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1. The study of the problem of equilibrium and stability of a Auid sphere 
under its own gravitation and an imposed magnetic field has been initiated by 
Chandrasekhar and Fermil with a view to understand the problem of magnetic 
stars. Since then a number of ~ o r k e r s ~ - ~  have contributed significantly towards 
the understanding of this problem. I11 the present paper, we discuss the problem of 
magnetic fields that can prevail in an axi-symmetric configuration in a coherent 
manner. This has enabled us to charactcrise a new class of axi-symmetric magnetic 
fields, in addition to point out some immediate generalisations of the fields 
already discussed. In the latter part of the paper, we consider the equilibrium of 
axi-symmetric incompressible fluid configuration under the effect of the new class 
of magnetic fields. 

The equation of equilibrium is 

where p, p are the density and hydrostatic pressure of the liquid, V, the gravitational 
+ 

potential and L, the Lorentz force given by 

-f + 
j and H being the current vector and magnetic field. 

The electromagnetic properties are governed by the Maxwell equationq which 
in the steady case, in which we are interested, reduce to 

-3 

div H = 0 
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where we have taken the electrical conductivity to be infinite. We may note that 
our assumption of infinite conductivity is justified on the grounds that in case of 
finite conductivity the current system cannot be steady. 

From (2.2) and (2.3) 

- r +  
L = (curl H) X H 

From (2. I), the equilibrium will be possible if 

+ 
curl L = 0 

i.e., the Lorentz force is obtainable from a potential Q and 

+ 
L = - grad 6. (2.8) 

Using (2.8) in (2. I), it reduces to 

p - p V + 6 = K, a constant. (2.9) 

We may rewrite (2.7) as 
* * 

curl [(curl H) x HI = 0 (2.7') 

Thus (2.9) is the condition to be satisfied by a magnetic field that can prevail in 
an incompressible fluid. 

An arbitrary deformation of an incompressible body can be realised by apply- 
+ 

ing at each point of it a displacement 5. Without loss of generality, we may assume 
the displacement to be irrotational, so that a scalar point function $ exists such 
that 

+ 
%=grad $ (2.10) 

Besides, for an incompressible fluid 

+ 
div 5 = 0 

so that 
A $ = O .  

The regular solution of (2.12) is 
, 

# = Z$,,r"P. (P), p = cos 8, 

where P. (,L) is the Legendre polynomial of order n, and p the angle which the 
radius vector makes with axis of symmetry. 
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If a sphere of radius R be deformed to 

then on comparing the values of (, at r = R obtained from (2.13) and (2.14), 

we have 

and 

m * + ~T R 1 5 -!-- Pn (p) .,, n R"-' 

where dash denotes derivation with respect to p. 

Under the assumption of infinite conductivity there existsL a simple relation 
.. . 

-f -, + 
8 H  =curl([ x H$ (2.18) 

-f + 
between the displacement ( and the corresponding change SH in the magnetic 

'f 

tield, where H, is the initial magnetic field. In writing (2.18) we have neglected 

the quantities of the order of square of 1 $1. 

We shall denote the quantities referred to an inner and an outer point of the 
configuration by superscripts (i) and (e) respectively. 

If there are no currents outside the configuration, 

+ 
curl H@' = 0. 

Hence the external magnetic field can be oljtained from a scalar potentid W such 
that 
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and 

AW=O. (3.4) 

In an axi-symmetric case, the general solution of (3 .4)  is 

The boundary conditions for the gravitational potential are: 

VW = Vlal (3 .7)  

on the surface of the configuration, where a/>, denotes differentiation along the 
outward drawn normal to the boundary. 

The boundary conditions on the magnetic field can be expressed vectorially 
in the form 

+ -b + + 
HIS1 - Hfll = 4rj* X n, (3.9) 

-b 
where j* is the surface current vector per unit width of the surface layer. 

From (3.9),  we have 

When there is no surface current 

+ + 
H(01 = H(41 

+ 
i.e., H is continuous across the boundary of the configuration. 

At the boundary of the configuration, the total pressure P, namely the sum of 
the hydrostatic pressure and the magnetic pressure, is continuous. Hence on the 
boundary of the configuration 

1 +  1 +  
p -t 8;; [IH'"Ila~= 8;; [1H")Il2. (3.12) 
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Thun in th: ahence of the surface currents, the boundary is defined by 

P = 0, (3.13) 

bnt when the surface currents are present 

3 

where HfL is the component of the magnetic field perpendicular to j* and tangential 
to the surface and j* is the magnitude of the surface current per unit width of the 
layer. Thus in this case the hydrostatic pressure is not zero on the boundary. 

Chandrasekhar and Prendergasts have reduced to a simple form the condition 
(2.7') as applicable to the axi-symmetric cases. We shall put this condition in 
still more suitable form, which enables us to enlist few more cases of magnetic fields 
that can prevail in an axi-symmetric configuration. 

We shall take I,, I@, I$ as the unit vector at a point of the configuration, 
forming a right-handed system as usual. In view of (2.4) we may express the most 
general axi-symmetric field as 

where P and T are arbitrary functions of r and 8 or p = cos 0. 

From (2.3) we have 

-+ 1 b  - 
h j ,  = (curl H),= - ; (T 41 - 83 

and 
+ 1 

h j 9  = (cud H)* = - - X, ra 

where 
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Also, from (2.61, we have 

The condition (2.7) now gives 

a . -- 
( r d l  - p2L$ = 0 

a a a3 ('Lo) - - (L,) = 0. 
a0 

(4.11) 

From (449) and (4.10) 

In order that LI be fin~te everywhere 

Const. = 0 - 
so that 

Lg = 0. 

Using (4.61, (4.7) in (4.1 I), we have 

1 =- 3 a 
r* (I - p4a [N (9 (1 - pa) T) + (1 -pa) %(re (1 -paP}]  

(4.13) 

We can easiIy verify that we can conveniently write (4.13) as 
' 



where 

From (4.14) we conclude that 

P 
G + - = + ( r . \ / i T  P), 

r3l/(l - pz) re  (1 - p 3  
(4.16) 

where + is an arbitrary function of rZ/-P and (4.15) determines G when 
P and T are known. 

The above treatment indicates that there may be a considerable simplification 
if we put 

and 

Trd- = C. (4.18) 

In terms of 7 and 5, we have 

and 
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The functions P and T used by Chandrasekhar and Prendergasts are related 
to the present 1) and 5 through the following relations: 

The general magnetic field (4.19) which can be associated with an axi- 
symmetric configuration is governed by the equations (4.22) and (4.23), which 
are the main equations for discussions in the next section. 

5. SPECIAL TYPES OF MAGNETIC FIELDS WHICH CAN BE ASSOCIATED 
WITH AXI-SYMMETRIC CONFIGURATIONS 

(a) Force-free fields.-The force-free fields are characterised by 

Hence in view of (4.21) the equations determining 7 and 5 reduce to 

and 

We may point out a simple case of a force-free field by taking 

G h) = 0 

so that (5.4) 

[ = O  

In this case the magnetic field is purely poloidal and then the regular solution of 
(5.2) is 

1) = 70rni1 (1 - P2Y p2 (A ( 5 . 5 )  

where is an arbitrary constant and P,' (I") is the associated Legendre polynomial 
of first kind, Erst order and the nth degree. Here 

Next simpler case will evidently be to take G (7) = k, a constant. But in 
this case 



but this is unsuitable for in this case Hd will be unbounded on the axis of synrmetvy. 

The case 

G (7) = a=.? (5 .9) 

has been introduced by Liist and Sckliiter1O and has been discussed thoroughly by 
Chandrasekhar.' 

Here 

1 = a? (5.10) 
and 

7 - w*J"++ (a?) (1 - pZ)* P2 (P) (5.11) 

In this case the magnetic field is a combination of toroidal and poloidal field and is 
given by 

H, = - qon (n + 1) rr3I2 Ja4+ (ar) Pn (A, 
I d 

He = - 70; d; [r+Jny ( 4 1  P,1 (PI, (5.12) 

Hq = w r - d ; J , ~  ( 4  P.' Q 
The solution (5.11) can be reduced to that of Chandrasekhar I T  we set 

7 = Pr2 (1 -pa) (5.13) 

and use the relation 

Cf13'"d = - (1 - pa)* pln+l (P) (5.14) 

between the Gegenbauer polynomials and the associated Legendre polynonlials. 

We may note that any other cholce of G (7) will render the equation ( 5 . 2 )  
non-linear and hence may be intractible. 

(13) Poloidal Fields.-These fields are obtained by taking 1; = 0, i.e., G (?) 
= 0 in (4.23), which consequently reduces to 

We have already discussed the case 4 (7) 4. We shall begin by taking 4 (rl)=a 
so that (5.15) reduces to 

We find that 

7 = y ( 4  (1 - p-9 

is a solution of (5.16), where 

rlY" - 2Y = ar4 
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The regular solution of (5.18) is 

y = a,rL f 2 r4  10 

so that 

and 

H+=O 

j, =0, j, =O, J + =  - ; r ( l  -p3f. 

The case studled by Ferraro4 is obtained on taking 

+ -9 
He finds that in this case when there is no surface current, i.e., when Hi" = H("), 
the equilibrium configuration is an oblate spheroid with ellipticity 

Auluck and K o t h d  have considered the equilibrium configurations with 
the field corresponding to a, = 0. In this case the field at the centre is zero and 
can be realised by superposing on the field in (5.21) a field - 113 a R2 parallel to 
0 = 0 axis at every point of the configuration and also at each point of the outside 
space in order to ensure continuity of magnetic field at the boundary of the confi- 
guration. They find that the equilibrium configuration is a prolate spheroid with 
ellipticity. 

(7) Toroidal Field-If we take 7 = 0, we have only the toroidal field 
this case the condition (4.12), i.e., L+ = 0 

. . , ., 

01 . . 



is automatically satisfied, while the condition (4.13) reduces to 

The general solution of (5.27) is 
-- 

5 = f  ( d l  - P 3 ,  

where f is an arbitrary function. 

where f is any regular function of '2 to ensure boundedness of the physical quantities. 

Then 

a, = G f  ('2) 

(5.31) 
This current system is equivalent to the current system 

Recently Deg has discussed the equilibrium configuration under the influence 
of magnetic field obtained as a particular case of (5.30) by taking f (G) =:= H,, a 
constant. 

We shall consider the general case (5.30) more thoroughly in 5 6. 

(8 )  Certain Combinations of Toroidal and Poloidal Fields.-We have seen that 
the general magnetic field that can prevail in an axi-symmetric canfiguration is 
given by (4.19) satisfying the equations (4.22) and (4.23). Recently Prendergastl 
has discussed the simplest case which is equivalent to choosing 

4 (7) = k, a constant (5 .s) 
and 

In view of (5.34) we have 
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Also, (4.23) reduces to 

1 - p 2  a2q $+, ,;,++=w(I-~;?. 

The solution of (5 .36)  will be 

7 = a particular solution of (5 .36)  + the general solution of 

ji. + a=, = 0 

k 00 

= - p? + L' A d J J y  (ar) Pml (p) 
(I=o 

from (5.11). 

He finds that, if a be suitably chosen, a spherical configuration is stable, 
+ 

boundary being given by p = 0. Here H'" vanishes on the boundary and is 
-* 

continuous with HC5' = 0. This in this case the magnetic field is wholly confined 
inside the boundary and we have no means to detect it under normal conditions. 

We may note here that the above choice of 4 (7) and G (7) made by Prendergast 
was motivated by the aim that the equation determining 7 should be linear, so that 
its solution is simple. 

If we take 

G (7) = a21, 6 (7) = Ba, 
We have again 

5 = a7 

and the equation determining 7 is 

It  is evident that the solution of (5.39) will be simplified in (3, z) variables.' On 
making this transformation and assuming the solution to be of the form 

7 = W ( G ) Z ( z )  (5 .40) 

we have the following equations to determine Wand  Z:  

W" $ [m- j 32B2CZ]  W = 0 (5.41) 

and 

Z" + kZ = 0. (5.42) 

Whatever the combination of the solutions (5.41) and (5.42) we take, we find that 
+ -b 

we do not get the regular solutions for H and j. 



Thus even if we take G (77) and 4 (Y) as proportional to 7 simultaneously ue 
are unable to get the admissible solutions, hence we shall try to satisfy the equa- 
tion (4.23) in particular manner. This approach allows some suitable choice of 
G(7) and 4 (7) as function of 7. 

(i) Let us take 

which is a particular solution of 

E=o. 
After choosing 7 as in (5.43) we have from (4.23) 

so that if we make a suitable choice for 4 (7) we fix G (7) and then 

In this case we have 
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surface current sheet is unavoidable in the present case, for a current line running 
parallel to the axis of symmetry from a point on the surface to another point on 
the surface can be closed only by continuing it along the surface. 

(ii) Let us now take 

7 = a%-29 (1 - p3Y. (5.52) 

On substituting this in (4.23) we get 

Let us now put 

G (7) = q"-'/* (7) and 6 (7) = ?*-"o T(7) 

in (5.53), so that it reduces to 

Apparently we have a wide variety of choice for 6 (7) and 7 (7) in (5.55). 
However, we shall consider here only the following: 

where 7 is a positive constant in order that a is real. The last equation in (5.56) 

determines a in terms of the chosen values of p2 and 7 to be used in (5.52). 

(5.57) 

For regularity of the physical quantities, p is'greater'than unity. 
a4 



We may note here that in the new classes of magnetic fields (5.50) and (5.58), 
f; is not necessarily a h e a r  function of 7 as was assumed by Prendergnst. 

6. EQU~LIBRKJM CONFIGURATIONS W I T I ~  TOROIDAL FIELD 

We shall determine the equilibrium corifiguratio~ls of an incompressible fluid 
under the action of toroidal field defined by (5.30) choosing, as a particular case, 

HI -2 f ( Z ) = H , + -  UJ R2 
(6.1) 

so that 

H+ = HOD 1- Hi 8 3  
R (6  .2) 

In order to be able to use (2.9) we shall calculate @. Using (5.31) in (2.6) 
and (2.8) we have 

SO that 

where 

and 

We now assume that H+2 1s SO small that the surface of equ~hbr~um config~ra- 
hon differs everywhere from the sphere of radlus R by a small quanbty of the order 
of mag~tude of H+*. We shall neglect the powers of ths quantlty h&cr than the 
first and its product w~th  He2. Let the surface of the equlltbr~um confiyrat~on be 

r .  = R [l + f €8. N]. 
"-1 

(6.10) 
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The gravitational potential of this configuration at an internal point will be 
given by (11) 

To our approximation, this reduces to 

.. n - 1  V'') = evP~a - 8_R GpRa 2 -- p ( ) 3 3 . , , 2 n $ 1  " "  " (6.12) 
. , 

on the surface of the configuration. 

In this case 

H,'" = 0, H p  = 0, H$ = i;f (- 0). I * 

Hence at the boundary 

H""" = 0 

a ~ d  from continuity of normal component 

. . 
everywhere on the surface of the configuration; consequently 

j. , : 

everywhere on the surface of configuration 

from (3.5) it is clear that H+'" = 0. 

Thus Hg is discontinuous across the boundary of the configuration, and therefore 
there is a surface current present, whose direction lies in the meridian plane. From 
(3 .lo) the magnitude of the surface current per unit width of the current-sheet is 
given by 

R = [H, sin 0 f HI sin3 81. (6: 13) 
* 

& .  
.This shows that the boundary of the configuration will be defined by taking 

P('J = Pl", i.e., from (2.9) by taking 
. .  - - * 

. . 6 - 1- [H+(&)]2 - pV(6J = const. 
8r 

('6. is 
, ,. 

Using (6.5) and (6.12) in (6.14) and equating the coefficients of various P?&) 
polynomials, we get I 



and 

en = 0, when n-f 2, 4, 6. (6.18) 

In particular, let H, = 0, then 

r. = R 11 -t- cap2 (PI, 

Thus the equilibrium configuration is a prolate spheroid us found by De,B but his 
expression for 6, does not agree with our expression in (6.20). This is on account 
of the fact that the value of V'" taken in his paper is in error due to neglecliog the 
first term in our expression (6.11). 

Let H, = 0, then 

and 

We have chosen this expression for fiz) quite arb~trarily. The treatment 
above shows that the method will be applicable to any choice for f (2) of the type 

, f ('2) = E A,3". (6 .25) 
Only the matheaatical analysis will become more cumbersome. 
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7. EQUILIBRIUM CONFIGURATION WHEN TOROIDAL AND ALSO POLOIDAI 
FIELD IS PRESBNT 

We shall consider the field given by (5.58). 

Here 

L*=O 

so that 

on using (4.22) and (4.23). 

Hence 

Therefore 

Here H+,(" # 0, while H+,C4) = 0 in an axi-symmetric case. Therefore, we 
expect surface currents, the current sheet lying in the meridian plane. Since the 
condition of continuity on the normal component of the magnetio field is satisfied 
by taking 



the boundary of the configuration will be given by 

or from (2 .9 )  by 

where M i s  the mass of the spherical config~ration and we have assunicd as in 6 
the boundary of the equilihriuni configuration to be given by 

Given a, 8, p and the initial spherical configuration, we can detcrmine en 

by inserting the values of (1 - p2)2n-2 in terms of thc Legendrc polynominls in 
(7.7) and equating the coefficients of the polynomials or  various degrees on its 
two sides. . . 

Case (i) p = 2  : 

" % k i n g  p = 2 in ( 7 . 7 )  we have 

40 R8 
€2 = 63 MaG a3 i8a f 3/33 

- ,  

Bud 
I 

I 4 RB 
ca = - wMZG a3 (8a -1 +/33 (7 .11)  

We may note here that the magnetlc field and current in t h ~ s  mse  +re: 

H, = 4 a V  (I - (12) p, Hg = - 4aZr2 (1 - p ~ ) 8 ~ ~  

2 
H*= ,!3a3'ar2 (1 - p 3  
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and 

Cuse (ii) : p = 3 : 

When p - 3, we have 

where 

and 

The magnetic field and the current in this case are: 

H ,  = 6a2r4 (1 - p2j2 p, Ho = T 6asr4 ( 1  - p2)6/2 

We shall now calculate thc total changc in the magnetic energy in the case 
considered in 6. 

Let us consider a spherical ~on'fi~uration of radius R having an internal 
magnetic field 



and a surface current whose magnitude is given by 

Let us deform the configuration so that its surface becomes 

r,  = R [1 + r,P, it €*PI + QJ. (8.3) 

From (2.16) and (2.17), we find that this deformation will be realised by givmg a 
displacement whose radial and transverse components are 

Now the change in the internal magnetic energy density at a point is given by 

(lH"'l)2 + +  -+ a - -  - 1. 6 . [(&.grad) i - (f .grad)  HI^)] 8- 4- 

We shall calculate the change in the magnetic energy in two steps: (i) SM,'", 
the change in the magnetic energy inside the sphere due to change in the magnetic 
energy density, and (ii) EM,"' the change in the magnetic energy due to deforma- 
tion between the surface of the sphere and the new surface according to old energy 
density : 

* ,-". a- ,-," 

SM,"' = $ dl r2dr Pd) [&'r2 sin' B + 2$pi :H14 i n '  0 

-1 r=R $=o 
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1 16 = - ?,R5 (H,* f 7. HPHI t. 8 H1a 7 

and 

Thus we see that the change in internal magnetic energy corresponding to volume 
currents is zero. 

We shall now calculate the change in magnetic energy due to surface current, 
+ 

which exerts a surface force F. We can prove that 

+ 
Since in our case HI') = 0, 

+ + +  
F = +j* X H"'. (8.10) 

The change in the magnetic energy corresponding to the surface current is 

2vRe { (F,f, -4- Fete) dp. (8.11) 
-1 

Hence it  is only necessary to calculate F, and Fo correct to zeroth powers of 
4, rc, fs if we seek the result correct to their k t  power. To this approximation 



Substituting these values in (8.11) and evaluating the integrdi s c  get change 
in magnetic energy 6M,'") due to surface currents : 

Thus, since SM(@) = 0, the total change in magnetic e u c r ~ y  is 
6M = SM,"), (8.14) 

where cz, e,, c, have the values determined in (6.15)-(6.17). 

~f for a moment we put HI =. 0 and lgnorc the valuc of c ,  dcterrn~ncd in (6. 15), 
then \ 

Also the change in the potentlal energy for P,-deformation is given by 

Therefore the change in the total energy 6E of the configuration i s  given by 

Hence on minimising SE for equilibrium, we have 

@ch is same as in (6.20). 

In passing we may note that the energy method wdl not allow us to dcterntine 
more than one quanbty from among c,, r,, E, as they are not ~ndei)cndent, for 
example m the present case 
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