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ABSTRACT

* A previous paper! presented the investigation of power transfer in a stage of a
turbomachine by the method of equivalent replacements and a general scheme of
development of mathematical profiles, was given. The manner of development of
turbine and compressor profiles and their attendant charactenistics were also given
in the same paper. In this paper, the method of equivalent replacements is extended
to formulate analytical expression for power on blading in a stage of a turbomachine.
The expression can be given in such a form that further analysis of stage characteris-
tics can be done easily. A similar form has, till how, been applied sometimes in the
theory of axial compressor, with certain limitations. The manner of computing
the characteristics and their application to the analysis of stage characteristics of a
turbomachine, are presented in this paper.

NOMENCLATURE

The following nomenclature is used in this paper:

A thermal equivalent 4—;7 Cal. /kg.m..

14 actual absolute velocity (m./sec.)

>

¢ absolute velocity vector.

Cy Circumferential component of c.

C, axial component of ¢.

¢y theoretical absolute velocity.

Ca—p the absolute exit velocity from preceeding stage. [c)? = poCo® (m-n)}
g acceleration due to gravity (m./sec.?).

G total fluid flow rate (kg./sec.).

* Superscript pumibers refer to items in References at the end of the paper.
SR
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N

stage thermodynamic enthalpy drop along the isentropic path.
(Cal./kg.).

ot A g L a0 (Cal.Jke)

circumferential force coefficient.

theoretical work done (or absorbed) per 1 kg. of fluid, from inlet to exit
of blades. (kg m./kg.).

(m — 1) the stage preceding the considered stage, m.
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characteristic numbers.
circumferential turning force.
impulsive part of P,.

reactive part of P,.
oircumferential velocity (m./sec.).

relative velocity (m./sec.).

relative velocity vector.
circumferential component of w.

work done (or absorbed) by a fluid flow rate 1 kg./sec. from inlet to exit
of blades. (kg. mt./sec.).

work done (or absorbed) by a fluid flow rate G. kg./sec. (kg.m./sec.).
impulsive ¢omponent of W.
reactive component of W.

difference between the circumferential component of w at exit and inlet
of the exit stream.

difference between the circumferential components of w at inlet and exit
of the inlet stream.

. -> >

difference between the circumferential components of wy and w,, fe.
inlet and exit. relative velocity vectors of the equivalent stream. -

angles the velocities ¢; and w; respéctivé]y' make with the circumferential
direction. ’

angles’ the velodities’ z:, afid Wa tnake’ thh lhe t:ontrary c1rcumfereni1al
dirdction.
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oy Ba  (180° — ay) and (180° — B,) respectively.

Bes exit angle of real blade to the contrary circumferential direction.
o efficiency relative to blading.
Mo Utilisation factor of absolute exit velocity from preceding stage.
p degree of thermal reaction.
Pur degree of circumferential force reactivity.
Pui degree of circumferential force impulsivity.
¥ blade velocity coefficient.
é nozzle velocity coefficient.
SUBSCRIPTS
1 inlet to blade.
2 exit to blade.

Opt.  optimum value.
k, stage k.
INTRODUCTION

IX this paper some considerations are presented which deal with a simplified method
of defining the stage of a turbomachiné by characteristic numbers and manner of
computing the stage characteristics. The simplified method is based on the

method of equivalent replacements *’, which replaces the real flow in an actual
turbomachine stage by a single stream line of ‘‘the equivalent stream ™ concen-
trating the total mass flow and the real blade by a ‘“ mathematical profile . The
mathematical profile is an infinitely thin profile having a contour with direction
tangents at its inlet and exit coinciding with the inlet and exit relative velocity
vectors of the equivalent stream. The general scheme of development of mathe-
matical profiles is given in Appendix. The manner of development of turbine
and compressor mathematical profiles and their connected characteristics were
covered in a previous paper.!

This paper deals with axial turbomachines and characteristic expressions
applicable to this type are presented. ” The degrees of circumferential force—
* reactivity p,,”, ‘impulsivity p,,” and *°circumferential force coefficient” in
terms of the characteristic numbefs are formulated. A simplified expression for
power on blading is evaluated, involving the characteristic numbers, the circum-
ferential speed and the mass flow.- A-few typical axial turbine stages—the theoretical
impulse with symmetrical deviation of flow, the congruent and the congruent with
under-developed p,,—are analysed with respect to the manner ot force interaction,
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work output and characteristic mathematical profiles. A discussion of transition
of mathematical profiles in the scheme (Appendix) is given along with plots of
characteristic criteria of profiles as transition takes place. A general expression
to determine design data for optimum operating conditions of a stage is formulated
and illustrated by application to a problem. Connection between circumferential
force coefficient %, and the available energy in a stage is traced. The method of
distribution of energies in a multistage axial turbomachine, based, on k. is
analysed.

1. EXPRESSION FOR POWER ON BLADING IN A STAGE OF A TURBOMACHINE

Work done (or absorbed) per 1 kg. of fluid, flowing around the blades, is
expressed by the equation:

1
P = z [#161u — atau] (la)

and this can also be expressed in the form:

1 -
= p [ty (cq €08 @y) ~— uy ((w; €08 B, + uy)] )
Let
€y €OS 0y = Ml %))
and
Wo COS Bg == Ralls (3

n, and ny are pure numbers, whose sign shall be defined as:
n, would be positive if oy <t 90° (n, is always positive in an usual turbine
stage).
n, would be positive if By > 90°, i.e., (180 — B,) = Ba<<90° (see Fig. 1))
(ng is always negative under conditions existing in an usual turbine stage).
For a compressor stage ny; can be negative and n, can be positive (see Fig, 1).

Substituting 2 and 3 in 1 we get:

iy ne + 1) us?
I, = [% - gi*g—li] ........ kg.m./kg. @
If # = wu, == u as in an axial stage, equation (4)_takes the form:
Fyy = ["x_“g_s:l] W kg.m,/kg. o)

Using the expressions (4) and (5), power on biading can be expressed in the form:

Wme[l’i:_g?_:.l‘]yz'._..'.'.;>k'glp_:i,/se<;. Y
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for a mass flow 1 kg./sec. and power becomes G.Wy,, if the mass flow is G kg./sec,

W=G: Tl Sl P SN kg.m./sec. 1)
3 o
u% P oAz £2<90° tupBiNE STAGE
- POSITIVE
- NEGATIVE
N, ~ POSITIVE
n,~ POSITIVE
U %A COMPRESSOR STAGE
<) / n, - NEGATIVE
\,-(\ ngy~ POSITIVE

w, ~

Fia. 1. Sign of stage characteristic numbers », and n,;. (Vector magnitudes + ve in
the direction of vector u.)
2. DEGREE OF CIRCUMFERENTIAL FORCE REACTIVITY AND IMPULSIVITY OF AN AXIAL
STAGE

We shall limit ourselves to derive simple and convenient formula to calculate
the values of: circumferential force reactivity (p,) and circumferential force
impulsivity (o).

Aw,,
w'l

Pur =
For an axial stage:

AWyy = (0 — Wy co8 By) = — ngu

and . .
Aw = (w, cos ﬂl — Wy COS B,) = (c1 cos oy — u) ~ W cos ﬁa
= (mu — u) —nsu—(nl-ng-l)u
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Hence degree of circumferential force reactivity is:
—ny
Pup = o : 8)

In a similar manner, the degree of circumferential force impulsivity is:

dw,,
Py = Aw. "
'

Since dw, =wycos By =cpcos ay —u = (m; — Du.

a— -
~ )]

—n2—1

Pui =

It is clear that it is always:

Put + Pur = 1. (9 a)

From this it can easily be observed that equations (8) and (9) are useful and
valid only for a certain field of u/c;, changing. Itis possible to consider the reactive
manner of force transfer in a stage of a turbomachine, only when the exit stream
is present, and similatly of impulsive force transfer, only when the inlet stream be
present. If the inlet stream is absent, the total circumferential force is completely
reactive and hence p,, == 1 and p,; = 0.* In the absence of the exit stream, the
total circumferential force is completely impulsive and hence p,, = 0 and p,; = 1.

3. CRCUMFERENTIAL FORCE COEFFICIENT OF STAGE

Equations (6) to (9) are very convenient to analyse the problem of force inter-
action and energy exchange between flow and blades in any stage of a turbo-
machine. However, it is possible to simplify the analysis further by introducing
the concept of * circumferential force coefficient—%,” of blades.

P, the circumferential force is given by the product of flow niass per second
and the total change of circumferential component of absolute velocity of the
equivalent stream, replacing the real flow.

Po=Sicn—cal =S —n—1u....... kg (10)

z z
We can express: p
P, =§- Ka o theeeennn, ke. A an

* (Note; Values pey> ¥ or p“>1 are not absurd values
case the reactivity or impulsivity is not fully developed )

b8

'Ilggy show, that in th a{_ticular
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and work
G
==k LU kg.m,[sec.
z gm,/ )

ky =@ ~n,—10) 13

shall be defined as the * circumferential froce coefficient of blades * of turbo-
machine stage. The sense of this name is quite clear and the sign (positive or
‘negative) of k, reflects the direction of energy exchange in a stage, the direction of
the total circumferential force and its nature as to whether it is reactive and im-
pulsive or only one of them.

The quantities G, u, k, = (n, — 5 ~— 1) determine the total power deve-
loped (or absorbed) by blades. If k, is negative, the total circumferential force is
a contrary one and the stage is a compressor one, absorbing work. 1If k, is positive,
the total fotce is fair and the stage is a turbine one, developing work. The de-
marcating regime is characterised (if the wheel is rotating) by k,= (n, — 1y — 1) =0.
‘Under these conditions, P, = 0 and W = 0 independent of the value of G. Power
on blading will also be zero if u =0 or G = 0. (Incidentally we can deduce that
any profile of real blades and any wheel speed in absolute vacuum does not absorb
power.)

4, CONNECTION BETWEEN THE VALUE OF CIRCUMFERENTIAL FORCE COEFFICIENT
AND THE MATHEMATICAL PROFILE OF BLADE

The value of circumferential force coefficient k, is determined by the values
of my, ny, ie., the type of streamline of the equivalent stream replacing flow. And
the shape of the imaginary infinitely thin mathematical profile of blade depends

on the values of #;, n;. The mathematical profile can be given by: (a) ny, 1, and Z,
L o >
or (b) ¢;, wp and u. The later method (i.e., b) is in common use now for turbo-

> >
machine stages. Really if ¢; and » are given, the inlet velocity triangle of equi-
valent stream is given and inlet angle £, of mathematical profile is specified. Again

w2 and u ﬁx the exit triangle and mathematical profile exit angle B; == By Is spe
cified. Values of #; and n, can be determined by expressions (2) and (3):

ny =22 °zs & a4
and
__ wycos By
SR F15)

" %, thanges in vaine, :\f € w.,, u change (i.e., since ny and n2 change) aud accord-
ingly ;111 other qua,nntres ‘expressed” by k,, thange.
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5. IMPULSIVE AND REACTIVE COMPONENTS OF TURNING FORCE AND POWER
ON BLADING

If values of k., p,, (andjor p,;), u and G are known, we can calculate the total
energy exchange between flow and blades, and also the force and energy charac-
teristics of the considered stage.

Total power on blading: W = S L 7 R kg.m./sec. (12)

Total turning force Po=—=-k,.u...... kg.m. 11

Impulsive component of

power on blading: W= pui W = py [Cgi cky u“‘] . ) (16)
and Reactive component of
power on blading: W, =p, W =p,, [g sk, u*‘] ' (17)
_Impulsive component of .
turning force : Py = puse Pu = pus [g ey u] (18)

and Reactive component of -
turning force : P, =p, ' Py =p, [% skt u] L - L (19)

We understand the impulsive component of power as the power due to the
impulsive component of turning force (i.e., due to the presence of the inlet stream)
and reactive component of power as the power due to the reactive cmponent of
turning force (i.e., due to the presence of the exit stream). The characteristics of
W and P, will depend upon the individual characteristics of the equivalent stream
(i.e., the characterlsncs of inlet and exit streams as to whether they are fair or

‘contrary).
6 IMPULSIV'E AND REXCTIVE "COMPONENTS OF POWER ON ‘BLADING FOR
SOME TYP[CAL ”TYPES OF TURBOMACHINE AXIAL STA'GES -

We shall consider a few typlca.l axial stages ofa turbomacmne and mﬂyse
the characteristics of W, and W,. In all the.cases, the-scheme .o stage {unrolled
in the plane of figure), the blades are moving to the left and the ﬁow is- admitted
to blades from above. > . . . . . R
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6.1. The theoretical impulse turbine stage with symmetrical deviation of flow
on blading under optimum conditions.—

In this stage under the given regime: p =10, 4 =1, §; = 8,

Since
U 00Say
[ 2
€, COS @
ny o= At =2,
u
and
WeCOS Py  —u 1
ny = = =
u u

Degree of circumferential force reactivity

s
O =0
Pur Ho—ny,—1 3

Degree of circumferential force impulsivity

(and again py;=1—p,=1-05=0-5)
ky=m—m—1=2=(—1)—1=2

(for G == 1:0)
ky 2 2
W(1)4=Pua‘E'u2=0'5.§~u2=% ...... kg.m.Jsec
2

Way e = pur - % L u? —-% .................... kg.m./sec

Total power on bladng
.2 . .
W = Wy, + Wiy, = 21. Ceeeeees e kg fsec. )

Thus in a_theoretical impulse turbine stage with symmetrical deviation of flow on
blading under opnmum ¢onditions, the ratio of impulsive to reactive components
of power on blading is: W,);/Wy), = 1-0. The Same value for Wi;y;/Wq,, =10
can -be realised in-a real (p =0 and ¢ < 1) turbine stage, having unsymmetrical
dewatlon (B’ <_B)) on blades (see Fig. 2). Such a real stage and the considered
theo;etxcal stage are characterised by the values;

M=2; my=—1; p, =05 and p, =05
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6.2, The congruent turbine stage under optimum conditions.—

For this stage (see Fig. 3).
n =1, m=~1 p=035 and k, =1L

— __"(__ﬂ._ =1
Par T iy ) geny |
1—1
P =<1 0
k. u?
Wy =—uf = 1
Wy =g u z )
Wy = pu W =0 (22)
Wer = Pur Wiy = Wiy
and
YVAI)_{ = .0_ = 0,
War Wo
T
Pr P P2
,Czu | wzlf
[ . .
u \ui' Cz lwzl
n,=2; Ny=~

)‘-</’.f=0;ﬂ2<,3,
£=0; fa=p

Fig. 2. Theoretical impulse turbine stage with symmetrical deviation of fiow on bladmg
under optimum conditions (uf¢, == cos. ayfy)-

In a congruent turbine stage under optimum conditions, the total power on
blading is reactive. The mathematical profile (see Fig. 3) is characterised by
B =90° with the exit stream alone. (In the general scheme of mathematical
profiles, the profile is disposed in row II in the turbine regime).

6.3. The congruent turbine stage with under-developed circumferential force
reactivity.—

The mathematical profiles . corresponding to such a stage, in the ra.nge
08 & < ufe, < 2 cas o, are dlsposed in the under right half-row I in the scheme
of profiles. °



68  Pror. Dr. V. T. YOURINSKY AND R. G. NARAYANAMURTHI

=13 Mpsesl; fun=13 P=05; Ku=t

FiG. 3. Congruent turbmne stage under optimum conditions (afe, = ccs ap,

- For these stages: B, > 90° (Fig. 4)

1 >n>0-5;
ny = —MNy;
p =0-5;

ke <1; pu=0
and
pur > L

(Actually p,, >1 is not absurd it only indicates that the circumferential force
reactivity is under-developed and the total power on blading is reactive.)

B .
q| pz-d( -
C BRI

Wa

I e A
Ny w=Ny; P=0-5; Ky<t ;Pun > 1

Fia: 4. Congruent turbine stage with under-dﬁve]opcd -exit stream {cos a; < ufe; <2
cos ).

" As dfe; 22 cos ap, k>0 & W0, the proﬁle moves over from the multi-
form row I to the flat profiles in row 0. :

" §.4. The turbine stage with under-developed circumferential force lmpulsmty
(P =0; ¢=D—
" This case is considered to show the wide applicability of the expressions derived

earlier. Let us take a particular case, m, = 2; np == 0-25 (see Fig. 5). The total
power on bladmg is impulsive, the equivalent streain consisting of only the falr

inlet stream, which is not fully developed, i.e., By > 90° (B, < 90°).
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ky=nm —ng—1=2—-025-1=075

_oom=1 21 _ 14
P -1 FS0-B3-170-75 3"

(p > 1 is not absurd. It merely indicates that p,, is not fully developed and the
total power developed is impulsive.) If p, is fully developed the characteristics

of the stage would be:

Ba=f2=90°n,=0; p, =0; pu=1and k, = 1.

We can now state that if », is within the range — 1 to 0, the circumferential

foree impulsivity is under-developed, the circumferential force reactivity is absent

and the mathematical profile is disposed in the left under half-row T, as n, —> (i, — 1),
k,~>0and W, 0.

o p‘ ,L P2 oz

f)uo $=1
ne2 n,*+0.25

F1G. 5. Turbine stage with urdsr-developed inlet stream.

7. THE NOUMBERS 7y, na AS CHARACTERISTICS OF THE MATHEMATICAL
PROFILE OF BLADE

The development of mathematical profiles, in the general scheme, charac-
terised by ny, n, is analysed in the following sections.

7.1. Displacement along the uppermost or the undermost horizontal row IV
(Symmetrical profiles)— . .

Fig. 6 represents the gradual change of velocity triangles, as the mathematical
profile is displaced from the middle row IV to the sides. The profiles are sym-
metrical and velocity vectors ;1 -and w, are conjugate, u axis being the imaginary

> >
axis. wy =Wy, B == fp and ny by =1
Ny ng =1 @3
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For all the profiles in row IV,

e y — 1 , — 1
”“":Z—n2~1'n~~(1~nl)~1 2(n1-—1) 5 @a
and
It} m 1 .
Por = o —m—1 2(n1—1) =05 (235)

Aadhhid R

e Gz uf Gl W 'Jz Cz € bz u.
N \ .
- \\ \ . .
4 » ) (

/ ’
Re / K \

TURBINE STAGE I COMPRESSOR STAGE

Twist of flow at inlet
LEFT | RIGHT

vectors € W in the plane of hodographs are turning
Anti-clockwise i clockwise

Leading veclor isW Leading vector is €

Lagging vector is €© | Lagging vector is W

I8 THE SCHEME OF STAGE THE ROTYATION OF WHEEL 1S TO THE LEFY
AND THE FLOW 15 ADMITTED FROM THE TDP

F1G. 6. Displacement along the topmost or bottommost horlzontal row 1V (Symmetrical
profiles). .

pu and p,, have these values only when (1, + n,) = 1, which is the condition

- ->
for vectors w; and w, to be conjugate. If this condition is disturbed, p,; % pu,
though the equlva]ent stream is characterised by symmetrical deviation 8, = B,.

w1 and wz will be conjugate in the following cases:

(1) Theoretical (¢ = 1), impulse (p = 0) stage with symmetrical deviation
of flow. (B =By

and (2) Real (¢ << 1) stage, with symmetrical deviation of flow (8, = B,) and some
degree of thermal reaction (p > 0).

Fig. 7-gives a plot of n,, k,, p,; and p,, with change in n, (i.e., nl'is the independent
variable) for the shift of profile along the topmost and the bottommost horizontal

. : . - ->

row IV, under the condition (n, + ny = 1) (i.e., w; and w, are conjugate).
Straight line 1 gives n,, equation being n, = (1 — n,).
Straight line 2 gives k,. equation being k, = 21, — 2.
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Straight line 3 gives py; . k¢ = pur . k,, equation being pu: « ky = (1, — 1) and
Strajght line 4 gives p,; = p,,» equation being p,, = p,, = 0-5,

The auxiliary lines given in Fig. 7 are:

Straight line 5 parallel to the abscissa axis (y = — I).

Straight line 6, ny, = f (n;) at 45° passing- through origin, and

Straight liries 7 and 8 parallel to the ordinate axis (x ==1; x =2).

REGIMES

TURBINE
THE PROFILES OF THE UNDER
ADW 1V

DEMARCATING
THE FLAT AXIAL
PROFILE

TWIST OF FLOW IS

ABSENT

i

THE_RIGHT (CONTRARY |  THE LEFT {FAR)
T
TWIST OF FLOW

I8 TRE SCHEME OF STAGE THE WHEEL 15 ROTATING TO THE LEFT
AND THE FLOW IS ADMITTED FROM ABOVE.

Fig. 7. Change along the topmost and bottommost horizontal rows IV.

Fig. 7 gives the possibility to answer all the questions connected with the
study of energy exchange and force interaction on blades by symmetrical deviation

-> > .
of equivalent stream under condition of w; and w, being conjugate. We can draw
the following conclusions:

L n = 1 determines the demarcating regime. n; > 1 is the turbine regime
and n, < 1 is the compressor regime.

2. Twist of flow is fair when ny > 0 and is contrary when n, <0 Com-
pressor regime can exist when twist of flow is fair (0 <n,'<< 1) as well as
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contrary (n, << 0); Whereas turbine regime can exist only when the
twist of flow is fair and ny > 1.

3 Py = pu = 0-5 and hence the reactive and impuisive parts of turning
force and power are equal.

4, Optimum conditions are determined by n, = 2 and n, = — 1 (and, hence,
ule, == cos a;/2 and B, = B,). These optimum conditions are marked
in Fig. 7 by the points A, B on the auxiliary straight 8.

7.2. Displacement along any right vertical row of mathematical profiles.—

Any vertical right row can be chosen’ for investigation. Fig. 8 represents
the gradual change of velocity triangles, as the mathematical profile is displaced

< - In the scheme of stage
Ry w8 the rotation of wheel is

to the left and the flow
@ 15 admitted from the top.
LI T COMPRESSOR STAGE.
o =907
&J5. - vectors €W in the plane
‘m \\ %-195  of hodographs,are
Z w, ~ turning clockwise.
R Leading vector 1s T
! N Lagging vector 1s W
Cz, "
W ~

t‘—ﬁ u;zc.cosd.‘l

é Mechanlcal! transparent
C\'w ‘5.% Wzmsu. system J P

U =20 COSTy

o
E

P
/

TURBINE_STAGE.
vectors T W in the plane

. coset, - Of hodographs, are
uc, g " furning enti-clockwise.
. Leading vector 15 W.

Lagging vector 1s T.
/\ < 4-0

'Fi6. 8. Displacement along any right vertical row. (Property of congruence maintained.)

from the Tow 0, i.e., the flat profile. As in the general scheme, the flow is directed

from the top and u 1s directed to the left. Displacement of profile along the vertical
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. . -> ->
row gives the possibility to maintain Congruence of siage (i.e., Vectors ¢;, w,
-»> -> . . . e d R . . .
and ¢ w,, taken in pairs, are conjugate—the u axis being the imaginary one).
Conditions of congruence of stage gives the relation (since a; = 8, and ¢ = w,)
ny= 1

ie.,

(m +ng) =0 . (29

= —nhg - n
Par S e =1 T g — 1 . @44)

om=1 _ m
P e —1 T 2n —1 @24 5)

ky =ny —ng—1=2m —1 240

The profiles, in the bottommost row IV* and under row III, are fully developed
with both inlet and exit streams (u/c; in the range 0 to cos e;). When u/c, =
008 g3 my =1, ny=—nm = —1, k, =1, the inlet stream is absent (p,; = 0),
the exit stream is fully developed [8; = 90° and p,, = 1] and the profile is disposed
in the under row II. As the profile is displaced from under row II to 0 (u/¢; in
the range 1 to 0-5), p,,== 1-0 and p,; = O are retained [the exit stream being under-
developed (8; > 90°) and inlet stream being absent]. In row 0, wjc; =05, the
profile is flat (B; = By), m; =05, ny = — 05, k, = G and expressions (24 4) and
(24 b) are not applicable as they give p,, = py —~ oc. Thereis thus a discontinuity,
the profile is mechanically transparent, having passed off the turbine regime.
There is neither force interaction nor work done (or absorbed).

The transition of the profile into the multiform upper horizontal row I (Com-
pressor regime) from the multiform under horizontal row I (turbine regime) is
associated with a sudden change of p,, and py; from p,, = 1 and p,, =0 to p,, =0
and p,; = 1. However the transition is smooth, through the mechanically trans-
parent stage, which we can consider as p,, = p,; =0, with k, =0.

* Note~The extreme profiles (disposed in row 1V) in Fig. 8, since they are disposed in the
horizontal row IV (either topmost or bottommost) should retain the conditions

(23 a) and (23 b) As analysed in Secnon 7.1, wl, w, should be conjugate and as well
>

¢y w , and c,, w1 m pairs should be conjugate as seen above This is possible only if
3

¢, coincides with w1 in the inlet and ¢, "coincides with w, in the exit velocity triangles,
ie., :—» 0. When 17 ~> 0, 5y = ny~> oo and these values substituted in (24 &) and (24 b)
give pu, == puy—> 05, satisfying the condztlons of symmetry, ie., (23 a) and (23 3).
Hence, when % — 0, the profile 'in row 1V retains at the same time the propertzes of
symmetry and congruence, and belongs to: the vertical row, as well. .
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The values of Ky, pu par and my with ny as the independent variable in the
x-axis are plotted in Fig. 9. The equations for the dependent variables are:
ny = —ny, k=2 — 1, py = “znllnl;‘l s P = ;‘r:—l—:fll‘
and
(pur + P} = L.
Based on Fig. 9, we can draw the following conclusions:

1. The demarcating regime (mechanically transparent system) is determined
by the value n, = 0-5 (ue; =2 cos ap). m > 0-5 characterises the
turbine regimes and n; < 0-5 characterises the compressor regimes.

2. Optimum condition, for the turbine regime, is characterised by n; =1
and n,= —1 (with k, =1 and wujc, =cos o). Hence [ujc],, =
cos a;. The profile is disposed in the under horizontal right half-row IL

REGIMES

COMPRESSOR | TURBINE
DEMARCATING

m, Nz Xu{
fur FPui

CONTRARY TWIST.

Fur <4 (m)
of(m)

| UNDER ROW I

THE MULTIFORM UNDER ROW |

THE MULTIFORM UPPER ROW W1 THE MULTIFORM UNDER ROW Wi

ROWS OF MATHEMATICAL PROFILES

W THE SCHEME OF STAGE THE ROYATION OF WHEEL IS TO THE LEFT
AND THE FLOW IS FLOWING FROM ABOVE

Fie. 9. Change along the selected vertical row having properties of congruence.
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8, GeNERAL EXPRESSIONS TO DETERMINE THE OPTIMUM CONDITIONS
FOR ANY TURBINE STAGE

It has been shown that optimum conditions, under the two given conditions

. . - . * d
examined in Section 7, exist when ny = — 1, i.e., exit absolute velocity vector c,
is axial. This is the common condition for optimum operation and [u/c],,
can be determined from it. As a matter of fact it is always possible to write

Myt == Cy COS oy @
ie.,
U _ Cosay
G n

which under optimum conditions can be written as:

[_”_ =8 (25)
Cy dopt M om

>
Under optimum conditions, the exit velocity triangle is rectangular, ¢, is axial,
giving

By ==ty gy = —1 @8
and .
nl=n1 opt =k.“opt+n2nzpt+l.?k_unpz.\ — =
ie.,
Ay e == Ku opt (26 2)
Substituting (26) @, in (25), we have:
u COSay _ COSay
s = b 2L 27
[ cl]obf. 73 ot k- opt ( )
Again, since
— ~Hg — — Mg opt —
Por = nm—ng—1’ Pur ont My opt — Baopy — 1
ie.,
Per opt == ;Z:; (28)
Substituting (28) -in (27) we have:, C— SR
2= = Py e 1008 gy BT e Rl v L T (29
[cllm Pur opt -0 C‘}: ..nl o, e (_': )
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Bxpression (29) does not give a single solution, unless it is associated with another

. > —* -
variable ¢y,/co, the ratio of the axial components of ¢; and ¢ For a given
value of ¢;,/cs,, expression (29) determines the singular optimum conditions.

Fig. 10 shows the velocity triangles for three turbine stages, chosen from an

unlimited number, operating under optimum conditions. f.e., Z, axial, c_': is con=
stant, w, = Wy, i.e., § = 1. Bach of the three stages, having the velocity triangles
according to Fig. 10, is the most effective one for a cerfain ratio of ¢;,je,. OF
the three compared stages, b is the most profitable, since it is characterised by the
least carry over 108s (¢1of ¢s, > 1) and the maximum power on blading. Taide I
gives the characteristics of the three turbine stages represented by the three types
of velocity triangles in Fig. 10.

- . 16. 10. Turbine stages under optimum conditions (n, = — 1), varying ¢y/coqr -
'Problema on desxgn of tm'bme stages can be worked out by use of expression
(29) ‘The following example illustrates the method:
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Example—What is the optimum circumferential velocity and the mathematical

profile of an axial turbine stage defined by:

stage enthalpy drop: by = 28 Caljkg.
g =217m./sec.; ¢ ==0:95; 1 =0-9;

a, =22° (cos a; = 0-927); p,, =06 and p = 0-285.

[p = ’;1"3 = degree of thermal reactivity].
(]

First determine the theoretical (¢;,) and actual (¢) discharge velocities from

nozzles:
oy = VB3B0(1 = p) .y + ¢
= /8380 (1 — 0-285) 28 - 2172 == 474 m./sec.

and
¢ =¢" ¢ =095 X 474 = 450 m./sec.

By expression (29), i.e.,

u . cos a; [
hog == Pur opt ' COS a’l e = T'——
Cadopt Ny got w opt

Py 18 specified as 0-6; i.e.,

[fi] =06 X 0-927 = 0-556,
opt

C
Since ¢ = 450 m.fsec.; optimum circumferential velocity
Uy, == 0-556 X 450 = 250 m./sec.
TanLe [

Disposition of
mathematical
profile in the

general scheme

2 £y COS @y | wg coOS 52 f14
Type —| 72 7y Pur by | —
m,fsec, | m.fsec. m.[sec, i f2q
i |
; T
<
o 150 300 -150 ~1] 2 ; 05 | 2 il

3 176 300 - 175 ~1 1~72i 0'58211 1:72 | 1.76
¢ 125 300 -125 -1 24 0-417J 24 | 078

i

Under row IV
Right ander halfrow |
I

Left under half-row
- XH -

{

N M A S A A IR It SR
Fig. 11 shows the velocity triangles. The inlet velocity triangle can be drawn

at this stage (¢, = 450 m./sec., u = 250m /scc and o = 2,2 . w1 ca,n be read off

and w, = 240.m./sec. oLl
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wy can be determined since: wy==d . Wy = 0-9 . 353 =318 mysec.
wo == VB3RO . p . By + Wit = +/8380 . 0°285 . 28 - 240%
= 353 m./sec.
The exit triangle can now be drawn. {¢; is axial for optimum condition.
=250 m./fsec. and w, = 353 m/sec.)
¢, and §, can be read off from Fig. 11.
B, ==38°10" and ¢, == 195 m./sec.

From the velocity triangles, it can be seen that the mathematical profile will
be disposed in the under right half-row [IL.

U 250M/SEC

MATHEMATICAL PROFILE .
1S DISPOSED IN UNDERL >

7,
RIGHT HALF rOW m1 7
s

FiG. 11. Turbine stage under optimum conditions.

9. CONNECTION BETWEEN CIRCUMFERENTIAL FORCE COEFFICIENT k,
AND AVAILABLE ENERGY OF STAGE

Based on the expressions:

L W=G- rf‘—:gf:«l cut ... kgm./sec. o)
and : ' : ’
z G - : R N . B

w =z vk, cut kgni./sec. (12)
W can derive thie expression cofifiecting k, and available energy of stage.
—Defime efficiency refative-to-blade-(fes, mgas -~ - e
o - AP ‘a . '

Ty = vh,," - S S . .o
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w1 o
B, = G~ ¢ B R T kgm./kg. 30)
and, since,
A, Ak
== S Ry e 31
T o b . b
and
— 1 . ,]f’!. <y P
b = ggn W Cal./kg. 32

Let us compare two turbine stages with the same values of ¥ and 7,4:
(a) Impulse stage—~H o, p = 0, p,, =05 and k, =2, (n, = 2);
and (h) Congruent stage—h'y,, p = 05, p,, =1 and k, =1. (n, = 1).
Inboth cases values of k,, = n, indicate that they are operating under optimum
conditions. (#, = — 1) for particular chosen values of ¢,/¢a,-
Using the expression

Vo ke 32)

M= 150 "y

since u and 17,, remain constant:

hy Kk

pe TR TR

hy, ku
With » and v,, remaining the same (that is not always possible), the optimum
availabe energy for an impulse stage with symmetrical deviation of flow (8, = 8,)
on blades must be twice as in a congruent stage, characterised by p==0-5,
Pur =1, ky = 1.

(33)

Practically it means that en impulse stage can utilise twice as much enthalpy
drop asin a congruent stage, for the same circumferential velocity u.

_Again for the same stages if A’y = 4y, w5 u, (and 5,, =1,,,) by expres-
ston (32), we can see that:

h’n.:Mvz PV - 1 Sy
LA g 4190 - 1,

and hence,

2 2
2ud =y,

U= /2w (34)
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i.e., Development of acceleration by expansion of flow in blading and regetive
manner of force transfer from flow to blades by decrease of impulsive manner ni 4
increase of circumferential velocity u (compared to the Impulse stage) to maintgin
optimum conditions of operation.

Based on expression (32), we can state:

In a turbine with stages I, II, TiI...... characterised by k. k. Ky ... .. ,
with u constant and 7, same, the stage available energies are given by:
Wor: Pores Womase v oovennnt ==kt kart Karrteo oo i, (35)

If u differs:
Rort Wog: hlogmteooovoonts = Ky ug® kypy - P kyp WPt ... (36)

If k, remains the same (n,, same); different circumferential velocities at the diameter
d of mid-blade length u are given by:

. - . — . 2 . 2, .
Ror: Wope? Wogxieveeoeann, =l wiy Whplooooo i 37

Kot Wor Wogmee v vvvoenn. =dh: d?y A (3%)

In the general case, in a mullistage turbine characterised by different values of
u, 1,3, ky, we have:

T
Bat Bomxt Pompte o ons
2 -yl
— ku - v Joqr - win !iuln Wor (39)
N Mrvrx a1z

To calculate the necessary available energy (the insentropic enthalpy drop
increased by adding the used carry over loss from the preceding stage), we have
to choose the values of 7,, based on experience. If the values of ¢, and p, are
specified, we can then obtain the insentropic enthalpy drop.

Example.—~A turbine stage operating under optimum conditions is character-
isedby: k, = 1-6; u =200 mjsec.; 7,,—=0-85; pg = 1 and cs(pyy = 100 m.fsec.
Evaluate the work done on blading and determine the necessary enthalpy drop.

Under optiraum conditions: n, = — 1 and n, =k, = 1-6.

Work done on blading:

k, 1-6
=A D  =A 20 = 20, 2 — 18- .
Al ,=A 2 u 7190 200 15-3 Cal./kg
Available energy:
AT 153
hy' = o T 085 180 Cal./kg.
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Co®
B =y A D

- pt ol e 1-1007
By =h' ~ 5350 = 18 — g5g

= 16-8 Cal./kg.

If reliable data is available to decide the values of velocity coefficients ¢ and #,
the velocity triangles can be drawn for chosen «; and p. From the triangles the
ratio ¢30/ce, can be determined to examine the given value of 7,;.

CONCLUSION

Extension of the analysis of the phenomena in the stage of a turbomachine,
by the method of equivaent replacements (i.e., the mathematical profile and the
equivalent stream replacing the real blade and total flow) gives general expressions
to work out problems connected with study of characteristics of stages as well as
design. The expressions are simple (devoid of complexity) and are easily mani-
pulated. The methods detailed can easily be extended for the design of a multi-
stage turbine, where the complex problem of allocation of energy to the different
stages becomes a straight forward application.

Expressing the optimum operational condition (in the circumferential direc-
tion) by ny = — 1 is merely a general one. A singular solution is possible only
when this general condition is associated with a particular value of the ratio
Cifcy. This aspect of the question has not been brought out by any analysis
so far, This paper throws light in this aspect and has outlined a simple method
of evaluating stage characteristics. There does not appear any need to complicate
expressions to cover any general case of a turbine stage,
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APPENDIX

Refer to Fig. 6 of paper * The Method of Equivalent Replacements applied to
the Investigation of Force Transfer and Power Exchange in a Stage of a Turbo-
machine™ in this journal.
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