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1. The study of the problem of equilibrium and stability of a fluid sphere
under its own gravitation and an imposed magnetic field has been initiated by
Chandrasekhar and Fermi* with a view to understand the problem of magnetic
stars. Since then a numiber of workers*-® have contributed significantly towards
the understanding of this problem. In the present paper, we discuss the problem of
magnetic fields that can prevail in an axi-symmetric configuration in a coherent
manner. This has enabled us to characterise a new class of axi-symmetric magnetic
fields, in addition to point out some immediate generalisations of the fields
already discussed. In the latter part of the paper, we consider the equilibrium of
axi-symmetric incompressible fluid configuration under the effect of the new class
of magnetic fields.

2. EQUATIONS OF THE PROBLEM
The equation of equilibrium is
>
0= —grad(p —p V) + 1, 2.1
where p, p are the density and hydrostatic pressure of the liquid, V, the gravitational

. >
potential and L, the Lorentz force given by

->

?_7

L=jxH, 2.2
-> >
Jj and H being the current vector and magnetic field.

The electromagnetic properties are governed by the Maxwell equations, which
in the steady case, in which we are interested, reduce to

-> >
curl H =4nj (2.3)
. ->
le H=0 (2.4)
->
E=0, 2.5
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where we have taken the electrical conductivity to be infinite. We may note that
our assumption of infinite conductivity is justified on the grounds that in case of
finite conductivity the current system cannot be steady.

From (2.2) and (2.3)
- 1 -3 >
L=4—(curlH)><H 2.6
T
From (2.1), the equilibrium will be possible if

>
curl L =0 Q2.7

i.e., the Lorentz force is obtainable from a potential ¢ and

>
= — grad &. 2.8)
Using (2.8) in (2.1), it reduces to
p—pV+ ®=XK,aconstant. 2.9
We may rewrite (2.7) as
> > X 3
curl [(curl H) X H}=0 2.7)
Thus (2.9) is the condition to be satisfied by a magnetic field that can prevail in
an incompressible fluid.
An arbitrary deformation of an incomtpressible body can be realised by apply-

>
ing at each point of it a displacement £ Without loss of generality, we may assume
the displacement to be irrotational, so that a scalar point function ¢ exists such
that '

>
§ = grad ¢ . (2.10)
Besides, for an incompressible fluid
-
divé=0 2.11)
so that )
A =0, 2.12)

The regular solution of (2.12) is _
¥ = Z Py (), p = cos 6, (2.13)

where P, (u) is the Legendre polynomial of order #, and p the angle which the
radius vector makes with axis of symmetry.
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If 2 sphere of radius R be deformed to
=R T oRal) =1 (2.14)
n=0

then on comparing the values of £, at r = R obtained from (2.13) and (2.14),

we have

=R E SR @.15)
oo F =L
t=® 5 o) W 2.16)
and
(=] f-]
f=—Rsind T = (]5{) Py (), Q.17

where dash denotes derivation with respect to p.

Under the assumption of infinite conductivity there exists* a simple relation
> >
SH = curl (£ X He) (2.18)
: N > . b . .
between the displacement ¢ and the corresponding change 8H in the magnetic

N
field, where H, is the initial magnetic field. In writing (2.18) we have neglected

>
the quantities of the order of square of | £ |.

3. Bounpary CONDITIONS

We shall denote the quantities referred to an inner and an outer point of the
configuration by superscripts (/) and (e} respectively.

If there are no currents outside the configuration,
. =4
div H'? =0 3.1

' -
curl H® =0, 3.2)

Hence the external magnetic field can be obtained from a scalar potential W such
that

>
H® = ~ grad W (3.3
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and
4W =0. (3.4

In an axi-symmetric case, the general solution of (3.4) is

o 1
W= Z“IA"F‘JP"(‘“)' (3.5
Similarly
< 1
Ve = "%',: B, = P, (). 3.6)

The boundary conditions for the gravitational potential are:

V) = e @3 )]
W ye
W T m G5

on the surface of the configuration, where d/2, denotes differentiation along the
outward drawn normal to the boundary.

The boundary conditions on the magnetic field can be expressed vectorially
in the form

- > > >
Hi — H® = 4.,,:]'* X n, (3.9)
where 7* is the surface current vector per unit width of the surface layer.
From (3.9), we have
> 1=~ > ->
J* = nt X (H® — H®). (3.10)
When there is no surface current

> >
@ = H® ) (3.11)

~> . .
i.e., H is continuous across the boundary of the configuration.

At the boundary of the configuration, the total pressure P, namely the sum of
the hydrostatic pressure and the magnetic pressure, is continuous. Hence on the

boundary of the configuration

- 1 >
P+ g IO = - [H@pe G.12)
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Thus in ths absence of the surface currents, the boundary is defined by
r=0, (3.13)

bat when the surface currents are present
1,2 -
p =g {0E@ = [EO
= 2 (J*)2 + *Hu %, (3.14)

e .
where H;y is the component of the magnetic field perpendicular to j* and tangential
to the surface and j* is the magnitude of the surface current per unit width of the
layer. Thus in this case the hydrostatic pressure is not zero on the boundary.

4, MAGNETIC FIELDS IN AN AxXI-SYMMETRIC CONFIGURATION

Chandrasekhar and Prendergast® have reduced to a simple form the condition
(2.7) as applicable to the axi-symmetric cases. We shall put this condition in
still more suitable form, which enables us to enlist few more cases of magnetic fields
that can prevail in an axi-symmetric configuration.

We shall take I,, Iy, Iy as the unit vector at a point of the configuration,
forming a right-handed system as usual. In view of (2.4) we may express the most
general axi-symmetric field as

H=T(,6T,+cul [P, )1,

1y 12
== 5 (VT =L ORI+ Tl “.1

where P and T are arbitrary functions of r and 6 or s == cos 4.

From (2.3) we have

. et 12 S
4mj, == (curl H),= — 2 W TVT=uH 4.2
. hed 12
4njy = (curl H)y = — b (@y] “.3)
and
. ud 1
4mjy = (curl H)y = — = X, 4.9
where

X=5 (P {o-mi - «s)
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Also, from (2.6), we have

dal, = — ; (rT) (rP) 4.6)
wy =% L@V + T Laviy @7
and
— 1 (/T — T, r/1 — uP)
4Ly = r3/T —u? 3 ( ro, W ) @8

The condition (2,7) now gives

gﬁ(;\/r:m,i,) =0 » ©.9)
< (v T=7iLg) =0 ‘ @.10)
2 ?

(L) — 55 (L) =0. 4.1

From (4+9) and (4-10)

. const.
T

In order that Ly be finite everywhere
Const, =0

Ly

so that
Ly =0. 4.12)

Using (4.6), (4.7) in (4.11), we have

(g = VIR)
3( ro, p )

= e [ = T+ (- S 1Ty

4.13)
We can easily verify that we can conveniently write (4-13) as
X G
? , V1 —u2P
(vt =m * ra=m: V=) —0 G

?( r ) ® )]
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where
dlrr(l —p® T’]
VT =) =S R )
2GErv1—p AP =51 - (4.15)
From (4.14) we conclude that
3 S —seviTEP), (4.16)

r/ {1 -4 T AT

where ¢ is an arbitrary function of r4/T —p?P and (4-15) determines G when
P and T are known.

The above treatment indicates that there may be a considerable simplification
if we put
Pry/T=pi =1 (4.17)
and

Tr/T—pE = ¢ (4.18)

In terms of 4 and {, we have

N N I ¥
T T AW Hy = r\/l wior’ 4.19)

4w],=—rlgg£s4’”]o——;—1‘\/!:_——;2§,v Tg = —

4l = — oy _F,) [X 4 CM]

4“L9=r3_\/i——[ 204X @.21)

o= SR

d§ —2G (x) .22
and

X+Gm=r(—-pém, “4.29)
where

i=§—:—2+1r2“~%. ‘ “.24)
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The functions P and T used by Chandrasekhar and Prendergast® are related

to the present 5 and { through the following relations:
7 =Po% [ =To?% B =ry/T — 2 {4.25)
The general magnetic field (4.19) which can be associated with an axi-

symmietric configuration is governed by the equations (4.22) and (4-23), which
are the miain equations for discussions in the next section.

5. SpeCIAL TYPES OF MAGNETIC FIELDS WHICH CAN BE ASSOCIATED
WITH AXI-SYMMETRIC CONFIGURATIONS

(a) Force-free fields—The force-free fields are characterised by

>

L=0 S.1)
Hence in view of (4.21) the equations determining » and { reduce to

4 1 —p?dky

57 +‘T 5ﬁ§+ G(p= 5.2
and

_ar
2G (n) = @ 5.3
‘We may point out a simple case of a force-free field by taking

G =0

so that (5.4
r=0

In this case the magnetic field is purely poloidal and then the regular solution of
(5-2) is

7 = g™ (1 — pDh B2 (), 5.5

where 74 is an arbitrary constant and P2 () is the associated Legendre polynomial
of first kind, first order and the nth degree. Here

>

j =0 (5.6)
H, = — g (0 + 1) 1" Py )
Hy =m0 (1 + 1) 71 (L — 2 % [P, Gl 6.7

Next simpler case will evidently be to take G () =k, a constant. But in
this case

g = — %crz + (solution of X = 0) (5.8)
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but this is unsuitable for in this case Hy will be unbounded on the axis of symimetry,

The case

G (@) = o™ (.9
has been introduced by Liist and Schliiter'® and has been discussed thoroughly by
Chandrasekhar.?
Here

[=ay (5.10)
and

7 = g () (1 — g P2 () (5.11)
Tn this case the magnetic field is a combination of toroidal and poleidal field and is
given by

H, = — gt (1 4 1) 12 Ty (ar) Py ().

1d
Hy = — 0 7 ¥, (@] B2 o), : (5.12)

Hg = 190,43 (@) P2 (1)
The solution (5.11) can be reduced to that of Chandrasekhar if we set

n=Pr2(l —p?) (5.13)
and use the relation
Cn3/2 ) =—-010- pirt Pl () (5.14)

between the Gegenbauer polynomials and the associated Legendre polynomials,

We may note that any other choice of G (n) will render the equation (5.2)
non-linear and hence miay be intractible. C

(B) Poloidal Fields—These fields are obtained by taking { = 0, ie., G(x)
= 0 in (4.23), which consequently reduces to

Wy 1 —ptdky
b_rl;’—kv;;—rﬂz=r2(l—po“‘)<15(71)- (5.15)

We have already discussed the case ¢ (n) =0. We shall begin by taking ¢ (y)=a
so that (5.15) reduces to

o L —pto?

T ﬁz =art(l = pf). (5.16)
We find that

7 =Y () (1l ~pu?) 5.17)

is a so]utign of (5-16), where
r3Y" — 2Y = gt (5.18)
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The regular solution of (5.18) is

y=aor2+%r4 : (5.19)
so that

n=(art+ ) ) (5.20)
and

H, =2 (ark o5 By = = 2 (0 3r2) V=32 }

(5.21
Hy=0
Je=0, =0, Jy= = g r (1 — 2 (5.22)
The case studied by Ferraro® is obtained on taking
1 2
aOZ—EaR (5.23)

He finds that in this case when there is no surface current, ie., when _I:I“’ = ﬁ"’,
the equilibrium configuration is an oblate spheroid with ellipticity

R™ T27GME" ' 6249

Auluck and Kothari® have considered the equilibrium configurations with
the field corresponding to a, == 0. In this case the field at the centre is zero and
can be realised by superposing on the field in (5.21) a field — 1/3 « R? parallel to
# == 0 axis at every point of the configuration and also at each point of the cutside
space in order to ensure continuity of magnetic field at the boundary of the confi-
guration. They find that the equilibrium configuration is a prolate spheroid with
ellipticity. ’

2R4 .
< IR lire (5.25)

R 2 GM*

3

(y) Toroidal Field—If we take 5 =0, we have only the toroidal field In -
this case the condition (4.12), i.e., Ly =0
or

3L
D(mw)_0
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is automatically satisfied, while the condition (4.13) reduces to

L )M 0. (5.27)

The general solution of (5.27) is
{=fovT—ph, (5.28)
where f is an arbitrary function.

We shall put
L=r( =) fvVT—p?), (5.29)

where fis any regular function of @ to ensure boundedness of the physical quantities.

Then
Hy =@ f(®) €5.30)
1 T~ 4d .
fyzgﬂ[waé+2f],Jo=—‘”\(’ = 0.
(s 31
This current system is equivalent to the current system
11 d
Ty 10O
J3=0,j,=0 (5.32)

Recently De® has discussed the equilibrium configuration under the influence
of magnetic field obtained as a particular case of (5.30) by taking f (@) ==H,, a
constant.

We shall consider the general case (5.30) more thoroughly in § 6.

(8) Certain Combinations of Toroidal and Poloidal Fields—We have seen that
the ‘general magnetic field that can prevail in an axi-symmetric configuration is
given by (4.19) satisfying the equations (4.22) and (4.23). Recently Prendergast”
has discussed the simplest case which is equivalent to choosing

$(n) =k, a constant (5.33)
and
G (@) =a*. (5.34)
In view of (5.34) we have
L =uan. (5.35)
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Also, (4.23) reduces to -

2
14 o M+aﬁn~kr2(1-#2) (5.36)

Brz r?

The solution of (5.36) will be

7 == a particular solution of (5.36) + the general solution of
X+ a’n =0
k oo
=570 =p)+ X AT (@) P (W) (.37
n=0

from (5.11).
He finds that, if o be suitably chosen, a spherical configuration is stable,
-
boundary being given by p =0. Here H* vanjshes on the boundary and is

>
continuous with H® = 0. This in this case the magnetic field is wholly confined
inside the boundary and we have no means to detect it under normal conditions.

We may note here that the above choice of ¢ (3) and G (1) made by Prendergast
was motivated by the aim that the equation determining % should be linear, so that
its solution is simple.

If we take
G @) = o, ¢ () = fy (5.38)
We have again
{=uay

and the equation determining 7 is
1 —pu? 3%
My lne s T [a® = B =] = 0. (5.39)

It is evident that the solution of (5.39) will be simplified’ in (&, ) variables.’ On
making this transformation and assuming the solution to be of the form

n=W(@)Z(z) ' (5.40)
we have the following equations to determine W and Z:

W+ [ef =k — B2 W =0 (5.41)
and

7'+ kZ =0. (5.42)

" Whatever the combination of the solutions (5.41) and (5.42) we take, we find that

> Y
we do not get the regular solutions for H and 7
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Thus even if we take G (y) and ¢ () as proportional to n simultaneously we
are unable to get the admissible solutions, hence we shall try to satisfy the equa-
tion (4.23) in particular manner. This approach allows some suitable choice of
G (q) and ¢ (n) as function of #.

(i) Let us take
5= a3 (1 —pd) (5.43)

which is a particular solution of

X =0 (5.44)
After choosing 4 as in (5,43) we have from (4.23)

FORETIC) (5.45)
so that if we make a suitable choice for ¢ (3) we fix G (%) and then

2

{=51fn8 (). (5.46)
Thus if we take

¢ () = afy® (5.47)
then

G (n) = py? (5.48)
and

I4 =~/..2 Brprale 549

P2 . (5.49)

In this case we have

H, == 2a%, Hy = — 202 /T — 122, Hy = ,\/ 2 Bar+2rpii(] — i/

p+2
(5.50
Jr =g VIGT D) Bt (1 — s
Jo = = VIGF D farrtr (1 — paysiu | -3

je =0 ;
.- We may note here that in this case the magnetic field consi ‘

e onsists of a constant
magnetic field of strength 20® parallel to the axis of symumetry and a toroidal field
H, whose strength is proportional to @*+, The current flows parallel to the axis
of symmetry and has the strength varying proportional to @*. The existence of a
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surface current sheet is unavoidable in the present case, for a current line running
parallel to the axis of symmetry from a point on the surface to another point ¢n
the surface can be closed only by continuing it along the surface.

(if) Let us now take

7 = o2 (1 — ). (5.52)

On substituting this in (4.23) we get
Up

4(p — D a¥op2 4 G (n) = Lz 4. (5.53)
Let us now put

G () =G (n) and ¢ (1) = >~ § () (5.59)
in (5.53), so that it reduces to '

— 1 -
dp(p — e + G @)= 4 (). (5.55)

Apparently we have a wide variety of choice for G (y) and () in (5.55).
However, we shall consider here only the following:

G =p2 3=4 — 1)t 24,2/0
) =p% d=4p(p — 1) o + B 5.56)

ie.,

1 " o )
[ — 3 Q2 Yo/
o= (g =pHe +18 0 — D — 1) |
whete ¢ is a positive constant in order that a is real. The last equation in (5.56)
determines a in terms of the chosen values of 2 and ¢ to be used in (5.52).
= _‘21_)* 2p-1/2p 57
{= 5 —1 Bn ) (5.57)

H' = 2pa2r2""2 (1 —_ ”2)12—1”, H0 = e 2pa2r2”“2(1 —_ ‘uz)p—é
Hy = (ng_l)i Bot-1ip prv-2 (1 _ 21 ] (5.68)

and |
J = 41ﬂ {2p2p — ]‘)}‘} Patr—Vopte=3 (1 — ;2)(2e-8)i2y

jo = _417'_{2]; 2p — 1)”}5 Pa (2e-0p -3 (1 — u2yp-1 Toooa (5.59)

Jp=— ;lrp(p — 1) a3 (] — p?) -0z

For regularity of the physical quantities, p is greater than unity.

ad
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We may note here that in the new classes of magnetic fields (5.50) and (5.58),
{ is not necessarily a linear function of 4 as was assumed by Prendergast.

6. BqumriuM CONFIGURATIONS WITH TOROIDAL FIELD

We shall determine the equilibrium configurations of an incompressible fluid
under the action of toroidal field defined by (5.30) choosing, as a particular case,

@ =H,,+%W ‘ 6.1
so that
~ Hi~
Hy = Hyo + R’é Ch 6.2)

In order to be able to use (2.9) we shall calculate @. Using (5.31) in (2.6)
and (2.8) we have

1 ~z 3 HoHy *
@ == const. -+ o [anwz -+ 3 AKO.I;—IA wt - 23}:{1‘ a“] (6.3)
so that .
4_1 — CONG |_L A-'HH,A' Hz,\
D — o Hy? = const. + o~ [Ho%ﬂ + ﬁ; @+ P:* wﬂ:l (6.4)
= do — $aP2 (1) + 4Py () — $¢P4 (1), (6.5)
whete B
_ U Fprrnay 8 Mo 16 Hye
o = const, + o~ [%Ho 7+ 5 Bl g + 105 Ri‘ r“] " (6.6)
: 1 , 16 . rt 16 H,2 B
_— 2 —_ oy Z
$a S [%Hozr + 21 HoH, I + 63 ”Rli ,n] (6.7)
LTS g, 2 4 H
=gy 35 EH Rt 35 RE ol | (6.8)
and
_1r16 . ,nm g '
bo=g7 L o' T 6.9

We now assume that H? is s :11 ' ilibri
oW s o small that the surface of equilibrium configura-
tion dlﬂ"e.rs everywhere from“the&sphe;e of radius R by a small quantity of the glrls:r
of maggn'ude of Hg? ~ We shall neglect the powers of this quantity higher than the
first and its product with Hy2% Let the surface of the equilibrium configuration be

r, =R[l‘ +n§’ P, (,L)]. | | 6.10)



Equilibrium of Self-Gravitating Incompressible Fluid Sphere 65

The gravitational potentlal of this configuration at an 1nterna1 point will be
given by (11)

V® = 2nGp (R® — §%) + 4nGp R? E 5 E_"}_ : (1%) P (6.10)

To our approximation, this reduces to
4 8 ®n—-1 L. :
) = 27 2T GRe 3 AT

v 7 "oR* — 5 Gp .,5 Lt O (6-1??
on the surface of the configuration.
In this case

H" =0, Hg'® =0, Hy = of (@).
Hence at the boundary

H,® =0 <
and from continuity of normal component

H,@ =0
everywhere on the surface of the configuration; consequently —_

H,® = Hy9 = 0
everywhere on the surface of configuration
from (3.5) it is clear that Hy!@ = 0.

Thus Hy is discontinuous across the boundary of the configuration, and therefore
there is a surface current present, whose direction lies in the meridian plane. From
(3.10) the magnitude of the surface current per unit width of the current-sheet is
given by

. 1
3 =g [Hp Joustae

=R [Hysin 0+ H, sin 4] 6.13)
¥
*This shows that the boundary of the configuration will be defined by taking
PO =PO je. from (2.9) by taking
@ — L [Hq,,“’]2 — pV® = const. 6. iii)
Using (6.5) and (6.12) in (6.14) and equatmg the coeﬁicmnts of various P, (p.)
polynomials, we get
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5 .. 8 8y ‘
=5 [Ho + S B+ 57 (6.15)
9 6 2]
o= = iy [P+ i €19
_13H;? 6.17
‘= 4620772/32(} ( )
and
¢, =0, when n 2, 4, 6. {6.18)

In particular, let H; =0, then

o= R L &Py (), (6.19)
where

. oHg
o=yt (620
Thus the equilibrium configuration is a prolate spheroid as found by De,? but his
expression for e, does not agree with our expression in (6.20). This is on account
of the Fact that the value of V& taken in his paper is in error due to neglecting the
first term in our expression (6-11).

Let H, =0, then

ry=R{1+ &Py(p) + P (1) + Py ()] (6.21)

where
5H,2
€ == W% (6.22)
. 27H,2

4T 5400205 (6.23)
@nd

o= 13H,?

¢ 4620n%°G (6.29)

o We have chosen this exprcf,ssion for f(@) quite arbitrarily. The treatment
4bove shows that the method will be applicable to any choice for f (=) of the type

(@) =ZA@" (6.25)

Only the mathematical analysis will beconte more cumbersome.
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7. EQUILIBRIUM CONFIGURATION WHEN TOROIDAL AND ALSO POLOIDAL
FiELD 18 PRESENT

‘We shall consider the field given by (5.58).

Here
W =1 1 oz M 24
=3 =L s K ] @b
W 1 1 ) L ;
o=l = e K 05 7.2
Ly=0 @.3)
so that

W 0 1
40 = T+ e = g (1 )[qu i dgz]

= b dn,

on using (4.22) and (4.23).

Hence

& = const. + 4% [ () dn

= const. + = 8 [4p (p — 1) af + BRate-2i9] p40-1) (] — p2)20-1
(7.4)
on using (5.54) and (5.56).

Therefore
1 p 192/
W72 — P (R 2449~ '
[ 8~[[—]¢ 1% = constant + — & [417 ot D@ =D B "]
X Ml (1 — p2)2e-1) (7.5

Here Hy® 520, while Hp!® =0 in an axi-symmetric case. Therefore, we
expect surface currents, the current sheet lying in the meridian plane. Sipce the
condition of continuity on the normal component of the magnetio field is satisfied

by taking
H,% = H,@, Hy® = Hy®,
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the boundary of the configuration will be given by
1_4 {2 .
+ g (g2 =0
or from (2.9) by
Y 1 ine = R
E D — & (Hy M2 — pV® = const. N (7.6)
Le., by
. 1 [4pza4 + p Bzaﬂp~2/7‘] RAG-1) (] — )20
8 »—-D@2p~1D

CIMAG R 1
+ SR nZ,‘l P €,y (1) = const, 7.7

where M is the mass of the spherical configiration and we have assumed as in 6
the boundary of the equilibrium configuration to be given by

=R[1+ F op@)]. .9

Given «, B, p and the initial spherical configuration, we can determine e,
by inserting the values of (I —p®*~2 in terms of the Legendre polynomials in
(7.7) and equating the coefficients of the polynomials of various degrees on its
two sides.

Case ()p =2:
“Taking p = 2in (7.7) we have
B =R+ aPa() F ePy () 09
where )
40 R
e T G H Y (.10
“and |
o 4 R
“= g Gt .1

We may note here that the magnetic field and current-in thlS case gre:
H = 4a? fz(l —uHu, Hy = ~ dap2 (1 —poywe: ’
H¢= :\73 Ba3/2r2 (1 _IJ'Z) ] (7 12)
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and

3 ; . 3 ”
Jo= L g~y =~ i —

. 2 o
Jo=—Sear (1 —ph
Case (ii): p=3:
‘When p == 3, we have

—R[1+ 2 arui],

where
640 R
“ =253 WG a3<12a—l— ,%})
1728 Rizgs 1
=505 386 (124 + o prot),
1664 Riz 1,
— o &7 4L gt
% = 17335 MG (12“ 15 f% )
and

544 R 1
T T 4504 MG " (12“ T ﬂz“&)'

The magnetic field and the current in this case are:
H, = 6a21 (1 —pB)2p, Hy = + Go2rt (1 — p2)2

N Hy= ,\/g Bad3pt (1 — p2)?

and,

. 30 . . 30 , .
Jr= % ﬁa5/3r8‘(1 _ ’Lz)a/zp_’ ‘]ﬂ J— }_{4; ﬁa5jdr8 (1 __“2)2
Fo= S 28 (1 — pR)¥2
4 m
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(7.13)

(7.14)

(7-15)
(7.16)

.17

(7.18)

(7.19)

(7.20)

We shall now calculate the total change in the magnetic energy in the case

considered in 6.

Let us con51der a spherical conﬁguratlon of radlus R having an internal

magnetic field

HW =Hy" =0, Hg" = Hyrsin ¢ + w3 risin® 8

8.1
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and a surface current whose magnitude is given by
J* = = - [Ho sin 8 + By sin? 0] ©.2)

Let us deform the configuration so that its surface becomes
=R+ &P, + ¢Py + ¢Pgl. (8.3)

From (2.16) and (2.17), we find that this deformation will be realised by giving a
displacentent whose radial and transverse components are

§ = erPy () + R rPa() + g r P () (8.4)
and
3 b
£y = —sin § [2 R )+ P R (»)}. (8.5)

Now the change in the internal magnetic energy density at a point is given by

@y -> > >
3 (——llgﬂ (L 4-1” Hy® . [(H(“ .grad) £ — (Z. grad) ﬁ‘“]

TN
=~ [6 5 ] oy e

1 . H . #
=g, rsin 0(H0? + =g rtsin? 0+ 3;{‘1 7* sind 0)

X (sin 0. ¢, + cos 0.£p)

1 < ool 4H, : :
=—z r2gin® @ (H02 4+ = Ij{ g'l 2 sin? 6 + §§;}zr“ st 0)
g .
e (P2 - P2‘> (B~ o p")
€ cos 8,
+R£4'4(PB*, & Po)}~ (8.6)

We shall calculate the change in the magnetic energy in two steps: i) sM,
the change in the magnetic energy inside the sphere due to change in the magnetic
energy density, and (ii) 8M,® the change in the magnetic energy due to deforma-
gon between the surface of the sphere and the new surface according to old energy

ensity :

1 & an
1
My — f d,;f r2dr f a [H.,m sin? § + 2}11‘%1111 risint g
—~1 r=R $=0

2

H
+ ok o sins 9]
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1
==L s (H(F + 4179 HH, + -g Hlﬂ)

3 9
+ 325 RS (HoHl +ir Hlﬁ) - 30%, «RH? (8.7)

and

1 R o2 —)(i) K
MO = f du f rodr f s[{EL}] b
8
-1 =0 ¢=0
=75 52R5 (Hn += H0H1 + §H12)

€R7H, 2

3]5 RS (H0H1 + = H1 ) + = 3003

From (8.11) and (8.12)
SM#) = SM,® 4 SM,® =0, 8.8)

Thus we see that the change in internal magnetic energy corresponding to volume
currents is zero.

We shall now calculate the change in magnetic energy due to surface current,

>
which exerts a surface force F. We can prove that
> > > -
F =j* X $ (H® + H@), (8.9)
>
Since in our case H® =0,

> > ->
F = }j* x H®, (8.10)

The change in the magnetic energy corresponding to the surface current is
. . . .
2R2 [ (F,£, -+ Fyéo) du. @8.11)
-1

Hence it is only necessary to calculate F, and Fy correct to zeroth powers of
&, €, € if we seek the result correct to their first power. To this approximation

F, = §1_’—1-_ R2sin2 8 (H, + H, sin? §)*

Fg=F4s=0. ’ (8.12)
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Substituting these values in (8.11) and evaluating the integral we get change
in magnetic energy 8M,® due to surface currents:

8
M = — 1 eo(BE 1 T, + 5 )
§ sl 1N 8 oo
+ 5 (§ HoH + 13 H1~) ~ 3003 TR (8.13)

Thus, since SM(® = 0, the total change in magnetic encrgy is
SM = SM,®), (8.14)

where €, €, € have the values determined in (6.15)-(6.17).

1f for a moment we put H; == 0 and ignore the value of e, determined in (6, 13),
A

then
M = — ‘1~ €2R5H0 (8.15)

Also the change in the potential energy for P,-deformation is given by

3 GM2
82 = o~ e (8- 16)

Therefore the change in the total energy 3E of the configuration is given by

3 GM2 .
OF = "1“5 &H "R+ % R &% (8.17)

Hence on minimising 3E for equilibrium, we have

3 HeRYSHy®
18 GM? ~ 327%°G

€ =

.18

which is same as in (6.20).

I passing we may note that the energy method will not allow us to determine
more than one quantity from among e, ¢, < as they are not independent, for
example in the present case

- 27 198 + 45
TR T BT Ee) (8.19)
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