JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE

SECTION A

VOLUME 40 JULY 1958 NUMBER 3

THE FORCE CONSTANTS OF SOME POLYATOMIC MOLECULES AND IONS

BY T. A. HARIHARAN

(Department of Physics, Indian Institute of Science, Bangalore-3)

Received February 2, 1958

Abstract

The force constants of the molecules phosphorous oxybromide and thiophosphoryl bromide and the ions $\operatorname{GaBr}_4=$, $\operatorname{InBr}_4=$, $\operatorname{TIBr}_4=$ and $\operatorname{CdBr}_4=$ have been evaluated using the known fundamental vibration frequencies. The matrix method of Wilson was used in all the cases. The value of the P = O force constant was nearly the same as found in the molecule OPCl₈ and the P-Br force constant was also nearly the same in OPBr₈ and SPBr₈. However, there was some difference between the values of the P = S force constant in SPBr₈ and SPCl₈.

INTRODUCTION

The present investigation deals with the determination of the force constants of the molecules phosphorous oxybromide $(OPBr_3)$ and thiophosphoryl bromide $(SPBr_3)$ and the ions $GaBr_4$... $InBr_4$... $IIBr_4$... and $CdBr_4$ using known values of their fundamental vibration frequencies. The molecules OPBr₃ and SPBr₃ belong to the point group C_{3v} . The vibration spectrum of OPBr₃ has been studied by Gerding and van Driel (1942) and that of SPBr₃ by Delwaulle and Francois (1947). The electron diffraction measurements on these molecules have been carried out by Secrist and Brockway (1944).

From a consideration of the vibration spectra, the ions $GaBr_4^{--}$, $InBr_4^{--}$, $TIBr_4^{--}$ and $CdBr_4^{--}$ are supposed to have tetrahedral symmetry T_{σ} . The investigation of the Raman spectrum of $GaBr_4^{--}$ by Woodward and Nord (1955), of $InBr_4^{--}$ by Woodward and Bill (1955), of $TIBr_4^{--}$ by Delwaulle (1954) and of $CdBr_4^{--}$ by Delwaulle, Francois and Wiemann (1939) and Rolfe, Sheppard and Woodward (1954) support the view that the ions are tetrahedral.

T. A. HARIHARAN

The Wilson's matrix method has been used to evaluate the force constants.

THE POTENTIAL ENERGY FUNCTION

In the case of the tetrahedral ions, even though there are only four distinct vibration frequencies available for calculating the force constants, a general valence force potential function containing all the interaction terms has been assumed. This contains seven force constants. When we factorise the secular equation and obtain the F matrices corresponding to each species, the elements of these matrices occur as combination of the force constants. Hence to determine the individual force constants certain approximations have to be made.

The potential energy function can be written as follows:

$$2\mathbf{V} = f_a \sum_{i} \Delta d_i^2 + f_a \sum_{i,j} (d\Delta \alpha_{ij})^2 + 2f_{ad} \sum_{i,j} \Delta d_i \Delta d_j$$
$$+ 2f_{aa} \sum_{i,j} (d\Delta \alpha_{ij}) (\sum_{ki} d\Delta \alpha_{ki}) + 2f'_{aa} \sum_{i,j,m,n} (d\Delta \alpha_{ij}) (d\Delta \alpha_{mn})$$
$$+ 2f_{aa} \sum_{i} \Delta d_i [(\sum_{i,j} (d\Delta \alpha_{ij})] + 2f'_{aa} \sum_{i} \Delta d_i (\sum_{j,k} (d\Delta \alpha_{ik})].$$

where $i, j = 1, \dots, 4$ and $i \neq j$

k, $l = 1, \dots, 4$ but k or l may be equal to i or j and $k \neq l$.

Similarly $m \neq n$, and m or n not equal to either i or j

 d_i denotes the X - Y_i distance

 a_{i} the angle Y_i X Y_i assuming the ion to be X Y₄.

The factored F matrices are:

$a - 2 f_{aa}$
a)

In order to determine the force constants separately, a procedure due to Voelz Meister and Cleveland (1951) has been adopted. In this f_{dd} is given a series of values, each a small fraction of f_a . For each value of f_{dd} the corresponding f_a was obtained from F_{11} and substituted in F_{44} . Knowing F_{44} we can get values of F_{83} and F_{34} . In each case we get two sets of values for F_{33} and F_{34} . If we neglect f'_{aa} in the first approximation we get f_a from F_{33} and F_{34} . We cannot, however, get the separate values of f_{ca} and f'_{da} . From the series of values of rates we constants thus obtained we can fix the most probable limits within which the force constants will lie even though it is not possible to choose a unique set.

...

The potential function for the two molecules OPBr_a and SPBr_a is assumed as

$$2\mathbf{V} = f_{\mathbf{D}}\Delta\mathbf{D}^{2} + f_{a}\sum_{i}\Delta d_{i}^{2} + f_{a}\sum_{i,j}(d\Delta a_{ij})^{2} + f_{\beta}\sum_{i}(d\Delta \beta_{i})^{2} + 2f_{ad}\sum_{i,j}\Delta d_{i}\Delta d_{i} + 2f_{aa}\sum_{i,j,1}(d\Delta a_{ij})(d\Delta a_{ji}) + 2f_{\beta\beta}\sum_{i,j}(d\Delta \beta_{i})(d\Delta \beta_{j})$$

i, j, l = 1, 2, 3; $i \neq j \neq l$. If we denote the molecules as XY, Z D = X - Zdistance, $d_i = X - Y_i$ distance, $a_{ij} = Y_i \hat{X} Y_i$, $\beta_i = Y_i \hat{X} Z$. For a series of molecules of the type XY₃Z which includes OPBr₃ Venkateswarulu and Sundaram (1956) have assumed a similar function containing six constants. The interaction constant of the type f_{Dd} is included while the constants f_{aa} and $f_{\beta\beta}$ are neglected. Of course it is true that only six fundamental frequencies are available and we can determine only six force constants. Since f_{Dd} occurs as a non-diagonal element, it is not included and instead, the interaction terms f_{aa} and f_{BB} which occur in the diagonal elements are included. The F matrix elements for the two species A1 and E are

For A

For A₁
$$F_{11} = f_D$$
; $F_{22} = f_d + 2f_{dd}$.
 $F_{33} = \frac{1}{2} d^2 (f_a + f_\beta + 2f_{aa} + 2f_{\beta\beta})$
For E $F_{44} = f_d - f_{dd}$ $F_{55} = d^2 (f_\beta - f_{\beta\beta})$
 $F_{66} = d^2 (f_a - f_{aa}).$

From these, the values of f_D , f_d and f_{dd} can be easily determined. If we neglect either f_{aa} or $f_{\beta\beta}$ we can get the values of the other three constants.

The fundamental vibration frequencies and the parameters of the molecule and ions are given in Tables I and II.

						-				
Molecule	<i>v</i> ₁ (A ₁)	$\nu_2(A_1)$	v8(A1)	₽4(E)	ν ₅ (E)	ν ₈ (E)	d in ÅU	D in ÅU	α	β
OPBr ₃ SPBr ₃	173 165	340 299	1260 718	118 115	267 179	488 438	2.06 2.13	1 · 41 1 · 81	108 106	110 112°47
				,	TABLE :	п				
	Ion		v ₁ (A ₁) ·	ν ₂ (E)	ν ₃ (Γ2)	¥4 ((T ₂)
GaBr₄⁼			210		71		102		278	
InBr ₄ =			197		55		79		239	
TlBr4"			190		51		64		209	
CdBr ₄ -		dBr ₄ 166			53		62		181 🕻	
								•		~

TABLE I.

TABLE III

	Molecule	$\mathrm{F_{11}\!\times\!10^5}$	$F_{22} \times 10^{5}$	$F_{33} \times 10^{-11}$	$F_{44} \times 10^{5}$	$F_{\rm 55}\!\times\!10^{-11}$	F ₆₆ ×10 ⁻¹¹
-	OPBr ₃	9.6	2.834	0.886	1 · 4	1.039	0.939
	SPBr ₃	3.755	2.828	1.388	1.3	1 · 147	0·916

TABLE	I٧
-------	----

Force Constants in 10⁵ dynes/cm.

Molecule	f _D	fa	faa	$_{Jeta}-f_{etaeta}$	fa — faa	$\begin{array}{c}f_{a}+f_{\beta}+2f_{aa}\\+2f_{\beta\beta}\end{array}$
OPBr ₃	9.6	1.878	0.478	0.2447	0.221	0.4178
SpBr ₃	3.75	1.81	0.509	0.2527	0.202	0.6117

If we neglect $f_{\beta\beta}$ we get $f_{\alpha} = 0.205 \times 10^5$ dynes/cm.

 $f_{aa} = -0.016$,, $f_{\beta} = 0.2447$,,

and if we neglect f_{aa} we get $f_{\beta} = 0.2287 \times 10^5$ dynes/cm.

 $f_{\beta\beta} = -0.016 \qquad ,,$ $f_a = 0.221 \qquad ,,$

The values of the force constants corresponding to the bonds P = O and P - Br are in good agreement with those obtained by Venkateswarulu and Sundaram (*loc. cit.*). There is rather large difference between the force constants of the P = S bond between the molecules SPCl₃ and SPBr₃. For the former the value obtained is 5.36×10^5 dynes/cm, while for the latter the value is 3.75×10^5 .

For the tetrahedral ions, the two sets of constants for a series of values of f_{ad} are given in Tables V to VIII. The force constants are given in 10⁵ dynes/cm.

Between the two sets of values for the force constants given in the above tables the A set gives rather high values for the bending constants.

Since all the frequencies have been used in evaluating the force constants it is not possible to choose a unique set by this method. However, it can be seen that for a certain range of values of f_{da} the variation in f_a and f_{aa} is very small and the values of the force constants within this range can be taken as the mest

	GaBr ₄ **							
f _{aa}	fa	$\begin{array}{c} f_{da} - f'_{da} \\ A \text{ set} \\ \cdot \end{array}$	$f_{da} - f'_{da}$ B set	$\begin{array}{c} f_{\alpha} - f'_{\alpha\alpha} \\ A \text{ set} \end{array}$	$f_a - f'_{aa}$ B set	faa		
0	2.08	0.841	0.266	0.757	0.145	0.033		
0.02	2.02	0.832	0.233	0.773	0.134	0.027		
0.04	1.96	0.839	0.183	0.804	0 · 106	0.013		
0.08	1.84	0.793	0.144	0.809	0.114	0.017		
0.1	1.78	0.776	0.118	0.813	0.111	0.016		
0.12	1.72	0.759	0.094	0.82	0.111	0.0158		
0.15	1.63	0.726	0.061	0.82	0.113	0.0169		
0.2	1.48	0.668	0.014	0.82	0.125	0.023		
0.22	1.42	0.641	0.002	0.82	0.133	0.027		
0.25	1.33	0.578	-0.005	0.788	0.168	0.044		
0.3	1 · 18	0.514	0.045	0.783	0.186	0.053		

TABLE V

InBr₄=

faa	fa	$f_{da} - f'_{da}$ A set	$f_{da} - f'_{da}$ B set	$f_{a} - f'_{aa}$ A set	$f_a - f'_{aa}$ B set	fa a
0	1.83					
0.01	1.8	0.62	0.202	0.488	0.104	0.028
0.02	1.77	0.625	0 · 179	0.506	0.096	0.024
0.04	1.71	0.629	0.138	0.537	0.085	0.019
0.06	1.65	0.629	0.101	0.564	0.078	0.015
0-08	1 · 59	0.626	0.068	0.587	0.075	0.014
0.1	1.53	0.618	0.038	0.608	0.075	0.014
0-12	1.47	0.608	0.012	0.6258	0.0775	0.015
0-14	1.41	0.595	-0.0119	0.641	0.082	0.017
0.16	1.35	0.580	-0.0335	0.654	0.089	0.021
0.18	1.29	0.562	0.0525	0.665	0.099	0.025
0.2	1.23	0.542	0.0692	0.673	0.111	0.031

TABLE	V	IJ
-------	---	----

TIR	2
1101	4

	-		*			
· · faa ·	f_d	$f_{da} - f'_{da}$ A set	$f_{da} - f'_{da}$ B set	$f_a f_a - f'_{aa}$ A set	$f_{a} - f'_{a}$ B set	a aa
0	1.7		••		••	
0.01	1.67		• ·	•••		
0.02	1.64	0.357	0.228	0.235	0.141	0.05
0.04	1 · 58	0.423	0.133	0.312	0.103	0.031
0.06	1 · 52	0.452	0.074	0.363	0.09	0.024
0.08	1 · 46	0.47	0.028	0.405	0 087	0.023
0-1	1.4	0.478	0.009	0.442	0.089	0.024
0.12	1.34	0.482	0.046	0.474	0.096	0.027
0.14	1.28	0.48	0.069	0.503	0.106	0.032
0.16	1.22	0.475	0.092	0.529	0.117	0.038
0.18	1.16	0.466	0.112	0.552	0.134	0.047
		TA:	BLE VIII CdBr ₄ =			
faa	fa	$f_{da} - f'_{da}$ A set	$f_{aa} \stackrel{-}{-} f'_{a}$ B set	$a f_a - f'_{aa}$. A set	$f_{\alpha} - f'_{\alpha \alpha}$ B set	faa
0	1 · 298					
0.03	1 · 208	•••	••		••	
0.04	1.178	0.334	0.210	0.207	0.11	0.033
0.05	$1 \cdot 148$	0.338	. 0.170	0.241	0.085	0.02
0·06	1.118	0.349	0.14	0.265	0.071	0.013
0.08	1.058	0.359	0.093	0.301	0.055	0.005
0.1	0.998	0.359	0.056	0.328	0.051	0.003
0:12	0-938	0.353	0.025	0.349	0.025	Q·009
0.15	0.748	0.334	0.011	0.372	0.052	0 ·0037

TABLE IX								
Ion	f _{dd}	fa	$f_{da} - f'_{da}$	f_{α}	faa			
GaBr₄™	0.08	1 · 84	0 · 144	0·114	0.0176			
	to	to	to	to	to			
	0.15	1 · 63	0 · 061	0·113	0.0169			
InBr ₄ =	0.06	1 •65	0.101	0 · 0786	0.0156			
	to	to	to	to	to			
	0.12	1 •47	0.012	0 · 0776	0.0150			
TlBr4=	0 ∙06	1 · 52	0 · 074	0 · 09	0·0248			
	to	to	to	to	to			
	0 • 12	1 · 34	0 · 046	0 · 096	0·0276			
CdBr₄™	0.06	1 · 118	0·14	0·071	0·0137			
	to	to	to	to	to			
	0.1	0 · 998	0·056	0·051	0·0036			

probable ones. These are given in Table IX. A similar method has been applied by Voelz, Meister and Cleveland (*loc. cit.*) in the case of SiF_4 .

For the ions GaBr₄⁻, InBr₄⁻ and TIBr₄⁻, the orbital valency force field developed by Heath and Linnet (1948) was also applied. This contains four force constants, a stretching constant f_r , a bending constant f_a and two others corresponding to the interaction between non-bonded atoms, viz., $A = \frac{1}{2} d^2 V/dr^2$ and B = -dV/drwhere $V = a/r^n$, a being a constant and r the interatomic distance. n is generally taken as 12 if the bonded atoms resemble electronically the inert gas atoms. Heath and Linnet have applied such a function for the ions ClO₄⁻, SO₄⁻, SO₄⁻ and PO₄⁻ and find it satisfactory.

The stretching force constants obtained in the present case are: for GaBr₄^{**}, $f_r = 1.345 \times 10^5$ dynes/cm. for InBr₄^{**}, $f_r = 1.357 \times 10^5$ and for TlBr₄^{**}, $f_r = 1.296 \times 10^5$. These values are lower than those obtained using a valence force potential function. The difference is to be expected because the values of the individual force constants depend to a certain extent on the potential functions used.

ACKNOWLEDGEMENT

The author's thanks are due to Professor R. S. Krishnan for his kind interest and encouragement.

REFERENCES

l	Delwaulle		C. R. Acad.	Sci., Paris,	1954,	238,	2522.
---	-----------	--	-------------	--------------	-------	------	-------

2. _____ and Francois . . Ibid., 1947, 224, 1422.

T. A. HARIHARAN

3.	Delwaulle, Francois and Wiemann	C. R. Acad. Sci. Paris, 1939, 208, 1818.
4.	Gerding and van Driel	 Rec. Trav. Chim., 1942, 61, 419
5.	Heath and Linnet	Trans. Faraday Soc , 1948, 44, 561.
6.	Rolfe, Sheppard and Woodward	Ibid., 1954, 50, 1275.
7.	Secrist and Brockway	 J. Am. Chem. Soc., 1944, 66, 1941.
8.	Venkateswarulu and Sundaram	 J. Phys. Radium, 1956, 17, 905.
9.	Voelz, Meister and Cleveland	 J. Chem. Phys., 1951, 19, 1084.
10.	Woodward and Bill	 J. Chem. Soc., 1955, 1699.
11.	Woodward and Nord	 Ibid., 1955, 2655.

96