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ABSTRACT

The field in a dielectric wave guide which consists of two lossless dielectric plates
placed parallel to each other in free space and excited by an infinite electric line source
located exactly mid-way between the two plates is formulated in terms of an infinite
integral. The solution of the infinite integral by using the method of contour inte-
gration yields the conditions under which the structure behaves as a surface wave
guide and or leaky wave guide. Theoretical results are confirmed by experiment.

1. INTRODUCTION

The analysis of fields in a ASP guide is usually made by solving the
source-free wave equation

Vg + ki =0 (1)

In an appropriate coordinate system, where ¢ is an eigen function corres-
ponding to the eigen value k. In the case of open-type of electromagnetic
structures such as surface wave guides, viz., dielectric rod, dielectric-coated
metallic plane, Harms-Gouban line, the discrete eigen value solution to the
source-free wave equation corresponds to surface waves. It has been shown
by Brown [1] that though a surface wave corresponds to a solution of Max-
well’s equations and is capable of existing independently of any other field,
In practice, it i1s not possible to launch a pure surface wave uncontaminated
by radiation. Hence a surface wave is always accompanied by a radiation
field. So, the determination of the complete field on surface wave struc-
ture 1s essentially an excitation problem.

The analysis of source-excited electromagnetic fields for different open
boundary structures by several authors [2-16], have contributed significantly
to a proper understanding of the phenomena of surface waves, leaky waves,
and radiated waves.

Whitmer’s [2] analysis of the problem of a dielectric plate of thickness
d excited by an infinite thin but infinitely extended current filament, embedded
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inside the dielectric slab consists of solving th :
e foll
wave cquation . llowing mhomogencous

V2Ey + K Ey=—38(x—b)s(z) (2)

which vields the field Ey outside the dielectric plate in terms of a contour

integral as'

oo

| (P +qg)exp{g(d + b)) — (p —
Eo— J‘ q P iq = (p—g)exp{—q(d—b
y zﬂ_m { (P + @) exp (2¢d) — (p = q)* exp (—-quj | )}}
X exﬁ {—p(x—d) + ihz} dih (3)

where the transverse wave numbers p and g are given in terms of the axial
propagation constant 4 and free space wave number k, as pi=ht — [,

and g% = h®* — k? respectively. Whitmer’s result does not, however, provide
enough information about the field distribution as a- whole around the
structure.

Cohn et al. [3] used the method of steepest descent to evaluate the far
field E R asymtotically for any direction outside the slab excited by an
infinite line source as in Whitmer’s case.

]

E} = '\/ ]"(0) exp (zl\{,r ——{ : | (4)
where.
F(0) = 21,,? [(ps + q5) €xp {95 (d + )} — (Pg — 44)

% exp {— ¢q (d — ON)/[(Py + 95)° cXP (295d)
— (py— gg)* exp (— 2q4d)]
py = — ikgcos 8, gy = [ko?sin? 9 — k2t
Tai [4] has analysed the fields produced by a periodic, time- varying current
filament located above and parallel to a dielectric-coated conducting plane.

The field in the region above the current filament IS

Em-—f 5 p[{qsmhp(b—d)—{—pcoshp(b-—-d)

« tanh ¢d}/(q + p 1anh gd)] exp {(— p (x — b))

+ ihz} dh. (3)

i : ith tho
tNt2.— Tae symols are diftereat fram those used by Wnitmer but are copﬁlstent with 105§

used in the present paper.
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Tai's result show that for a thick slab, a surface wave in addition to space
wave appears in the vicinity of the dielectric-air interface.

Barone [5] in his analysis of the field due to an electric line source abgve
a dielectric slab has shown that in the evaluation of the contour Integral,
if the complex poles on the A-plane are considered, the residues at these poles
correspond to leaky waves. His analysis also leads to the conclusion that
though an infinite number of leaky wave resonance exist, it is only a finite
number of leaky wave resonances in addition to a finite number of character.
istic surface wave modes that may constitute to the field.

The object of the present paper is to report on the analysis of the nature
of the fields in dielectric parallel plane wave guide consisting of two parallel
dielectric plates placed in air and excited by a line source placed exactly
midway between the two plates.

2. FORMULATION OF THE PROBLEM

In exciting the parallel plane dielectric wave guide (Fig. 1) by an infinitely
extended electric line source, a uniform current of density & (x) F(z)exp
(— iwt) iwp,y 1S assumed in the y-direction. Since, the source is assumed
to be infinitely extended in the y-direction and the current is uniform, the

only component of the electric field is £y which satisfies the following wave
equations in the six regions (Fig. 1).

V2Ey + ko* Ey=0. (6)
Outside the sheets in regions I and VI;

szy"I‘szy:O (7)
inside the dielectric plates in regions II and V;
and

V*Ey + ko* Ey = — §(x) 3 (2) (8)

in regions III and IV between the two plates; where
Ko* = w?pqeq = (2m[Ay)* (99)
k? = w?poeqer = (2m/A)? (96)

where ¢ is the dielectric constant of the plates and A, = 3* 14 ¢m.
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The solutions of equations (6-8) which take into

. account all t _
gating modes may be expressed in the form of the he propa

infinite integral
Ey= [ v(x. h)exp(+ ihz) dh
—

(10)
Point g:ion\ . ‘_/'l Point of
obsery S observation
(2¢<0) # (2>0)

X A

Free space

<)
rRegion Y1 Ho,€0,0=0
777 ;/T'f’//_’ W : x%% X' Fidd)
5 jelectric Reqion V =0
4/-'1{/;_:’1;;’ / é/f,?/f/ X=+0q

Region IV Mo ,€5,0=0

Free space Bt — = = - —— - ———-
Line z
source Region TII g, ,€4,0=0
" x=-a
e L B R e A T T LT TSI TS
/{/ Dielectric ////‘/////// Rgglon II - Fo’ér ,U'-‘O .
'f-/:*'_ff'z’f'ffj' pa ‘ z{_f_{'ff////fjfff/fz x:—(o+d)
Free space Region I Mg ,€q,7=0

FiGc. 1. Coordinate system used in the analysis.

where. & is the axial propigation constant in the z-direction and v (x, h)
satisfies the following equations:

22 v (x, h n -
PRkt~ kD (v, ) =0 (11)

in regions I and VI;

v (x, h s |
o)t — Kty (e By =0 o (12)
in regions Il and V and
22 v (x, h __ ) 13)
P2 g — kv (== (

in regions III and IV,
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The componcnts Hy and H, of the magnetic field H denved from VIE

== I(U,U"H d4re,
h o0 | .
Hy = — f:f-:n f v (x, ) exp (4 ih2) dh (14)
] 'm Dv (‘1_, ;?1) ' 3
H, = e f N (thz) dh. (15)

—_—20

The solutions of equations (11) and (12) are respectively

A, exp (4 px) + B eap (- p) (16 0
and

Asexp (4 gx) + B, cexp (— qv) (16 b)
where

p =+ (h* — ko¥?
g =+ (h®— k??

and A,, A,, B,, B, are arbitrary constants. The solution of the homogeneous
counterpart of the mmhomogeneous equation (13) 1s

Az exp (+ px) + B, exp (— px)
= v, (X, h) + v, (x, ) (17

The particular integral of the inhomogeneous equation (13) is

: v, 0( v, 0 (X
— ‘sz M; : 5(;-:) dx + v, f H?’ 2(#) dx (18)
where, the Wronskian

since,

j: £() 8 (x) dx = ‘j: £(x) 8 (x) dx = f(0)
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the particular integral reduces 1o . -
A (;J—;—p %) for x< 0

and
waP &;-Pf) for x>0

Hence. the most general solution of cquation (13) is
Az exp (+ px) + By exp (— px). (19)

Since there are no reflected waves in regions I and VI and there are reflected
waves in all the other regions, v (x, k) for differcnt regions are

rvl (x.h) = Ayexp(+px);  x< —(a+d)
Vo (N, ) = A, exp (4 ¢x) + Az exp (— qv)
| = (@di< v — 8

Vo (X, 1) = A exp (+ pxX) + Az exp (— px)
v(x, )= ﬁ —a< x< 0

lv,(x.h) = Agexp(+ px) + A-exp(— px)0< x< a
vs (X, ) = Ag exp (4 gx) + Agexp (— ¢x)
a< x< (a+ d)

v (X, ) = Ajgexp(—px);  (a+d)< x (20)

The ten arbitrary constants are determined by using proper expression for
v (x, ) and applying appropriate boundary conditions which are the conti-
nuity £,,, and H,, at x = 4 a and x = 4 (a + d); continuity of E,, at
the source x = 0 and the discontinuity of H,,, at x = 0 by an amount equal
to the lunar current density. The discontinuity of H, or /dx at x =0
is determined from

‘ ' I
L (;; h)]_e (h* — ko®) f v(x, h)dx = — 5 (21)

which reduce to

w (x, h) ]"*“: ]
%

0-0 2m
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in the limit ¢-— 0.

The constants A, = D,/D.
(appendix A. 1). Hence, v (x, A) in the different regions are
vo=qgexp [+ pix+ @+ d)}Yrx; x< —(a+d
va=[p+qpexp[+gix+@t+dil—(p—qgexp[—gq

% {x + (@ + di}]];2nx
—(a+d)< x< —a

vy = [{(p + @) exp (+ gd) — (p — ¢)* exp (— ¢d);
X exp {4 p(x + @)} + (p*> — q%) {exp (+ ¢d) — exp (— qd))
X exp {— p (x + a)})/4npx
—a< x< 0

v, = [(p + ¢)*exp (+ qd) — (p — ¢)* exp (— qd)}
X exp {— p(x — a)} + (p? — q*) {exp (+ qd) — exp (— qd)}

X exp {— p (x — a)})/4=px; 0< x< a

v, =[(p+expl—gix— @+ —@p—qexplt+yqg

X {x — (a + d)}]] 2=x
a< x< (a+d)

v = gexp [— p {x — (a + d)}}mx
(¢ +d)< x

where

x = exp (+ pa@) {(p + g)* exp (+ qd) — (p — q)* exp (— ¢d)}
— exp (pa) (p* — q% exp (+ gd) — exp (— gd). (22)
The main interest is to find the conditions under which the parallel plate-

dielectric guide acts as a surface wave guide, a leaky wave guide or asi
radiator. Therefore, only the field

OO

Ey= | 9 exp[—pix— (a+ D) + ihz) dh (23)

-0
in the region x >(a + d) outside the guide will be evaluated.
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3. RoOTs OF THE EQUATION X =0

The integrand in equation (23) possesses singularities,

occurring at x (k) =0 and (ii) the branch points at h:z , (1) the poles

=B+ ia. The roots of the equation (22), x =0, je.. + ko wherc
2
gcoth gd = b* exp (— 2pa) — (2p® - b?)
2p (24)
b? = k* — ky?

may be such that the propagation constant i may be real, Imaginary or ¢om-
plex.

3.1. The real roots of X = 0.—Several cases may arise depending on
the range of /. All the real roots in the range — co< h< 4 oo cannot
be found by using one equation since p and ¢ range over real and imaginary
valucs as /i v'aries from — oo to + oo, Since all the roots of equation (24)
occurs in pairs it is sufficient to determine the roots in the range 0 < k<

-+ ©0.
Case (1) 0 < h < ky,

P == Iw

g =+ E(M + wip

w = (ko — h?)L (25)
Thercfore cquation (24) reduces to

(b — wi} cot (b® + wi)h . d = — O S (26 a)
and

{F bcos2wa T (2w? + b%)}2w =0 (26 b)

where, the second equation (26 b) can bc reduced to
b2 (1 + cos2wa) = — 2w?

which cannot have real roots. Hence there can be no rcal root of X =0
in the range 0 < h < Ky
Case (ii) ko< h< k ie,0< w<b
The equation (24) takes the form
(b2 — w2t cot (b2 — w2t . d — {bexp (— 2wa) — (2w* — b} 2w

=/, (w) =0 i
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where
p= Ak =w

g=xi(b*— wiht
and

(b2 — wi)icot (b — wi . d — {— b2exp (2wa) + w2 — b}/ 2w

= fo(w) =0 (28)

where

p=—w and g= 4i(b%— w?)i

Case (1) k< h< oo

The equation (24) assumes tﬁe form
(w? — b9t coth (w? — b . d — [b% exp (F 2wa) — (2w? — b/
T2w=0 | (29)

where

pP= VW

and
d — T (11’2 &= [JE)}.

In this region there 1s no solution (equation 29).

In order to dctermine if the end points of the range (0, kp), (ko, k),
(k, 00), (0, — ky), (— Ky, — k) and (— k, — o0), i.e., 0, &+ k,, + k are roots
the corresponding values arc substituted in equation (24) to find whether
the equation is satislied. The cascs when 0, 4 k,, or -+ &k is a root are
discussed below.

Case (iv) h =0

p = 4 iky, ¢ = 4 ib. The cquation (24) [iclds
ol kd — — bPsin2kea | -
kcol kd = %k, &
and as
k2 fo B kE o} I 2
2 T U 0
-kua b2 K3 — If-uz
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which is not satisfied. Hence, 5/ =0 is not a root
Case (v) h =k,
p — 0, q — Ib.

Hence. /i equation (24) shows that /1 = k4 is a root wh
bl =nm, n =1, 2, 3... en b cot bd = oo or

Case (vi)
h= <+ k
p=+b ¢g=0.

As ¢->0, the L.H.S. of equation (24) bccomes

Lt gcothgd = Lt = 9 —_—I
u-wq f a0 tangd d

and the R.H.S. oi equation (24) tends (o
== b {CXp (:: 2bd‘) — 1}/2

Hence a root occurs at # = + k, when

+ {—1{ = 4 b {exp (& 2ba) — 1}/2.

The upper sign holds good when
p =+ (h*— ke

and the lower sign kolds when
p —_—— (,12 bz koz)i-

Numerical evaluation shows that real roots for f; (w)=0 exist for discrete
values of w with k, = 200 radians/m. k = 320, 400 radians m; ‘a’ varying
from 0-02 to 0-1 m and ‘4’ ranging from 0-0016 m to 0-0127 m. Whereas
real roots exist for f; (w) = 0, only for k = 320 radians/m, d = 0-0127 m
and ‘a’ ranging from 0-02m to 0:06 m with ko = 200 radians/m.

3.2. The imaginary roots of X =0.—By substituting p = % iw and
g = + i (w? — b2} in equation (24) it reduces to

b?sin2wa = 0,

and
— 4w? xcot xd = b2cos 2wa + 2w* + b?

which indicate that no imaginary root of equation (24) exists giving real w.
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3.3. The complex roots.—Substituting p = x* + iy*, g =, 4 ; o
cquation (24) and separating the real and imaginary parts, it is foung that
complex toots occur when

2 (uf + vg) X*S—Xx*T _ & S
| + tanh? ud cot? vd X*T L px2 T Fi(x% 9% =0 (30)
and
2(wf—ug)  _OFSHAFT) _ P |
1 + tanh? nd col® vd X*2 — p¥2 Fp(x%, %) = (31)
wherc

f = tanh ud cosec® vd

g = cot ud sech® vd

S =b*exp(— 2x*ajcos2p* @ — 2 (x*2 — y*2%) + bt
T =b%exp(— 2x*a)sin2y*a + 4x* y*

H = \_}2 [{(_.c#:: — y¥2 __ p2)2 4x*2},*5}§ + (x*2 — p*2 — beni

B = \}z [{(x*2 — p*2 — b2 - 4x*2 p¥2h — (x¥2 — p¥2_ pHH.
(32)

3.4. Solution of equations giving pure real roots.—For I varying from
k to + oo, i.e., w varying from b to + oo, equation (29) has no solution.
The approximate values of the roots of equations (27) and (28) are found
graphically (Figs. 2 and 3). In order to get the accurate values of the

roots from the approximate values, successive bisection method (Appendix
A-2) has been used.

3.5. Solution of equations giving complex roots of X = 0.—F, (x*, J*);
and F, (x*, y*) are plotted (Figs. 4 and 5) versus y* for discrete values
of X*(Xy Xs ««x Xn): 1he pairs of (xy, yp) which satisfy F, (x*, »%) =0
or Fp(x*, y*) =0 are determined from Figs. (4) and (5). These valucs
of yn are plotted versus x, (Fig. 6) in which F, (x*, y*) =0 and Fs (x*, ")
= 0 are shown as functions Y, = P, (x*) and Y, = P.(x*). The points
of intersection of Y, and Y, have their x and y satisfying both F, = 0 and Fs
= 0. These values of x* and y* gave the approximate roots of (30) and (31).
In order to improve the accuracy of the roots, F, (x*, y*) and F(x* )
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are evaluated at closcr and closer values of x* and y* in the neighbourhoog
of the roots. From these evaluations, points on the curves (Figs. 4 and 5)
are found near the roots when these points are close enough, the curves of
F,(x* y*) =0 and F,(x*, y*) = 0 can be approximated to straight lines.
The coordinates of the point of intersection yield x* and y* values of the
roots. The complex roots have been determined for a =002 m, 0-03 m,
d = 0-0064 m, k, = 200 radians/m and k = 320 radians/m (Table I).

-a— X
-120 - 90 -60 — 30 (0]
r = i T — 1 - 10
—— ¥y = Py(X)
wEEE ¥a = pz(x)
\
r \ i
\
\
\
1
y
) T e - -100
-150

Fic 6
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TABLE 1
Values of x* and y* for complex roots of X = 0
d = 0-0064 m, ko = 200 radians/m, k =320 radians/m.
a=0'02m ﬂ=0'03m
x* y* x * ,V* -
— 41865 — 76726 — 1363 — 51-888
~ 237475 — 218:068 — 9-207 — 151-959
— 50-358 — 345-234 —~ 20-243 — 247-928
— 64:445 — 450-758 — 34-994 — 329-2729

e

4. DISCUSSION OF THE R0OOTS OF X = 0

The nature of the fields is determined by the values of / and p corres-
ponding to the roots. The different cases are:

Case (1) Surface waves.—The roots of equation (27) vyield positive
real values of p. The waves corresponding to these roots alternate expo-
nentially in the x direction and travel without attenuation in the z-direction
with phase velocity less than the free space velocity as & > k,. These waves
are the surface waves. For 0< w< b, d = 00064 m there is only one
surface wave mode (Fig. 7). The plot of ‘p’ vs “a’ (Fig. 8) shows that
the surface wave become more and more tightly bound as p becomes larger

with ‘a’ decreasing.

The evaluation of the residues at the surface wave pole & = iy given by
; dx
Go €xp [— po{x — (a + d)} + ihez]/7 dh | p-n.

show that the modulus of 27X residue at x =a + d decreas'cs with increasc
of spacing ‘a’ between the plates. This indicates that with the increase
of *a’, the surface waves become more and more loosely bound and .:a.lso
the power in the surface wave decreases. The residues at the poles dff:n‘vec%
from the surface wave roots are given in Table 1I for some values of “d

and ‘a’,
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._.._:_,/bz-wz .-cot (vbe-w?2 .d)-:-left hand side of eq.3-3
~ —— blexp (-2.__!”3)'.(2“’2:'32’ right hand side of eq.3.3, when a-

160 Zw 1
— . — Y . L when a =0
' \
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Fic. 7. Roots of fi(w) =0, d=0-0064 m, k,=200 radians per melre,
k =320 rachans per metre, .
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‘FIG. 8. Plot of p versus a. d = 0-0064 m, ke = 200 radiaps per metre, & =32Q
radians per metre,
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TABLE I

Values of modulus of 2ni X Res. a; the surface wave poles

ko = 200 radians/m,

—e

k = 320 radians/m,

X=a+d

-

d(m) a(m) Modulus of 27; X Res.
0-0016 0-02 0-33 x 10~

0-04 1-43 x 10-2

0-10 084 x 10-3 ’
0-0032 0-02 0-24 x 10~

004 0-21 x 10-2

0-10 1-77 x 10~
0-0064 0-02 0-64 x 10-2

0-04 0-33 x 10-8

0-10 0-42 x 107
0_0095 0-02 0'22 X 10_2

0-04 0-6 x 10

0-10 1:09 x 109

Pa—

ety

Case (ii) Growing waves.—The roots of equation (28) give positive real
values of 4 and negative real values of p. These roots give rise (o waves
growing exponentially in the x-direction and travelling unattenuated 1n the

z-direction with a phase velocity less than that
These waves are physically inadmissible and d
of the field as they are associated with the poles

the two-leaved Riemanian plane.

of plane waves in free space.
o not figure in the evaluation
lying in the lower leaf of
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Case (iii) Leaky waves.—The complex roots evaluated with the help
of Fy (x*, y*) =0, F, = (x*, y¥) = 0 show that (Table I) both the real anq
imaginary parts of p are negative. The real and imaginary parts of being
positive, the waves associated with these complex poles travel in the x-directiop
growing exponentially but attenuating exponentially in___t_he_ z-direction. These
are the leaky wave modes which exist within wedge (Section which is formeq
on one side by the outer surface of the guide) and the other plane making

an angle with the surface.

5. EVALUATION OF THE FIELD

The total field consists of the sum of the residues at the poles and the
field associated with the branch-cut integration. The residue at any pole
h, represent physically realisable waves when Rep >0 and /mh >0. In
evaluating the infinite integral (equation 23), the double-valued nature of
the integrand is removed by assuming a two-leaved Riemanian surface for 4,
the top leaf corresponding to Re (— p) < 0, and the bottom leaf being desig-
nated by Re(— p) >0, the branch-cut is designated by Re (— p) =0
which reduces to af = ko ko" with B< k¢ if ko= ko + ik,", and h =
B + ia.

The top leaf of the h-plane with the contour C, which includes poles
associated with physically realisable waves, the branch-cut and the branch
points are shown in Fig. 9. The complex poles that give rise to outward
propagating physically realisable wave can occur in the cross-hatched region
in the first quadrant (z > 0). But as k,”"— 0, the area of the cross-hatched
region — 0. So, no complex poles can exist on the top leaf. The integral
along the dotted infinite semi circle being zero, the integral (equation 23)
becomes equal to 2miX Res. at the poles included by the contour C, and
the contribution by the branch-cut. The integral is evaluated by the saddle-
point method [17].

7.1. The saddle-point method.—By making the transformation

h=kysin~
with

p = — iky,COS 7T

T=£&+in

and changing to polar coordinates
x—(a-+d)=rcosb
zZ =rsinf
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Fic. 9. Top leaf of the Z-plane.

the integral (equation 23) transforms to

Ey,= T F(7) exp {ikgrcos(r — O} d7 (33)

—00
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in the 7-plane where,

Iqu (7)cos
ax (1) '

Fir)=

The real and imaginary parts of # and p are
Re h = k4 sin € cosh g
Imh = kycos £sinh g
Re p = — kysin €sinh 7 (= %)
Imp =— kgcos écoshy (= y)

(a)
(b)
(c)

(d)
(34)

The four quadrants of the top leaf map onto the infinite strips 7y, T, T,
T, and the four quadrants of the bottom leaf map onto the strips B,, B,

B;, B, respectively (Fig. 10).

The function f(7) in the index of the exponential function in the inte-

grand, has a saddle-point at = = 6 for

_dfi;f(-r):;;{ikﬂrcos(v— )} =0 at 7 =4,

So f(7) can be expanded in Taylor’s series around » = 6 as

fO=rO+ <L e+ ..

(7w G)°
2

neglecting the higher order terms when = — @ is small. Hence,

(

[ =) =fi + ife == 5V exp (2iw)

which leads to

Re [/(7) — f(0)] = f; = 9" sin 26 = constant
Im [f(7) — £(B)] = fy = X% 055 200 constant

2

(35)
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7 — 0= pexp (iw).
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T4 ] T,

(® -~ COMPLEX POLES GIVING RISE TO LEAKY WAVES

X = SURFACE WAVE POLES

Ty,72,73,T4 © MAPS OF I,1I, 11, IV QUADRANTS OF THE

TOP LEAF OF h-PLANE

31,61,53,34: MAPS OF I,11,1] ,TV QUAPRANTS OQF THE
BOTTOM LEAF OF h-PLANE.

Fic. 10. Contours and poles in the r-plane.
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The surface formed by the family of curves (equation 35) is in the form
of a saddle (Fig. 11). On this surface the curves f, = 0 will be those along
which the value of f; varies most rapidly and decreases when

— 7 3

&J=--4 . 4

———— $, = CONSTANT

FiG. 11. Plot of f;= constant and f; = constant around the saddle point = = &,

and increases when

" T S
4’ 4
So, along the curve f, = 0 with w = — #/4 and 3m/4, the expression f(7)

_.f (6) decreases very rapidly from O to — oo, on either side of the saddle
point 7 = 8, which is therefore the path of steepest discent (SDP).

If the contour C,, (Fig. 10) on the 7-plane is deformed into SDP deﬁfled
by [f(7) — f(8)] = korp?sin 2w/2, then exp {iker cos (+ — 6)} = exp {ikd
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+ fi + ife} = exp {ikor — korp2/2} will decay very fast as o ; :
i _ p Increa
side of the mdﬂle-point along the SDP. Hence the infinite integrs:f(gnuelthcr
33) 1s approximated to L
Ey=>~ [ F(7)exp (fkur cos(7 — 9}) dr
along Cy
= [ F(7)exp{ikyr . cos(r — 0)} dr

along a short length of SDP, 4 27i X X Res. at the poles included between
C,, and the SDP + @i 2’ Res. at the poles on SDP. (34)

Along the SDP
== ren ()= =rea (-1

in the second quadrant of the (p — ) plane and
r — 8 = pexp (— in/4)
in the fourth quadrant of the p— w plane,

Hence,

dr = — exp (—-— ] 2) dp in the 1l quadrant
dr = CcXxp (—— IZ) dp in the 1V quadrant.

Since

F(r) = iky cos (7 — 8) e ikyr — korp*2
[ F(7)exp {ikorcos (r — O)jdr

SDP

T
~— [ Feyexp (ke = kvpt2— i) dr
SDP

g B _ T (35)
+ f F(7)exp {:kﬁrf’z — ?4} dp.
SDP
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Assuming ko > 1, exp (— kor?/2) 1s very small for small value of ;, = o
or large ko in the region | 7— 8| <p,. Hence,assuming F(7) ~ F(g)
equation (35) reduces to

[ F(7)exp {ikyrcos(m— O)}dr

SDP

)

oy
=~ 2F (6) exp (fkor — 12) f eXp (— kor %2-) dp.

Since, the contribution to the integral when p > p, 1s small exp (— kyrp¥2)

P . oo
becomes negligible when p > p, the integral [ can be written as [ . Hence,
L 0

OO

f —2r@on (k-3 (2) fowema
SDP 0
= F(0) exp (r‘kur — EZ) ( k:r)* (36)
where
12 = korp?f2
and

oo

fooma-ir()-7

0

Equation (36) holds good provided there is no pole of F(r) in the vicinty
of the saddle point = = 6. If there is a pole of F(r) near the saddle-point,
the approximation F(7) o F(6) made in deriving equation (36) is not valid
It 1s then necessary to use the modified saddle-point method [18]).

By using Laurent’s expansion, F(r) can be written as
F(r)=G(7) + A[(t — =)

in the vicinity of the pole of F(7), provided =, is a pole of first order. Th."'
Poles_‘)f F (7) used in the evaluation are all of first order. G (7) is an analyti©
fgncuon of 7 and A the residue of F( 7) at r = r,. Hence

J F(7)exp {iky cos (r— 0)}d~

SDP .-
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=SJP G (7) exp {ikyr cos (v — O)} d+
o k
g OXP {ikor cos (7 — 6)} dr. (37)
SDP

The first term in equation (37), evaluated by the ordinary saddle-point method
yields

{ G(7)exp{ikyrcos(r— 6 dr

SOP

3
>~ G (8) exp (ikyr — in/4) ( of)
where
G(0) =— F(0) — A/(8 — 7).
Whereas, the second term

A

T Th

exp {ikor cos (7 — O)}dr

SDP

~§ CmCTy

2
X exp (fkur —i Z k“;P )dp

+;f (pexp (—f(:); ro + 6)

. kop?
X exp (r'knr — IZ °£P )dP

p
- 2 ('r — ) €Xp ("”f"")
f A exp (;kor — kor/2) p 0_ ;(73 3)3 d p.



164 (Miss) B. V. RAJESWARI AND S. K. CHATTERJEE

As the value of the integrand i1s negligible when,

A *
f T — T cXp {Ik,,r cos (7 — O)}d~

SDP

o 24 exp (ikyr + im/4) (19 — 6) é f z*?f I-)—(;}iomzﬂ))’}

= ind exp [ikor (i — (o — 6)/2] erfe {exp (=i7%)

:
xtro =0 (7} (38
Since
f e:t I(}t(-}— ﬁ; : dt = = (a) % exp (ap) erfc (ad p})
where

p:=1¢ and erfc(z)= T exp (— t2) dt.

The result (equation 38) is valid when the following inequality is satisfied.
—nL arg{—i(rg— )< =

i.e.,

— 3 < @rg (70— 0) < 3nf4

Otherwise

f z exp {ikoyrcos (v — @) dr
7 To

8DP

= — ind exp [ikyr {i — (1 — 0)%/2}]

x Erfe loxp (— imf) 0 — g ()] )
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when
; Yr
—4< arg (0 — 7)) < 1
or
37

< arg (to — ) < — u/a,

1.2. The residues at the poles.—The residues at the poles are given by

B = q ("’_'0) Ko COS 7y €Xp Uk or COs (1o — 6)}
wdx
dr

Tar0
where

dx _ dxdh

dr dhdr
[exp (4 pa) 2.p 4+ d) (hig) Up + q)* exp (+ qd)
(p — ¢)2 exp (— qd)} + (ah/p) exp (+ pa)
X {(q + pr2exp (+ gd) — (p — @)* exp (— ¢d)}
(ah'p) b® exp (— pa) {cxp (+ gd) — exp (— gd)}
— (dh/q) b* exp (— pa) {exp (+ ¢d) + exp (— ¢d)j]

]

|

X ko COS 7. (40)

The residue can therefore be writlen as

R = P (7o) exp (ikyr)cos(7y — ) (41)
where

, | vay X

P(tg) = lkocos 794 (ro)l/7 dr| ere

h == kﬂ Slfl y i

p = — [kyCOS 7T

q = [ko2SInN% 7 — k2]

To — gl} -+ 1)"0

b2 = k2 — k>

[.1.Sc.—4
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since, the residues occur either as inR or 2inR, the value of #P (7y) has been
calculated at some of the roots (Table Iil).

TABLE 111

Values of 7P (7,) for poles used in the evaluation of the field
d = 0-0064/m, ko = 200 rad/m, k = 320 rad/m

Rep Inp Rer, Imr, RenP(r,)  ImnP(z,)
X ¥y - Mo
— 1:363 — 5] -88 07107 0-07051 0-03349 — 0:003796
— 9-207 — 151959 1-3083 0-007057 — 0-008635 00005631
149-35 0 /2 — 0-6905 0-007364 0

for a =000 m and

-

— 4-1865 — 76-726 1-1772 0-02266 ~— 0:01902 0-002513
149-5 0 /2 — 06912 0-:003246 0

The residue at a pole is taken into account only after the pole is included
between the SDP and Cy, or in other words, there is a critical value of 8 = 6,

such that the residue 1s to be taken into account after the SDP crosscs O
(Fig. 10),

1.3. Complex poles in the strip B, on the = plane.—A complex pole
in B, 7g=¢&,+i0°2 (the value of 5, =02 is determined by trial) is
capturcd, when

0 — éy=arccos (l/cosh 0°2) = 11°18’ (42)

sincc 6 should be greater than &, and the value of 8 for which (& 0°2)
satisfy the equation for SDP (Fig. 12) is given by cos (£, — 8) cosh 02 = 1.
The modulus of R at =, satisfies the following condition;

| R | = | P (7o) exp ikor cos (g — 6) |

P (7o) | exp {— ikyrsin (8 — &,) sinh 0-2}
< | P(7y) | exp (— 8-04) (43)
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for r=1 meter and (8 — £g) satisfyin :
th -

maximum value of the residues at Tog.-—_- gf _Il_nf gP;]I.W (_42)-
(43) for gll values of r, 8, the coordinates of (he o olfsobs . |
The maximum value_ of -| R | at a pole with 5 even equal to (;?T;Efllon (Fig. 1),
The valuc of | R | isstill smaller for poles whose n < -2 S(:S:;fry Sn_lall.

- 90, The residue

Only the complex poles in the dotted region of the strip B, therefore d
. , hee

Hence, the

be considered. AU
T3 1'2 B, B“_ 1
g COMPLEY POLE
\ T= %l+102
‘\\ -
x N
L- I-“__e - §p=11%19’
4 :"r;‘. Sl
-n ~W/2 0 WZ b
.-
\.\ SDPnfz
SOP
CAPTURING
COMPLEX
POLE ¥, +i02
B2 Bq T4 Ty

Fig. 12. Range of £ and 7 in which coniplex poles in the strip B,y have to be determired.

If the ranges of £ and 7 in the dotted region (Fig. 12) are transformed
according to equations (34 ¢ and 34 d), the ranges of x and y in which the
complex roots have to be found are 0 < x< — 40: 0< y< —200. In
calculating the value of the residues, larger ranges were used, so that no
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significant poles was left out. Furthermore, an evaluation of |F()jat discrete
values of £ and 7 in the dotted region of strip B, (Fig. 12) confirms the exis
tence of complex roots, giving rise to leaky waves (Table I). The plot
(Fig. 13) of | F(7) | for values of ¢ in the range of 0° to 90° j.e., 0 < £ <
=j2 for fixed values of n show that for ¢ = 0 and a = 0-00365 m, there are
no complex roots in the dotted region of the strip B,, which means that for
these spacings between the two plates, there are no leaky waves contributing
to the field at large distances from the source. Whereas, for a =0-02
and @ = 0-03 m, there is one complex root at §,=~=67°=1'17 ang
ne == 0-02 and therc are two complex roots at &, =241°=0-7,
nor = 0-07,and & == 75° = 31, 7 =2 0-01 respectively in the dotted region

of B].-

7.4. Numerical Evaluation of the field —The field is evaluated nume-
rically by using the following expressions (Appendix A. 3)

 exp ik — inl4) F(0) f‘;)
when
| 7" — 0| > & (44)

ar N3
. €XP (ikorr — im/4) F(0) — Ay (0 — Tﬂir-)} (ﬁnr)
+ imAgi’ oxp [ikor {i — (78 — 0)3/2}]
3
X Erfc {exp (— in/4) (7" — 6) (kzo_?) }

when

tr1
X
||

7' = 0l< & & — 4 < m'g('rui'—ﬂ)<‘1’--7 (45)

' L &
exp (ikor — in[4) {F (0) — Au'/(0 — 74i")} (lior)
— fqrAui' EXp [fkuf' {I — ('ﬁ}i‘r e 6)2f2}]

2 3
' X Erfe {exp (~ in/4) (6 — i) (% )} (46)
when
( i —fl<&a & ?‘( arg (rof — 0) > — /4

where 7y 1s & pole of F(r) and A4 is the residue at 7,
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In evaluating the field, the following poles are taken ;
: €n int
a=003m, d=00064m. k,=200 rad/m, k = 320 rad/mo DRSNS T
(1) 700 = & + Mo = 07107 + § 0-07051
(ii) To2 — 602 & = f’]gg w—— 10‘3083 + -;0'007057
Res. at To 1S Al = (001066 — f0'0012085
Res. at 7¢o 1S A, = 00002749 + i 0:0001793.

When 6 > 68¢,, where 0¢, is given by
cos (€1 — f¢1) cosh ng; =1

1.0..
8 > &4 + cos~t (1/cosh ng,) =~ 45°,

the term
2miA, exp {ikor cos (79, — )}

is 10 be added to the sum of the residues. Whereas, if 8 > 8,,;, where
Ocs = Ego + cOs7! (1 cosh 7q,) = 76°, ,

the term
2miA, exp {ikor oS (79 — 0)}

is to be added. The residue term 2= (0-0002344). exp {ikr cos (72 —
i0-6905 — )} of the surface wave pole 75, = 7/2 — i 0-6905 is to be added

when
@ > 0. =2 + cost(l/cosh 0-6905) =~ 0-93 rad.

But for a = 0-02 m and d, k, k, having the same values as above, the
Res. at the complex pole 7o = & + ine=1"1772 + i0-02266 n Ao =
— 0-006056 + 0-0007999. The term 2mid, {iky cos (1o — ) is to be added
when 6 > &, + cos™! (1/cosh o) = 69°. The residue term 2mi (0-001033)
exp {ik o cos (7/2 — 10: 6912 — ) at the surface wave pole 75,/ =m/2 - i
0-6912 is added when @ >/2 + cos? (l/cosh 0°6912) = 0-93 radian.

For smaller values of @ = 0-00365 and a = Om, there are no significant
complex poles and the field is evaluated by using equation (44). The roots
associated with the surface waves are found by using equation 27. Fcfr
a=0-00365m, 2 Res. at the surface wave pole 7g" =7/2—1 0'.7‘5 is
i1-8 exp {ikor cos (m/2 — i0:76 — 6) and for a=0m, 2m Rt:s. = | 1‘72.
exp {ikr cos (n/2 — i0-89 — §) at the surface wave pole s = w2 — 1
0'89. These residues are to be added to the field given by equation 44 when
. 8 >0+78 radian.
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The plots of | Ey | with respect to x, z, and 0, (Figs. 14-16) show th

(i) For small values of spacing | Ey | remains constant in the z-direction
and the radiation field is less than 5' 5% of the surface wave field on the guige
surface. In the azimuthal direction for 8 < 6., only the radiation field is
predominant. As 8 becomes greater than 0. and approaches 90°, the surface
wave field becomes predominant, and the decay of the field in the x-direction
is the same as the decay of a surface wave. Moreover, as the total field
consists of the space wave term given by 2=/ X Res. at the complex pole on
¢ = /2 line, and the modulus of the space wave term for any 6 is less than
5-59% of the value of the modulus of the surface wave term of 8 = 90°, so
the surface wave term in this case is significant.

1.0 e —

|- ——— Q = 0.00365 METRE
O METRE

n

A

6 } 1 i 1 é 3 | i J_..-—-l-o

Fy

{x -(a+d)} IN mm.—»

Fic. 14 (a). Theoretical decay of the normalised |E,| in the transverse direction:
d =0:0064 m, k, = 200 radians per metre, k= 320 radians per metre,
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. - = 0
Fig. 14 (). Plot of normalised modulus of E, versus X —(a+d). x—(a+4d) ‘
Surface of the dielectric guide, z = 0: Source, @ = 0:03 m, d = 0-0064m, ko = 200 radians

Per metre, k = 320 radians per metré.



1.0 —— — —

Q.8 I

0-6"'

0.4 |

0.2 2 =4.065m

1.0

NORMALISED FEy)

0-8

0.6+

X ~(a+d) W Cmwm

FiG. 14(c). Plot of normalised modulus of E, versus x — (a -+ @) for fixed z. x —(a +4)
= 0: Surface of the dielectric guide, z = 0: Source, g = 0:02m, d = 0-0064 m, ko= 200
radians per metre, k¥ = 320 radians per metre.
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B, sirip. lobes appear at these val

: aiues of 4.

ponding to the number of complex poles, 1111;111: number of |
the field shows interference pattern. rest

obes corres-
of the regions of 8,

Im b}

/) T ———
i o= | e,
| 1 Reh
\ 1' '
' !
\‘ !
/
*LL :P I
\ } oA
\ ,"
\\ ) ) ’
\ { 1 4
% “ ! L7 ConTow C,
~ “ 7
~ s
- | -
b
~ - ﬂ - -

® - SURFACE WAVE POLES,
X = BRANCH POINTS,

Fig. 17. Contour on the top leaf of the /-plane for the case of z less than zero.

LLSc,—5
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(iii) For z < 0, the integral giving the field is evaluated by using a con-
tour in the bottom half of the top leaf of the /i-plane. The negative values
of z and & thus result in the same values of the field as when z 0. The field
outside the plates 1s

= o]

irqr exp [« p {x — (@ + d)} + ihz] dh

1

N < A—

5 |
Ponm
s
€
L i
y
3DPTI';2 SOP
SDP, !
Cor
B2 B3 T4 Ty

X = SURFACE WAVE POLES

T,.72.73.T4 MAPS OF THE 1 11 111,1V QUADRANTS OF THE
TOP LEAF OF THE h-PLANE.

8,862,838, MAPS OF THE 1 11,1]1,1V QUADRANTS OF THKE
BOTTOM LEAF OF THE h-PLANE

Fic. 8. Sieepest descent paths and the map of C, on the r-plane for the case of 2
less than zero.
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“_.hi{..:h IS cvaluz}ted by using the contoyr shown in Fj

mation = = 7sin B X[ ) s r g5 6 Tous ol Lgs dl7. The transfor-

Q lﬁo — ;2 {Fig. l).. | On the r-plane, SDP varies fro ;5 9 rarymng from

(Fig. 18). "I:he original contour from + oo tg — mmi Py to SDP.——w/Z

and the SDP'sarc oriented as in Fig. [§. The following pil:: \Ow?;?b;ncal;g- ld7
ured.

(@) Complex poles on ¢ = — #/2 with
_ reater t
surface wave poles which are given by roots ogf Si (w) :a(;l Zg‘i). These are
they arc rcal poles lying between — ko and — k. - On the A-plane,

(h) The complex roots in the strip B,. These give leaky waves

Fig. 19 Photograph of the Experimental set-up.
8. LIMITATIONS OF THE THEORY

The accuracy in the evaluation of the field depends on the accuracy
with which the poles of the integrand can be determincd and also on the
limit of accuracy of the Gaussian quadraturc method [19] which has been
used to calculate the complementary error function involved in the modified

saddle-point method. The assumption that the diclectric plates are lossl'ess
may also introduce a certain error in determining the roots of the equation

X =0,
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FiG. 20(b). Theoretical and experimental plots of normalised I_E,I versus X.
a = 0-00365 metre, d = 0-0064 m, k, = 200 radians per metre, k = 320 radians per metre,
z=0: Sourceor mouth of exciting guide. Values of 7 indicated in the graph, ———

Theoretical; * * Experimental points.
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FiG. 20(c). Theorctical and cxpcrimental plots of normalised | E,| versus x.
@a=0-00365 m, d=0-0064 m, ko= 200 radians per metre, k == 320 radians per metre.

z=0: Source or mouth of exciting guide, Valuesof z indicatedinthe graph.
Theoretical; * * Experimental points,
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9. EXPERIMENTAL VERIFICATION OF THE THEORY

The experimental arrangement for field mceasurements in the d 8
Z, X an

directions by using the usual probe technique is shown ;
(Fig. 19). q hown in the Photograph

Figures 20-24 show comparison between theory and experiment

1.0

0.8}

NORMALISED |Ey| —>

0.9 1 L -

X -(a+d) N mm —>

Fig. 21. Theoretical and experimental plots of normalised | £, | versus x — (@ + d) for
diffcrent values of z. a=002 m, d =0-0064 m, ko= 200 radians pcr metre, k = 320
radians per metre. Theoretical, ® —® Experimental.

10. DISCUSSION

(i) The infinite extension of the fine source in the theory is simulated
in practice by terminating the parallel dielectric plates. in tlj.e y-direction
by two metal plates placed in intimate contact with the lelec1r1c plates so as
to be normal to the electric field. The paralle] dielectric plates ext‘end to

'
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FIG, 22, Theoretical (A) and experimental (B) plots of normalised | E, | versus the azimuthal

angle, r =1 metre in both cases, a=0'02m, d =0 0064 m, ko= 200 radians per metre:
k = 320 radians per metre,
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about 804, in the z-direction. The measurement of the field in the y-direction

source satisfactorily.

o
o
I

I
108 12 116 120

-0

NORMALISED |Ey| —>

©
o™

56 60 64 68 72 76
1.0 C
0.8 1 i : i N I l ;2 | 5

76 80 84 88

2 IN Cm —>

plots of normalised | E, | versus z.

guide in experiment. a = 0:02 m,
x-—-(a+d)=2mm.

FiG. 23. Theoretical (A) and expcrimcnt.a.l (B and l'C)
2 = 0: Sourcein theory, mouth of the exciting metal
d = 00064 m, k, = 200 radians per metre, k = 320 radians per metre.

r
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(i1) In the case of the spacing between the plates 2 = 0:02 m the dis-
tance between any two consccutive minima of the interference pattern is
of the order of 10 cm (Fig. 20 a) as predicted by theory which is valid for
z >1m. The measurement had to restricted to a distance z > 1 m due
to the limited sensitivity of the detecting system. [n the range z = 56-76 cm,
the distance between any two consecutive minima 1s 9-5 cm (Fig. 20 4) but
in the range z = 76-96 cm, itis 10cm (Fig. 20 ¢).

.
-
T IO«b . ———————¢ » i ————— - o .
T &
M
ﬂ 0.8 ] l | I 1 | 1 I i ! i i L
o 65 69 73 77
4
<
e
o
O
z o
;,(;,r 2 : e BRSSP @ - - —— ,
0.8 ] [ 1 I ] 1 I 1 ] ] | j P
187 19| 19S5 199

Z IN Cm —

FiG. 24. Theoretical and experimental plots of normalised |E,| versus z. z = 0: Source
or mouth of exciting metal guide. a=0-00365 m, d - 0-0064 m, ko, = 200 radians
per metre, k = 320 radians per metre. — Theoretical; * *  Experimental points,

(i) When a = 0-00365 m. the theory predicts the existence of only
the surface wave mode and non-existence of any significant leaky wave mode.
The space wave term also is very small. This is confirmed by experiment
which does not show any interference pattern (Fig. 21).

(iv) The variation of the ficld with respect to x (Fig. 22) shows that
agreement with theory hecomes closer as z approaches and exceeds 1 m.
This is expected as the approximations in the saddle-point method used for
evaluating the field numerically improve for larger and larger values of Z
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(v) For higher spacings, e.g., a= 0-02 m, the deca o
: : : A Y characterist
not that of surface wave (Fig. 23) due to the existence of other lm;ilsesal:l

addition to the surface wave. The theoretical curves in Fig. 23 show th
characteristics of surface wave, e

(vi) In the theoretical evaluation of the field in the azimuthal direction
the origin of the polar coordinate system is located at the point of inter-
section of the x-axis and outer surface of one of the dielectric plates. In
the experimental work, the origin of the polar coordinate system coincides
with the pivot of the rotating arm. The position of the pivot is on the axis
of the guide. This gives rise to a certain amount of discrepancy in the loca-
tion of the p:aks in the azimuthal direction. The difference between the
theoretical angle € and the expertmental angle is about 1° at a radial distance
of 1 m.

The azimuthal plot (Fig. 24) shows that a lobe occurs at 70°. If the
origin of the polar coordinate is shifted to the same point assumed in the
theoretical discussion, then this lobe would have occurred at 71°. The
theoretical value is 74° due to the leaky wave mode. This difference remains
to be explained.

The second lobe observed at 40° in the experimental plot is probably
due to the radiation from the dielectric wedge which is used for launching
the waves in the dielectric guide.

11. CONCLUSIONS

The propagation characteristics of a parallel-plate dielectric wave guide
excited by an electric line source have been investigated. The analysis
provides an understanding of the conditions under which the field exhibit
the nature of surface wave, leaky wave or radiated wave depending on the
spacing between the two parallel plates. [t is concluded that

(i) for small spacing such as a = 0-00365 m only the surface wave 18
predominant.

(ii) for larger spacing such as a = 0-02 m leaky wave appears in addition
to the surface wave.

It is hoped that the results of the present investigations will add to our
existing knowledge of the anatomy of source excited fields on open 1ype of

¢lectromagnetic structures,
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APPENDIX A. |

Dr is the det. D with the r-th column replaced by the column

where

Ay, = cxp {— bm + d)}, Ay =pexp{— pla +d);

Ay =Ay= ... =Ayp 1 =0

A= — exp {— g (a+ d)}, Ay = — gexp {— q(a + d)}
Az =exp (— qa),  Ap=qexp(— 4a)

Az = Ags = . .. =A1o,2=0

A= —explgla+d)} Am=gexpig(a+ d33)}

Ay = exp (ga) Ay = — g cxp (¢a)
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Az = Az = ... = Ajy,3 =0

Ay = Ay =0, Ayy = —exp(—pa), Ay=— P exp (— pa)
Ay =1, Agy = — p, A= ... =46 =0

Ay = Ay = 0, Az = — exp (pa), A4 = p exp (pa)

Az = 1, Ags = P Ap = o. = A s =
Aig= ... = Az =0, Aeg=—1, Agg = p

A-g = eXp (pa), Age = p exp (pa), Ag 6 = Ayp, s =0

Az = aw e = Ay =40, Az = — 1, Ag; = —p

Az =exp(—pa), Az =—pexp(—pa), Ayx=A,,=0
Agg B= ey, = g 25 1, A, ¢ = exp (qa), Agy = — qexp (qa)
Ags = cxp {g (@ + d)}, Ave, 3 = g exp {g (a + d)}

Arg = .. Agg =0, Asg = — exp (— qa), Age = g exp (— qa)
Agg = exp {— q(a + d)j, Aro, o = — qexp {— g (a + d)}
A= .. = Ag 10=0, Ag,m=—exp{—p(a+d)}

Aro, 10 = p EXP {(—pla+ d);.

A. 2. SUCCESSIVE BIiSECTiON METHOD

If x, and x, represent two values of x such that they are on either side
of a root xy of f(x), then, if f(x,) is positive, f (x,) will be negative or vice
versa. The value of f(x) is determined at x; = (x; + x.)/2. [If there 1s
a change of sign In f(x) between x, and x,, then x, lies between x; and x;.
If f(x) changes sign between x, and x;,, then the root lies in the interval (x,
x;). The function is cvaluated again at x, = (x; + x)/2 where, i =1 or 2.
according as the root lies between x, and x; or x, and X, This iterative
procedure is repeated until the value of f(x) is smaller than a prescribed
small number. Then the value of x at which f(x) is small will be equal to
the root. The smaller the value of f(x) the greater the accuracy of the root
that 1s obtained.

A. 3. EVALUATION OF Ej

In equations (44)-(46)

kocos 8
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qg = (k02 Sin2 ¢ — k?)i
b = k* — ky?

erfc =1 + {}:; {up, 0) + iv (p, 0)
iz = pexp (i)

p
w(p. 0) = [ exp (1 cos 26) cos (1*sin 20 + 0) dr
(1]

v(p, 0) = je exp (22 cos 20) sin (12 sin 20 4 0) df
0

All the constant kg, a, d. k, &; except A" and 73" are real.
Avj exp {ikor cos (Toj — 8) is added to E; when 0 > 6.

lez is added to Ey.

192(¢)

A residue R; =
When 0 = 0



