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ABSTRACT 

The problem of feature selection in the field of pattern classification of multi- 
dimensional feature vectors is essentially one of dimensionality reduction. A new 

non-parametric technique for choosing an optimum subset of features from the given 
feature set is proposed in this study. This technique is based on the concept of inter- 
class and intra-class distances and tests conducted reveal tile efficacy of this new 
Effective Figure of Merit Criterion 'EFFECT'. 
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1. INTRODUCTION 

Numerous parametric and non-parametric techniques of feature selec- 
tion have been proposed in the Literature [1-4] from time to time. Many 
of these methods are based on the concept of inter-class and intra-class dis- 
tances of the different pattern classes. Deuser [5] proposed one such 
technique called the Hybrid Multispectral Feature Selection Criterion. 
Tests conducted using this criterion on Iris data [6] brought out the unsuita- 
bility of the technique for implementation in multispectral feature selection 
problems of interest to remotely sensed earth resources data analysis and 
the like. Results of these preliminary tests on comparison with the results 
of actual classification of the test data using non-parametric recursive algo- 
rithms (such as the Ho—Kashyap Algorithm [7] and maximum likelihood 
classification methods [8])revealed that the Hybrid Figure of Merit obtained 
for different feature subsets were highly disproportionate to the correspond- 
ing actual claisification efficiencies obtained using the same feature subsets. 
The Hybrid Figure of Merit in addition had no lower and upper bounds 

* Presented at the National Systems Conference held in June 1973, at the Indian Institute 
of Science, Bangalore. 



2 	 13ELUR V. DASARATHY 

on the actual values and this proves to be a drawback when a choice has to 
be made among the possible feature subsets. Such a comparison between 
feature subsets is most effective if the figure of merit is based on a normalized 
scale. This lack of normalized scale of merit together with the major con- 
ceptual shortcoming of not accounting for the inter-feature correlations 
arising within the feature subset brought out the need for a new criterion 
of feature selection. Investigations carried out towards this end has led 
to a new. and more meaningful criterion for feature selection which takes 
into account the effect of inter-feature correlations. This is conceptually 
significant in that one of the basic aims of transformation techniques 
employed in feature selection problems is to obtain an orthogonal system 
of coordinates (which form the components of the feature vector) minimizing 
the cross correlation between features, i.e., to choose such (transformation 
of) features as will diagonalize the covariance matrices of the training sample 
sets of the different pattern classes. The new figure of merit is bounded 
and rates the different feature subsets on a universal 0-1 scale, thus allowing 
a direct comparison amongst these different feature subsets. Results derived 
by application of this new criterion to Iris test data have verified the supe- 
riority of this criterion over the Hybrid Figure of Merit Criterion. Also, as 
a further evaluation of this new criterion, comparison relating to a para- 
metric feature selection method (based on Gaussian assumptions) was 
made using the same test data. Results showed a fair agreement between 
the two approaches relative to the actual classification efficiencies, with the 
new criterion showing a far better correlation than the parametric method 
(which possibly could be attributed to the doubtful validity of the Gaussian 
assumptions). These are presented and discussed in the sequel in detail. 

2. ANALYSIS 

Let Ci (i = I, m) represent the "in pattern classes into which any 
given feature vector x, of maximum dimension '11 is to be assigned. The 
purpose of this or any other feature selection criterion is to determine the 
optimal subset of r features 0. <n) out of the possible (2n - 1) feature 
subsets for the ensuing classification (decision) process. Let x 
represent the jeth feature (j r) of the p-th training sample of class Ci 
[p L (i) where L (0 is the total number of training samples from class Ci]. 
To appreciate the physical significance of this non-parametric feature selec- 
tion criterion, consider two pattern classes C1  and C2. Assuming that two 
training samples from each of these classes are available, one can visualize 
that the decision or classification process becomes more efficient with increase 
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in the inter-class (between samples of the two 
distance in the corresponding feature space. On 
in the intra-class (between samples of the sam 
tends to decrease the efficiency of classificatioi 
subset of features is one that maximizes the inti 
mizing the intra-class distance in the Euclidean 
candidate criterion is, hence, the difference o 
distance. This non-parametric method (being 

different classes) Euclidean 
the other hand, an increase 
class) Euclidean distances 

. Therefore, the optimum 
r-class distance while mini- 
Feature space. An obvious 
inter-class and intra-class 

msed on no specific para- 
metric assumption about the distributions) can be mace more meaningful 
physically by attaching suitable weights to these distances to account for 
possible differences in the ease of measuring (and hence the cost) of certain 
features over some others or such other physical or problem dependent 
considerations. This is the basis for Deuser's criterion, which can be written 
as: 

Hybrid Figure of Merit of a set of r features 

H= SUM(j) 
gr-1 

= [SUA11.(j)— a (j) WM2(j} 
1=1 

Here 
ty m 1-2 	L(4) L(4,) 

	

SUM1(j) = E 2k11 1  r 	[x(j, p) x (j, pjr. 
1m2 finP1 	Sor-1 p i=1 

m 	1. 9-1 

SUM2(j) = E ki E E [x ( j, 4 	x ( j, p 1)1 2  
i=1 	ps2 Demi 

kits , ki, a ( j) are the appropriate weights defined from physical con- 
straints of the problem. 

The particular subset of r features which maximises this criterion was 
considered as the best 'r' features. (A particularly interesting exercise 
in FORTRAN coding was called for to automatically consider all possible 
combinations). 	However, this does not allow for a direct comparison 
over different sized feature subsets (r1, r 2 . ..n),. i.e., over all the 
possible subsets of features. To overcome this and other deficiencies, 
attempts were made to define a new criterion and this is discussed in the 
sequel, 
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A careful analysis of Deuser's criterion reveals that no consideration 
is given to the effect of interfeature correlation, which increases the scatter 
of the classes in the feature space and hence is a significant factor in problems 
with highly correlated features. Also, no attempt at defining a bounded 
universal scale of merit is made in his analysis, thus lackirg a necessary arid 
basic ingredient of any figure of merit concept. To meet these conceptual 
omissions, the following new criterion is proposed. 

3. EFFECTIVE FIGURE OF MERIT CRITERION 

Let J = {J1: i = 1, . . . n} be the set of features under consideration. 

Let Q (J) be the complement of cg,  (I) with respect to 0 where OW) is 
the power set (set of all subsets) of I and 0 is the null set. 

We define B the best feature subset of J as 

E (S)  is maximum, 
B = S EQ 

where, E (S): The Effective Figure of Merit of a feature subset 

S = {sj: j =1, . r} r =m (S) is given by 

F(S) =--- [P (3)1(1 *0 + C (S)] 

P (S) = [1 •0 en. (1 .0 — F (si))1 

C (S) SUM3 (S) I 17  (SUM1 (81) — SUM2(sj)); r 2 
1-11 

 

= 0 

Here, 

F(sj) -=(SUM1(sj) SUM2(saSUM1 

 

m 4s-1 	L 	L(4 1) 
SUM] (SO 	E E K1 3 1 , E E (x (si, G, pi) x (sj, i2, p2)Y 

tiff 2 togi 	peni von 

L(4) 
SUM2(sj) = E Ki E E (x (sj, i, pi) x (is), p2))2  

4-1 	v.-2 yogi 
pi L (4) 	r 	11'1 

SUM3 (S) s= tE E E 2; ki t  dj, I 
41=1 imel 11=2 hal 

dj 	mg X (Sj, p) 	[
La) 

 
Del 



A New Mm-Parmetric Feature Selection Criterion 'Effect' 	5 

An estimate of the probability of misrecognition can be determined as 
EPOMR (S) = On — 1)(1 — E 2  (S)/m. 

This effective figure of merit unlike Deuser's Hybrid Figure of Merit, 
allows comparison over different sizes of subsets, and more proportionate 
comparison within the combinations possible of a given subset size. It 
can even represents a rational basis for comparing different feature selection 
problems. As a further evaluation of this criterion, comparison with a 
suitable parametric feature selection method was thought of. The existing 
parametric feature selection technique based on the assumption of Gaus- 
sian distributions and equal covariance matrices for the pattern classes, was 
considered here. The high classification efficiency obtained for the test 
data through maximum likelihood classification procedures based on Gaus- 
sian assumptions indicated that the Gaussian assumption may be justifiable 
to an extent. The statistical analysis of the Iris data showed that the sample 
covariance matrices for the two classes were unequal, but close enough to 
justify the use of the above parametric approach provided some suitable 
modifications to the method could be made to account for the difference 
between the covariance matrices of the two classes of Iris data. Two alter- 
natives were considered: (i) Average the covariance matrices and computing 
the inverse of this averaged covariance matrix for further analysis, (ii) Com- 
puting the inverses of the covariance matrices of the two classes individually 
and averaging the inverse matrices for further analysis. 

• 

Let Mi, Kt; (1 =1, 2) be the mean vectors and covariance matrices of 
the classes 1 and 2 respectively. Under Gaussian assumption, the diver- 
gence criterion, for two class problem with equal covariance matrices K, 
can be written as 

D (CD  = (Mx  MaT lei (M 1 — Al,) 

and the features are selected on the basis of the magnitude of D for the diffe- 
rent feature subsets. Here, the covariances matrices being unequal, the 
measure is not necessarily optimal. However, an equivalent inverse covari- 
ance matrix can be defined in view of the fact A", and K2 are not very different 
in their values and towards this end two possibilities are considered : 

(i) Kees' = 	+ K2)121-1 : inverse of the average, • . 
(ii) Ke-1  = (Kr' + K2-1)/2: average of the inverses, 
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is computed through both these approaches. The results of experiments 
along these directions with Iris test data is presented and discussed in the 
next section. 

4. DISCUSSION OF RESULTS OF EXPERIMENTS WITH IRIS DATA 

The two class Iris data [6] consisting of 100 four-dimensional training 
samples was used as a base for this experiment designed to make a compa- 
rative study of the Hybrid and Effective Figure of Merit. The Hybrid and 
Effective Figures of Merit were computed using the Iris data for all the 
possible 15 feature combinations. To obtain a basis for comparative evaluation 
of these two figures of merit, the actual classification efficiencies under each of 
these 15 feature combinations were estimated using a new non-parametric 
method of feature classification. (This technique can be used either inde- 
pendently or as an extension to existing techniques such as the Ho-Kashyap 
algorithm. The classification results listed in Table I were obtained using 
the new method as an extension to Ho-Kashyap algorithm. It was found 
that the classification efficiencies, under this approach, turned out to be con- 
siderably higher than under either the Ho-Kashyap algorithm without 
extension or the maximum likelihood approach with the assumption of 
Gaussian distributions, for all feature combinations). 

A careful perusal of Table I brings to light the relative superiority of 
the new Effective Figure of Merit over the Hybrid Figure of Merit. This 
point can be dramatically brought home by considering, for example, the 
cases of features 3 and 4. The Hybrid Figure of Merit for feature 3 is about 
350 per cent of that for feature 4 thus indicative of a very high superiority of 
feature 3 over feature 4. But the fact, as can be seen from actual classifi- 
cation, is that not only the feature 3 is not superior to feature 4 by this order 
of magnitude, but actually is even slightly less efficient than feature 4. This 
indeed is very clearly broughtout by the new figure of merit. Similarly, 
comparison of the results among other cases of interest such as features 1 
and 4 reinforce the superiority of the new figure of merit. The bounded 
(0-1) scale of merit of the new method, in addition to allowing good relative 
evaluation of different feature subsets, does also give beforehand a fair mea- 
sure (a sort of lower bound) of the classification efficiencies that can be 
expected in the corresponding feature space. Indeed except• for the case 
of feature subsets (1, 2; 4) and (1, 4) the order of merit as derived from the 
Effective Figure of . Merit criterion is exactly the same as that derived by 
actual classification of the data and even there the measure of classification 
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• Effective 
Features I figure 

used of 
merit 

1, 2, 3, 4 0•9834 

1, 	3, 

2, 3, 

3, 

4 

4 

4 

0-9833 

0•9794 

0 - 9770 

1, 2, 4 0-9466 

1, 4 0 . 9399 

1, 2, 3 0•9346 

1, 	3 0.9234 

2, 4 0-9178 

4 0.9020 

2, 3 0.8961 

3 ' 0 . 8742 

1, 2 	' 	0•7017 

1 	 0-6267 

2 	0.4164 

TABLE I 

- the new Effective figure of merit with Deuser's hybrid figure of merit and modified 
(parametric) divergence criterion using Iris data 

Actual observed
i 
 Deuser's 	Divergence D (CD  C2) 

classification . hybrid 	using parametric feature , 
efficiency 	figure of 	selection ciiteria 	a  

(%) 	merit   t., 
Kriz----  C, ' I Kr" =-- K-' 

98 	6564•92 	14•219 	15-853 	;14 
Nt 

98 	6460.88 	17'20719-207 

98 	5502•17 	22.974 	24.445 	(I 
:Z. n 

97 	5398-13 	25.109 	26.848 	hi  
m 
..... 96 	2391.78 	18.262 	29-925 	-4 
(7.0' 

95 	2287.74 	21.496 	34.128 	re..•3 
ctd 

97 	5339-22 	11.637 	16.956 	111 
O' 

96 	5235.88 	11•533 	16.315 	c) ...t 
95 	1329-03 	I237822856 	m ...1 

zzT 
94 	1224.99 	14.759 	26.107 

i 
94 	4277-17 	23.012 	29.307 	Cr; 

ti;ap 
93 	4173.13 . 	22.054 	27.718 	2',., 

recognition 	
(%) 

Estimated 	Estimated 
probability of 	classification on 

mis- 	 efficiency 

0-0165 	 98.35 

0•0166 	 98.34 

0•0204 	 97•96 

0-0227 	 97.73 

0.0520 	 94.80 

0•0583 	 94.17 

0•0633 	 93.67 

0.0737 	 92.63 

0.0788 	 92-12 

0.0932 	 90.68 

0.0985 	 90•15 

0.1179 	 88•21 

0.2538 74•62 

0.3036 69-64 

I0.4133 58.67 

75 
	

1166-79 
	

3-976 
	

4-048 

73 
	

1062.75 
	

3.976 
	

4.259 	-664  

I 	63 
	

104.04 
	

0.712 	I 	0.740 
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efficiency derived from the criterion compares favourably with the actual 
classification efficiency. This is of value in comparing various feature selec- 
tion and classification problems which arc of a similar rature. Table n 
shows the results of the new feature selection technique as applied to Iris 
data, wherein the various feature subsets are ordered according to the values 
of the corresponding effective figure of merit. Depending on the ease (and 
hence the cost) of measurement of different sizes of feature subsets, the opti- 
mum size of feature subset can be chosen. Then, using Table 11, the best 
feature subset within the chosen subset size may be selected. 

TABLE 11 

Results of feature selection for Iris data using the effective figure of merit 
criterion 

Feature subsets listed in the descending order of merit 

Subset dimension 	 1 	 2 	 3 

• 	 • 	 • 

Figures in parentheses indicate 
the best classification effici- 
encies obtained in the corres- 
ponding feature subspace 

, 
4 

(94%) 
3,4 
(97%) 

1, 3, 4  
(98%) 

3 
1,4 

(95%) 2, 3, 4 
(93%) 1, 3 (98%) 

(96%),  

2,4 

1 (95%) 1, 2, 4 
(13%) 2, 3 1 	(92%) 

(94%) 

2 1 	1.2 1, 2, 3 
(63%) (75%) (97%) 

t 

Table 1, also gives the divergence values D (C1 , Ca) computed using the 
psuedo equivalent inverse covariance matrices as detailed earlier. While 
the divergence values are relatively lower for subsets which have significantly 
lower actual classification efficiencies, comparison of divergence values bet- 
ween subsets, which are not too far apart in terms of their actual classifica- 
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tion efficiencies, does not reflect well on the reliability of this criterion. This 
may possibly be due to the doubtful validity of the Gaussian assumptions. 
Further the results in Table I show that averaging the covariance matrices 
before computing the inverse gives far better ordering of the different subsets. 
This is also more meaningful from physical and mathematical considerations. 

One can also notice that agreement between the Effective Figure of 
Merit Criterion and the modified version of the Divergence Criterion is good 
for single features and fair for feature subsets of two dimensions. How- 
ever, as the size of the feature subset increases, the agreement becomes 
poorer. This probably is due to the fact that errors due to assumption of 
equal covariance matrices and averaging become more and more predomi- 
nent as the size of the feature subsets increase. Also, the validity of the 
assumption of multivariate Gaussian distribution tend to reduce with increas- 
ing dimensionalities. However, the non-parametric Effective Figure of 
Merit Creterion being independent of such assumptions has the same over 
all reliability. Thus the eflectiveness and reliability of the new creterion is 
clearly demonstrated by these tests conducted with the well known Iris data. 
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