence, h = 0 is not a root. 

Case (v) h = k 

± lb. 

Hence1 h equation (24) shows that h = /co  is a root when b cot bd 00 or bd 	lir, 	= 1, 2, 3 • • - 
Case (vi) 

h = + k 

0. 

As q 0, the L.H.S. of equation (24) becomes 

1 Lt q coth qd Lt = 
q40 	 Q 40 tan qd d 

and the R.H.S. of equation (24) tends to 

b (exp (± 2ba) 	1)12. 

Hence a root occurs at h = k, when 

1 
±± = b lexp(± 2ba) — 4/2. 

The upper sign holds good when 

P = + ( 11 2  k 02) 3  

and the lower sign holds when 

P 	(h 2  42 ) 1  

Numerical evaluation shows that real roots for f1  (w)=0 exist for discrete 
values of w with k o  = 200 radians/m, k = 320, 400 radians m; ' a ' varying 
from 0 . 02 to 0.1 m and ' d ' ranging from 00016m to 0 . 0127 m. Whereas 
real roots exist for f2  (w) = 0, only for k = 320 radians/m, d = 0 . 0127 m 
and ' a ' ranging from 0 . 02 m to 0.06 m with /c o  = 200 radians/m. 

3.2. 	The imaginary roots of X -=.-- 0. 	By substituting p = ± iw and 

q = ± i (w 2  — b 2)1  in equation (24) it reduces to 

V sin 2wa0, 

and 
4)4 2  x cot :xi/ = b 2  cos 2wa 2w 2  b2  

which indicate that 110 imaginary root of equation (24) exists giving real w. 
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3.3. The complex roots. —Substituting p x*± iy*, q == u 	v  

equation (24) and separating the real and imaginary parts, it is found that 
complex roots occur when 

2 (uf vg) 	x* S  x* T 
1 ± iiiIhd ëót2vd 	x*2 ± y *2 -  = (x*, y*) = 0 	(30) 

and 

2 (vf— ug) 	(y* S x* 
1 + tanh 2  nd cot2  vd 	 -11" 

=1  F2 (x * , y*) = 0 ( 3 1) 

where 

f = tanh udcosec 2  vd 

g = cot ud sech 2  vd 

S = b2  exp (— 2x* a) cos 2y* a — 2 (x4e2 ylic2) + bt 

T = b 2  exp (— 2x* a) sin 2y* a + 4x* y* 

1 = _ u r 	 2 x *2 	y *2 	b2% ) 	4x* 2  y*2 _4_  11 	(x*2 y *2 b2Ai 
L"  

v = V2 [{(x* 2  — _y* 2  - b 2) 2  4x* 2  y* 2}4  — (x* 2  — y* 2  — 

(32) 

3.4. Solution of equations giving pure real roots. For It varying from 
k to + 00, i.e., w varying from b to + 00, equation (29) has no solution. 
The approximate values of the roots of equations (27) and (28) are found 
graphically (Figs. 2 and 3). In order to get the accurate values of the 
roots from the approximate values, successive bisection method (Appendix 
A-2) has been used. 

3.5. Solution of equations giving complex roots of X = 0.—F1 (x*,Y *) ,  
and F2 (x * 5  y*) are plotted (Figs. 4 and 5) versus y* for discrete values 
of x* (xi, x, . . . x.). The pairs of (xn , yn) which satisfy F,, (x *, yt) = 0 
or F2 (x*, y*) = 0 are determined from Figs. (4) and (5). These values 
of yn  are plotted versus xn  (Fig. 6) in which i", (x*, y*) = 0 and F2 (x *, Y *) 
= 0 are shown as functions ; = P

,, (x*) and Y.) = P2 (x*). The points 
of intersection of Y1  and Y2 have their x and v. satisfying both FA  0 and F2 
= 0. These values of x* and y* gave the approximate roots of (30) and (3 1 ). 
In order to improve the accuracy of the roots, Fi  (x*, y*) and F2 (X */ yi 
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Flo. 2. Plot off, (w). a — 0.02 m, d = 0-0016 m, ko  = 200 radians per metre, k 320 
radians per metre. 

w —Apr 

Fto. 3. plot off,  (w). a = 0-02 m, d 0.0016 m, k o  = 200 radians per metre, k =3 320 

radians per metre 
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rite evaluated at closer and closer values of x* and y* in the neighbourhood 
of the roots. From these evaluations, points on the curves (Figs. 4 and 5) 
are found near the roots when these points are close enough, the curves of 

(x*, y*) = 0 and F2 (X * , y*) = 0 can be approximated to straight lines. 
The coordinates of the point of intersection yield x* and y* values of the 
roots. The complex roots have been determined for a = 0.02 m, 0 . 03 m, 
d = 0-0064 m, 1( 0  =--- 200 radiansjm and k = 320 radians/m (Table I). 

-90 	 -60 	 -30 	 0 

.411 	. 
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TABLE I 

Values of x* and y* for complex roots of A' =-- 0 
d= 0.0064 m, 	ko  = 200 radians/m, 	k= -- 320 radians/m. 

a r- 0.02 m 	 a =0.03m. 

x* 	 Y* 
	

x* 	 Y*  

— 4.1865 — 76.726 — 1•363 — 51.888 

— 23.7475 — 218.068 --- 9.207 — 151.959 

— 50.358 — 345.234 — 20•243 — 247.928 

— 64•445 — 450•758 — 34.994 — 329.2729 

4. DISCUSSION' OF THE ROOTS OF X = 0 

The nature of the fields is determined by the values of h and p corres- 
ponding to the roots. 	The different cases are: 

Case (i) Surface waves.—The roots of equation (27) yield positive 
real values of p. The waves corresponding to these roots alternate expo- 
nentially in the x direction and travel without attenuation in the z-direction 
with phase velocity less than the free space velocity as h >k o. These waves 
are the surface waves. For 0< w < b, d = 0 - 0064 m there is only one 
surface wave mode (Fig. 7). The plot of 'p' vs 'a' (Fig. 8) shows that 
the surface wave become more and more tightly bound as p becomes larger 
with ' a ' decreasing. 

The evaluation of the residues at the surface wave pole h :----- 11 0  given by 

qo exP ['a P o {x — (a -I- (I)} + ihozihr ddxhl hnh. 

show that the modulus of 2TriX residue at x --= a + d decreases with increase 

of spacing 'a ' between the plates. This indicates that with the increase 

of ' a ', the surface waves become more and more loosely bound and also 

the power in the surface wave decreases. The residues at the poles derived 

from the surface wave roots are given in Table II for some values of '4' 

and ' a ', 
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Etc. 7. Roots of f1 (w) -= 0, d = 0-0064 m, ko  = 200 radians per metre, 

k =320 radians per metre. 

220 

2 00 

P (80 

160 

I4C 
0.02 	0.04 	0.06 	0.06 	0.10 

--oft- 

Flo. 8. Plot of p versus a. d 0-0064 ni , k e 	2e0 radians per metre. k c 3 ?9 
radians per metrg. 



0.0032 0.02 0.24 x 10-1  

0.04 0•21 x 10-2  

0-10 I*77 x 10-5  
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0.0064 0.02 0.64 x 10-2  

0.04 0•33 x 10-3  

0•10 0.42 x 10-7  

0•0095 0.02 0•22 x 10-2  

0-04 0.6 x 10-4  

0-10 1.09 x 10-9  
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Values of modulus of 27ri X Res. at the surface wave poles 
k o  200 radians/m, 	k tr 320 radians/rap 	x a + d 

 

 

d (m) 	a (in) 	Modulus of 2.7/IXRes. 

0.0016 	0.02 	0•33 x 10-i 

	

0.04 	1.43 x 10- 2  

	

Oslo 	0.84 x 10-3  

 

     

     

Case (ii) Growing waves. The roots of 'equation (28) give positive real 

values of h and negative real values of p. These roots give rise to waves 

growing exponentially in the x-direction and travelling unattenuated in the 
z-direction with a phase velocity less than that of plane waves in free space. 
These waves are physically inadmissible and do not figure in the evaluation 
of the field as they are associated with the poles lying in the lower leaf of 
the two-leaved Riemanian plane. 
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Case (iii) Leaky 'waves. The complex roots evaluated with the h elp  
of F1  (x*, y*) 01  F2 = (x*, y*) = 0 show that (Table I) both the real and 
imaginary parts of p are negative. The real and imaginary parts of h being 
positive, the waves associated with these complex poles travel in the x -direetion 
growing exponentially but attenuating exponentially in the z7direction. The se  
are the leaky wave modes which exist within wedge (Section which is formed 
on one side by the outer surface of the guide) and the other plane making 
an angle with the surface. 

5. EVALUATION OF THE FIELD 

The total field consists of the sum of the residues at the poles and the 
field associated with the branch-cut integration. The residue at any pole 
/2 0  represent physically realisable waves when Rep >0 and fin h >0. In 
evaluating the infinite integral (equation 23), the double-valued nature of 
the integrand is removed by assuming a two-leaved Riemanian surface for h, 
the top leaf corresponding to Re (— p) < 0, and the bottom leaf being desig- 
nated by Re (— p) >0, the branch-cut is designated by Re (— p) =-- 
which reduces to a f3 = (0' k 0 " with fl< ko' if /co 	ko' 	ik o ff, and h 

ia. 

The top leaf of the h-plane with the contour C o  which includes poles 
associated with physically realisable waves, the branch-cut and the branch 
points are shown in Fig. 9. The complex poles that give rise to outward 
propagating physically realisable wave can occur in the cross-hatched region 
in the first quadrant (z > 0). But as k 0 " —> 0, the area of the cross-hatched 
region —3- 0. So, no complex poles can exist on the top leaf. The integral 
along the dotted infinite semi circle being zero, the integral (equation 23) 
becomes equal to 27FiX Res. at the poles included by the contour C o  and 
the contribution by the branch-cut. The integral is evaluated by the saddle- 
point method [17]. 

7.1. The saddle-point method.—By making the transformation 

h = k 0  Sin T 

with 
p 	ik o  COS T 

= e 
and changing to polar coordinates 

x (a + d) tat r cos 0 

; = r sin 0 
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the integral (equation 23) transforms to 

oo 
Ey  = f F (T) exp {ik or cos (T — a)} d 	 (33) 
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in the 7-plane where, 

k oq (T)  c°s  F (T) 	(7) 

The real and imaginary parts of h and p are 

Re h = k 0  sin e cosh)? 	 (a) 

Im h = k 0  cos e oath n 	 (b) 

Re p = k 0  sin e sinh 	(= x) 	 (c) 

Im p = — 0  cos e cosh ?I (= y) 
	

(d) 

(34) 

The four quadrants of the top leaf map onto 
T4 and the four quadrants of the bottom leaf 
B3, B4 respectively (Fig. 10). 

the infinite strips T1, T2, 7'3, 
map onto the strips Bo  B2, 

The function _T('r) in the index of the exponential function in the inte- 
grand, has a saddle-point at T 4=-7  6 for 

d 
J (T) =-- 	{ik or cos (r — 0)} = 0 at T 

So f(-r) can be expanded in Taylor's series around T = 0 as 

- M2 
f (T) e f (0) + 	21  '  

— 0) 2  
rat & ors — ik

°r 2— 

neglecting the higher order terms when #7  - 0 is small. Hence, 

f (T) - f (0) = 	if2  = 1.2k0rP2  exp (MO 

which leads to 

- k orp 2  Re [f 	f 	A = 	2 	sin 2(.0 = constant 

mi V (7) — f 	=-- f2 =  

- 

k orp2  cos 200 constant . 	(35) 
2 ••■ 	• 	

e 
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FIG. 10. Contours and poles in the 7-plane. 
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The surface formed by the family of curves (equation 35) is in the f orm  
of a saddle (Fig. 11). On this surface the curves f 2  0 will be those along 
which the value of ft  varies most rapidly and decreases when 

/ 

iTt 
/ 

*as 
/ 

\ 1 / 

= CONSTANT 

{ 2  = CONSTAN T 

FIG. II. Plot of h= constant and is  = constant around tlw saddle point 7 = et 

and increases when 

IT 57 =-_- - 
4' 4 • 

So, along the curve 12  = 0 with co = — 44 and 37T/4, the expression fel) 

— f (0) decreases very rapidly from 0 to — co, on either side of the saddle 
point r = 0, which is therefore the path of steepest discent (SDP). 

If the contour Co, (Fig. 10) on the 'r-plane is deformed into SDP defined 
by [f(T) f(0)] = k orp 2  sin 2c0/2, then exp {ik or cos (r 	0)) exp k qr. 
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+ + if2) == exp {ik or — korp 2/2} will decay very fast as p increases on either side of the saddle-point along the SDP. Hence the infinite integral (equation 
33) is approximated to 

Ec f F (T) exp (ik or cos ( — 	dr 

along Co 

= f F (T) exp {ik or cos (dr — 	der 

along a short length of SDP, + 24 x Li Res. at the poles included between 
Co, and the SEW ± ri L' Res. at the poles on SDP. 	 (34) 

Along the SDP 

T 0 = p exp (i-3477) = p exp (— 1° 17
4 ) \ 

in the second quadrant of the (p - co) plane and 

T — 0 p eXp 	in/4) 

in the fourth quadrant of the p— co plane. 

Hence, 

dr — exp (-- i ff4) dp in the II quadrant 

dr exp (— i dp in the IV quadrant. 

Since 

f (T) = ik or cos — 	ik or k orp 212 

J F ( T) exp {ik or cos (r 	0)} dr 
SDP 

— 	F (T) exp (1 k or k or p 212 —d 4) P 

SDP 

± 	F( T) exp ik or 	7r41 dp. 

SDP 

(35) 
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Assuming k or > I exp (— k0r2/2) is very small for small value of p -r. P i  

or large k or in the region I T - 0 1 pi . Hence, assuming F(t) 

equation (35) reduces to 

f F(T) exp tik or cos (T 	der 
SDP 

P1 

cLi 2F (0) exp (ik or — i 74) 	exp (— k or S-2) dp. 
0 

Since, the contribution to the integral when p > p i  is small exp 	korp2/2) 
Pi 

becomes negligible when p > p i  the integral f can be written as cr. Hence, 
0 

2 
Co 

= 2F (0) exp (ik " 
r 	4) k 	

exp (- t 2 ) dt 
or 

SDP 	 0 

F(0) exp (ik or — i 4 ) ( k211  
or 

.(36) 

where 

t 2  =-: k 0rp 2I2 

and 
co 

1 	r+ f exp (- dt = 2  (2) — . 
0 

Equation (36) holds good provided there is no pole of FN in the vicinity 
of the saddle point '7' == 0. If there is a pole of F(-r) near the saddle-point, 
the approximation F(T) F(9) made in deriving equation (36) is not valid 
It is then necessary to use the modified saddle-point method (18]. 

By using Laurent's expansion, F (T) can be written as 

F(T) G (ar) ± ART — To) 

in the vicinity of the pole of F (r), provided To  is a pole of first order. The 
poles of F (r) used in the evaluation are all of first order. G(T) is an analytic 
function of T and A the residue of F(r) at T = To . Hence 

SDP 
F (r) exp fik or cos Cr — 	dr 	

.00 

• 
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=5 G (7) exp {ik or cos (r 0)} dr SDP 

± 	A
T 	exp {ik or cos (r — 0)) dr. 	 (37) To 

SDP 

The first term in equation (37), evaluated by the ordinary saddle-point method 
yields 

if G (7) exp {ik or cos (7 — dr 
SDP 

2n )4  G (0) exp (ik or 	in.14)(ki- 

where 

G (0) = F (0) — 241(0 — T o). 

Whereas, the second term 

A  
SI TO 

SDP 

exp Oki cos (1- — t))) dr 

 

A  

(- p exp (— i /r4) — 70  LI- 9) 

7r 	k 
x exp (ik or — 4 	°

rp2
2 ) dP 

P1 

+5
A  

(I) exp (— i (174) ro  + 0) 

x exp (fig" 	— k_AL 
4 	2 	r  

p, 	 2 (ro  — 0) exp (in14) 
= 	A exp (ik or k 0r12) p2 	( 70- -op at' ,  

C. 
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As the value of the integrand is negligible when, 

I A 
7— To  

exp {ik or cos (T — 0)} dr 
SDP 

2A exp (ik or + inj4) ( To — 0) 12  fa° exp ( 7- k 0rt/2) di  
ti fr ( To — tiM 

inA exp [ik or {I — (T o  — 0) 212] erfc lexp 	i r4) 

kortx (T o  — ( -2  1. 	 (38) 

Since 

dt n(a)A exp (up) erfc (al pi): 

where 
00 

p2 	t and erfc (z) 	f exp (— t 2) dt. 
• 

The result (equation 38) is valid when the following inequality is satisfied. 

—IT< arg {— 1(7 0  — 0) 2} < 

— 4 < 
 arg (T o  - 0) < 3-44. 

Otherwise 

S 
 A  

T 
exp {ik or cos O. — dr 

SDP 

in A exp [ik or (1 — (7 0  — 0) 212fi 

x Erie fexp (— n14) (0 — 7 0) (t) ii (39) 
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when 

7T 
4 "Ca  arg (0 

or 

17 
4

< arg (T o  — 0) < 	7r14. 

7.2. The residues at the poles.—The residues at the poles are given by 
R 	q (T o ) k o  cos T o  exp  fik„r cos (To 	On 

dx 
7T j - 

a 71 T.T o 

where 

dx _ dx (111 
(IT 	dh dr 

[exp (+ pa) (23 p 	q) t(p q) 2  exp (+ qd) 

q) 2  exp (— qd)) 	(all/ p) exp (-1-- pa) 

x 	± exP 	qd) — (p 	exp (— qd)} 

(ahjp) b 2  exp (— pa) {exp (± 	— exp (— qd)) 

— (dhig) b 2  exp (— pa) [exp (+ qd) exp (— 0)1] 

x k0  cos T. 
	 (40) 

The residue can therefore be written as 
• 

(41) R =---- P (T o ) exp (ik or) cos (T o  — Oj 

xd 
P(ro') rr---  Rows Tog ( TAIr  T-To 

--= k0  sin T 

iko cos T 

= [k 02  s1n2  T k91  

To 
	

e= 60 + 0 

b2 
	= k 2  — k 0 2 . 

1.1.Scr4 
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since, the residues occur either as hTR or 2i7TR, the value of irP (TO has been 
calculated at some of the roots (Table Ill). 

TABLE ii 

Values of 713  (-r 0 ) for poles used in the evaluation of the field 

-= 0.00641m, 	1/ 0  = 200 rad/m, 	k = 320 rad/m 

Rep 	Imp 	ReT 0 	Imr e 	RenP(r o) hunt (TO 
no 

— 1.363 — 51-88 0•7107 0.07051 0.03349 — 0.003796 

— 9207. — 15h959 1-3083 0.007057 — 0-008635 0.0005631 

149.35 	0 	42 	— 0-6905 	0-007364 	0 

for a -=0.00 m and 

	  ..1•■■■• 

• 

— 4.1865 — 76•726 1.1772 
	

0-02266 — 0•01902 0-002513 

149.5 
	

0 	42 	— 0.6912 	0.003246 
	

0 

The residue at a pole is taken into account only after the pole is included 
between the SDP and Co, or in other words, there is a critical value of 0 = ec 
such that the residue is to be taken into account after the SDP crosses 0c  
(Fig. 10). 

7.3. Complex poles in the strip B1  on the T plane. —A complex pole 
in B1 , T o  = fo 	i 0 - 2 (the va le of n o  -= 0 . 2 is determined by trial) is 
captured, when 

	

0 — ea  arc cos (I/cosh 0 . 2) = 11°18' 
	

(42) 

since 0 should be greater than eo  and the value of 0 for which (ea, 0'2) 
satisfy the equation for SDP (Fig. 12) is given by cos ceo  — cosh 0.2 
The modulus of R at To  satisfies the following condition; 

R I= IP (to) exp ik er cos (T o  — 0)1 

= I P ( To) I  exp (— ik or sin (9 — ed slim 0-2} 

r (T o) cxp (— 8.04) 	 (43) 

I.  

1I• 	 t'a.k 
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for I.) 1 meter and (8 — ec ) satisfying the inequality (42). Hence, the 
maximum value of the residues at To = -.e0 + 0.2 is given by equation (43) for all values of r, 0, the coordinates of the point of observation (Fig. 1). 
The maximum value of IR I at a pole with n  even equal to 0.2 is very small. The value of P  R I is still smaller for poles whose 77 <02. So, the residue 
at the poles whose 77 > 

0.2 are negligible. Hence, even the largest value 
of residues at poles in the cross-hatched region (Fig. 12) are negligible. 
Only the complex poles in the dotted :region of the strip Bi  therefore, need be considered. 	 S.  

AG, 12. Rang,: of e and ti in which complex poles in the strip B 1  have to be determired. 

If the ranges of f and n in the dotted region (Fig. 12) are transformed 

according to equations (34 c and 34 d), the ranges of x and y3 in which the 

complex roots have to be found are 0< x< —40; 0 < y < — 200. In 

calculating the value of the residues, larger ranges were used, so that no 
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significant poles was left out. Furthermore, an evaluation of IF(Tr iat discrete 
values of e and n in the dotted region of strip B 1  (Fig. 12) confirms the exis.. 
tence of complex roots, giving rise to leaky waves (Table 1). The plots 
(Fig. 13) of I F(T) for values of e in the range of 0 0  to 900  i.e., < e <  
t/2 for fixed values of n show that for a = 0 and a = 0.00365 m, there are 
no complex roots in the dotted region of the strip 11 1 , which means that for 
these spacings between the two plates, there are no leaky waves contributing 
to the field at large distances from the source. Whereas, for a = 0 - 02 m 
and a = 0.03 in, there is one complex root at 6 0  c_%/. 67° = l.17 and 
no  sr-a 0.02 and there are two complex roots at co , 	 41° ==. 
no,. a 0.07, and en r=e- 75 0  = 31) not-2/- 0 . 01 respectively in the dotted region 
of B1 . 

7.4. 	Numerical Evaluation of the field.—The field is evaluated nume- 
rically by using the following expressions (Appendix A. 3) 

cxp (ik or 144) F(0) ( At)
1 

 

when 

7 01 1  — °1 > 	 (44) 

	

, 	7T exp Vic a r — 17T/4) {F (0) —A 01' (0 — toi1 )/ k 
2  
kor) 

	

brA 01 i exp [ace ti 	(T 0( 	9) 2/2)] 

x Eifc lexp (— ii44) (r oi 1  — 0) (t) t } 

Ey  = ( when 

I T hi s  — Oi < Ej& 	471.  < arg (Teo  — 	< 4171. 	(45) 

277. exp (ik 0t .  — (n/4) {F (0) — A oi' 1(0 	Toi)} k  

— 	oi t  exp [ik or {i 	(Toi' 	0) 2/2}1 

(40 

when 

& 31 < arg (7 of ' — 6) > 7r/4 

where T 0  is a pole of F(T) and A is the residue at To. 



Dielectric-plate wave guide 	
169 

0 
eD 

0 

0 
in 

0 

S 

	

w 	a 	b  
o 	o 

(5 
e 	

a 6 	to 	a 

as-alCa.L1 



(Miss) B. V. RAJESWARI AND S. K. CHATTERJEE 

•••■ 

imire 0)1 1 

T.; 

:a 

8 
ci 

170 



C lb  a 4:• 0 

ens pi) AI 

C.; 

ger 

a 

LL 4  

0 

co 

0 

Air* 

2 

a. 

MA 

?.? 

°G,T2 

cot 
0 

Dielectric-plate Imre guide 	
171 

• ' 4  



172 	(Miss) B. V. RAJESWARI AND S. K. CHATTERJEE 

a a a a a a. a 

mei 

a 

■•• Me. 

dm 	 

dem ga■ me 
et. 	... 

a 

me. 

Cmm. 

a 

*a 

4.• 

NI. 

... 

"eat  

a 

.4., 

a 

yek 

as 

N. 

se 

\ 

e 

N. 

1 

i 

I 

1 

0 

0 0 04 

	

. 	• 	• 
0 0 0 

	

II 	II 	1 • 
ge" r re 

	

1 	1 

	

is 	I 

	

, 	I —IC 

C 
es, 

. 	 1r 	 04 	0 CS 	6 	o 	6 
go--  



Dielectric-plate wave guide 	
173 

lin evaluating the field, the following poles are taken into account for 
a  == 0 . 03 m, d =- 0 . 0064 m, k o  = 200 rad/m, k =P. 320 rad/rn 

0, Tot --- epi ± ino, =_-_- 0 . 7107 -1- 1 007051 

(ii) T02 =1  en2 4-  inO2 "="-- i O. 3083 -1- i 0. 007057 
Res. at T o, is A, = 0 . 01066 — /0 - 0012085 
Res. at 702 is A2 = 0 . 002749 + 10 . 0001793. 

When A > O. where 0c , is given by 

cos (e., — °cis) cosh noi = I 

0 > e o, + cos-4 (1 /cosh no „) 	45*, 

the term 

2iriA 1  exp {ik or cos (Tot 
- 0)} 

is to be added to the sum of the residues. Whereas, if 0> OC21  where,  
OC 2 = 602 ± COO (11 Cosh no2) -"-°- 76°, 

the term 

2/TiA 2 exp {ik? cos (TOO 	O )} 

is to be added. The residue term 24 (0 .0002344). exp {ik or cos (Ira — 
i 06905 — 0)) of the surface wave pole Ts, = 7r/2 — i06905 is to be added 

when 
> 9c  = Tr12 -1- cos-1  (1/cosh 0-6905) as_ 0-93 rad. 

But for a -=-- 0 . 02 m and d, k, k 0  having the same values as above, the 
Res. at the complex pole 	To  = eo 4- in o  = 1.1772 + i 002266 in Ao --= 
— 0 - 006056 ± 0-0007999. 	The term 27riA 0  {ik or cos (T o  — 0) is to be added 

when 	0 > 60  -I- cori (1/cosh 710) =-- 690 . 	The 	residue 	term 	277/(0 . 001033) 

exp {ace cos (77/2 — 10.6912 — 0) at the surface wave pole Ts,: =742 — i 

0 . 6912 	is 	added 	when 	0 > 742 ± cosel 	(1 'cosh 0.6912) = 0.93 	radian. 

For smaller values of a = 0.00365 and a = OM, there are no significant 

complex poles and the field is evaluated by using equation (44). The roots 
associated with the surface waves are found by using equation 27. For 
a = 0 . 00365 m, 274 Res. at the surface wave pole r31 =tirI2i076  is 

i 1 -8 exp {ik or cos (742 	i 0. 76 	0) and for a = m, 2rri Res. 	i 1'72 

exp {lice cos (742 — /0 - 89 — 0) at the surface wave pole T s ,:" =.77/2 i 

0.89. These residues are to be added to the field given by equation 44 when 
0 >0'78 radian. 
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The plots of J  Ey  I with respect to x, z, and 0, (Figs. 14-16) show that  

(1) For small values of spacing I E y  I remains constant in the z-direction 
and the radiation field is less than 5 . 5% of the surface wave field on the guide 
surface. In the azimuthal direction for 0 < 0c , only the radiation field is 
predominant. As 0 becomes greater than Oc  and approaches 900, the surface 
wave field becomes predominant, and the decay of the field in the x-direction 
is the same as the decay or a surface wave. Moreover, as the total field 
consists of the space wave term given by 27Ti X Pies. at the complex pole on 

=.-. ir/2 line, and the modulus of the space wave term for any 0 is less than 

5 - 5% of the value of the modulus of the surface wave term of 0 = 900, so 
the surface wave term in this case is significant. 

1.0 

5 	 0 „ 	 1  

lc is- (a d)1 IN  

Fic. 	14 	(a) . 	Theoretical decay of the 	normalised 	141 	in the 	transverse direction' 
4 sr— 0•0064 ins  k i  = 200 radians per metre, k= 320 radians per metre, 

0.8 
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0
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lEy1 
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2 	4 	6 	9 	tO 

x (a + d) ir.J cm. 

FIG. 14 (b). Plot of normalised modulus of Ev  versus x (a d). x (a + d) = 0: 

Surface of the dielectric guide, z 1=10: Source, a Fa 0403 m, 4 = 0.0064 m, kr, cc 200 radians 

per metre, k =, 320 radians per metre, 
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Fto. 14 (c) . Plot of normalised modulus of E y  versus x — (a -I- d) for fixed z. x — (a + d) 
— 0: Surface of the dielectric guide, z s 0: Source, a as 0.02 m i  d VIE  0.0064 m, 1; 0  mg 200 
radians per metre, k a: 320 radians per metre. 
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181 (ii) len the case of larger spacing a = 0 . 02 m and a =--- 0 . 03 m, the varia- tion of j Eyj in the z 

and x directions is an interference pattern due to the 
superposition of the space wave, leaky wave and surface waves. In the azi- 
muthal direction, the natu re  of the variation of Ey  depends on the magnitude of 0. When 0 

is very small, the field corresponds to that obtained by the 
ordinary saddle-point method. When 0 is close to the complex poles in Bi  strip, lobes appear at these values of 0. The number of lobes corres- ponding to the number 

of complex poles. in the rest of the regions of 0, the field shows interference pattern. 

• - SURFACE WAVE Polls, 

X - BRANCH P011215 . 

Flo. 17. Contour on the top leaf of the 1:-plane for the case of z less than zero. 

I.I.Sc.-5 
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(iii) For z < 0, the integral giving the field is evaluated by using a Con- 
tour in the bottom half of the top leaf of the h-plane. The negative values 
of z and h thus result in the same values of the field as when z 0. The field 
outside the plates is 

CO 

S q 
exp [- p {x — (a + (1)) + fizz] dlz 

7rX 

—00 

x - SURFACE WAVE POLES 

,T 2  ,T3.T4 	MAPS OF 7HE 1 ,11,111 , IV QuADIZAMTS OF THE 
TOP LEAF OF THE h -PLAIJE 

6 11 6 2 ,6 1 ,  E1•4 	MAPS OF THE I ,11,111, IV QuAPRANTs OF THE 
gorrowt LEAF OF THE h-PLAKIE 

FIG. 18. Steepest descent paths and the map of C o  on the r-plane for the case of 
less than zero. 
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183 \\ hid'  is evaluated by using the contour shown in Fig. 17. The transfor- mation .-: = r sin 0, 	(a ± d) r cos 0 has been used, 0 varying from 0 to  -- /2 (Fig. 1). On the dr-plane. SDP varies from SDP°  to SDP — r/2 (Fig. 18). The original contour from 	co to — 00 is shown in Fig. 17 and the SDP's are oriented as in Fig. 18. The following poles will be captured. 

zero. These are 
On the h-plane, 

(b) The complex roots in the strip B3. These give leaky waves. 

rsaatt. ,  

(a) Complex poles on e = — 42 with greater than 
surface wave poles which are given by roots off; (w) =-- 0. 
they are real poles lying between — /c o  and — k. 

air» 

FIG. 19 	Photograph of the Experimental set-up. 

8. 	LIMITATIONS OF THE THEORY 

The accuracy in the evaluation of the field depends on the accuracy 
with which the poles of the integrand can be determined and also on the 
limit of accuracy of the Gaussian quadrature method [19] which has been 
used to calculate the complementary error function involved in the modified 
saddle-point method. The assumption that the dielectric plates are lossless 
may also introduce a certain error in determining the roots of the equation 

X zic 0. 
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FIG. 20 (a). Theoretical and experimental plots of normalised 1E1,1 versus x. a = 0.00365 m. 
d = 0.0064 m,k o  =200 radians per metre, k 320 radians per metre. z =0: Source or 
mouth of exciting guide. Values of z indicated in the graph. 	 Theoretical; •--- • 
Experimental. 
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FIG. 20 (b). Theoretical and experimental plots of normalised 1E, I versus _v. 
a = 0-00365 metre, d = 0•0064 in. ko = 200 radians per metre, k = 320 radians per metre. 
z 0: Source or mouth of exciting guide. Values of ; indicated in the graph. — 
Theoretical; * * Experimental points. 
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P. O 	 z- 140 cm 
	1.0 	 z = 143 cm 
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9. EXPERIMENTAL VERIFICATION OF THE THEORY 

The experimental  arrangement for field measurements in the x and 
0 direct ions  by using the usual probe technique is shown in the photograph 

(Fig. 19) . 

Figures 20-24 show comparison between theory and experiment. 

x -(a+d) IN WM —law 

FIG. 21. Theoretical and experimental plots of normalised I Ey I CISUS X - (a + d) for 

different values of z. a = 0.02 m, d = 0.0064 m, k o  n-  200 radians per metre. k = 320 

radians per metre. — Theoretical; •—• Experimental. 

1 0 . DISCUSSION 

(i) The infinite extension of the fine source in the theory is simulated 
in practice by terminating the parallel dielectric plates in the y-direction 
by two metal plates placed in intimate contact with the dielectric plates so as 

to be normal to the electric field. The parallel dielectric plates extend to 
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k a 320 radians per metre. 
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about 804 in the z-direction. The measurement 
shows that 1 Ey  I is practically uniform. So it 
top and bottom terminating metal plates help 
source satisfactorily. 

of the field in the y-direction 
may be considered that the 
to simulate the infinite line 

FIG. 23. Theoretical (A) and experimental (B and C) plots of normalised I E l, I versus Z. 

z = 0 source in theory, mouth of the exciting metal guide in experiment. a = 0.02 m, 

4 = 0.0064 m, ko  = 200 radian.s per metre, it = 320 radians per metre. x (a d) = 2 mm, 

■ 
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(ii) In the case of the spacing between the plates a =-- 0-02 m the dis- 
tance between any two consecutive minima of the interference pattern is 
of the order of 10 cm 	(Fig. 	20 a) as predicted by theory which is valid for 
z > I m. 	The measurement had to restricted to a distance z > 1 in due 
to the limited sensitivity of the detecting system. 	In the range z = 56-76 cm, 
the distance between any two consecutive minima is 9 - 5 cm (Fig. 20 b) but 
in the range z r--- 76-96 cm, it is 	10 cm (Fig. 20 c) . 

1. 0 

0.8 

- 

- 

i 1  1 t t I 1  I 

• 

1 I t I 
65 	 69 	 73 	 17 

1.0 

0.8 

• It_ • a a • 4 

_ 

• w w • • • 

187 	 191 	 195 
	

199 

2 IN Crn 

FIG. 24. 	Theoretical and experimental plots 	of 	normalised lEm i versus z. 	z = 0: Source 
or 	mouth 	of 	exciting 	metal 	guide. 	a L---- 0-00365 	m, d - - 0-0064 m, k o  = 200 radians 
per metre, k -sr- 320 radians per metre. 	-- Theoretical; 	* 	* 	Experimental points. 

(iii) When a = 0 - 00365 m. the theory predicts the existence of only 
the surface wave mode and non-existence of any significant leaky wave mode. 
The space wave term also is very small. This is confirmed by experiment 
which does not show any interference pattern (Fig. 21). 

(iv*) The variation of the field with respect to x (Fig. 22) shows that 
agreement with theory becomes closer as z approaches and exceeds 1 in. 
This is expected as the approximations in the saddle-point method used for 
evaluating the field numerically imptove for larger and larger values of z. 

• 
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(0 For higher spacings, e.g., a= 0.02 m, the decay characteristics are 

not that of surface ;wave (Fig. 23) due to the existence of other modes in 
addition to the surface wave. The theoretical curves in Fig. 23 show the 
characteristics of surface wave. 

(vi) In the theoretical evaluation of the field in the azimuthal direction 
the origin of the polar coordinate system is located at the point of inter- 
section of the x-axis and outer surface of one of the dielectric plates. In 
the experimental work, the origin of the polar coordinate system coincides 
with the pivot of the rotating arm. The position of the pivot is on the axis 
of the guide. This gives rise to a certain amount of discrepancy in the loca- 
tion of the pmks in the azimuthal direction. 	The difference between the 
theoretical angle 0 and the experimental angle is about 1° at a radial distance 
of 1 m. 

The azimuthal plot (Fig. 24) shows that a lobe occurs at 70°. If the 
origin of the polar coordinate is shifted to the same point assumed in the 
theoretical discussion, then this lobe would have occurred at 71°. The 
theoretical value is 74° due to the leaky wave mode. This difference remains 
to be explained. 

The second lobe observed at 40° in the experimental plot is probably 
due to the radiation from the dielectric wedge which is used for launching 
the waves in the dielectric guide. 

11. CONCLUSIONS 

The propagation characteristics of a parallel-plate dielectric wave guide 
excited by an electric line source have been investigated. The analysis 
provides an understanding of the conditions under which the field exhibit 
the nature of surface wave, leaky wave or radiated wave depending on the 
spacing between the two parallel plates. It is concluded that 

(1) for small spacing such as a = 0.00365 m only the surface wave is 

predominant. 

(ii) for larger spacing such as a = 0.02 m leaky wave appears in addition 
to the surface wave. 

It is hoped that the results of the present investigations will add to our 
existing knowledge of the anatomy of source excited fields on open type of 
electromagnetic structures, 
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APPENDIX A. I 

An 	Al2 	  A19 	
A110 

A21 	A22 	
 A29 	A219 

• • • 	 • • • 

D re- 
• • • 	 • • • 

• • • 	 • • • 

• • • 	 • • • 

• • • 	 • • • 

	

A91 	A92 		  A99 A910 
A101 	A102 	 	ALOV 	AJOIO 

Dr is the det. D with the r-th column replaced by the column 

0 

- iv 
0 

0 

0 

0 

where 

A u  =-- exp {— p ea ± d)}, 	A21 = p exp {-- p (a 4- d)} 

A31 = An =yr' • • • —A10, 1 = 0 

An --r-- — exp {— q (a + d)}, 
	

A22 --= — q exp {— q (a + d)} 

An --=-- exp (— qa), 	A42 -•-t• q exp (-- qa) 

A52 == A62 r.--  • • • = A10, 2 r---  0 

A13 = — exp Itq (a + d)) 	A23 == q cxp {q (a + d23 )} 

An =-- exp (qa) 	A 43 --r- — q exp (qa) 
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= 1463 	• • • = Ai% 3 — o 

Ai4 = A24 = 09 	AM 	exP (— Pa), A44 = p exp (— pa) 

A5 4= 1, 	A6I 	P9 	A74 = • • • = An) 1 = 0  

A15 = A25 = 	Aas = CXP (Pa), 
	

A45 = p exp (pa) 

A55 = 1, 	A65 = p, 	A 75  =•. — A  , its :5 = 

A16— • • • = A 16 7.= O I 	A56 = 	A66 = p 

A 76  =a- exp (pa), 	A86 = p exp (pa), 	A 9, 6 = A10, 6 == 

An = 	= A47 = 0, A57= —  1 1  

A77 = exp (— pa), 	A87 = — p exp (— P2), 	A87 = A18, 7  —u 

A13 = . . . = A63 = 0, 	At  8 = exp (qa), 	Ass= — exp (qa) 

A98 = eXp (q (a ± (1)}, 	Ai% 8 =se exp {q (a ± d)} 

A 19  =. . . A 69 	0, 	A79 res 	exp (— qa), 	A89 q exp (— qa) 

A99 exp {— q (a + d)}, 	A10, 9 = 	exp {— q (a ± d)) 

A1,10 = • • • 	A8,10 = 0, 

 

A 9, 0 = - exp{— p(a+ dfl  

Al% 10  = p exp F p (a ± d)}. 

A. 2. SUCCESSIVE BISEC1 ION METHOD 

If xt  and x2  represent two values of x such that they are on either side 
of a root xo  of f (x), then, if f(x1) is positive, f (x2) will be negative or vice 
versa. The value of f (x) is determined at x3  = (x1  ± x2)/2. If there is 
a change of sign in f (x) between x t  and x3 , then xo  lies between x1  and x3. 
If f (x) changes sign between x 2  and x3, then the root lies in the interval (x 3, 
x2). The function is evaluated again at x 4  = (x3  ± x)/2 where, i = I or 2. 
according as the root lies between x 1  and x3  or x2  and x3. This iterative 
procedure is repeated until the value of f (x) is smaller than a prescribed 
small number. Then the value of x at which f (x) is small will be equal to 
the root. The smaller the value of f (x) the greater the accuracy of the root 
that is obtained. 

A. 3. EVALUATION OF Ey  

in equations (44)-(46) 

k0  cos 0 
F (0) 	(0) 
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q = (k02  sin.' 6 — k9i 

17 2  =- k 2 	k o2  

erfc = ± -41.77;7 {11(PI 	+ 	(PI 0 )1 

iz= p exp (16) 

(p. 	= f exp (1 2  cos 26) cos (i 2  sin 20 + 0) tit 
0 

v (p, 0) =-- f exp (; 2  cos 20) sill (0 sin 20 4. 0) di 
0 

	

All the constant k 0. a, il. k, i1 except Am' and 	are real. 

A nj exp fik or cos (to — 6) is added to Eli  when 0 > 00 . 

Ri '2 is added to E. 
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A residue Ri = 
When 0 = 


