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ABSTRACT 

The 'stmctural' part ofthe bulk modulus, represented by the contributlcn of 
the entropy term in the free energy, is examined and related t o  the temperature co- 
effcient of the bulk modulus. This quantity is computed for the harmonic oscillator 
and free volume models, as also on the basis of a simple kinetic thcory treatment. 
The values agree with experiment as regards the order of magnitude. 

It has been suggested1 that the cynpressibility of a liquid can be expressed 
as the sum of two contributions: 

(a) a geometrical part due to  the simu1tane~u.s contraction of theintermolecular 
spacing under the influence of pressure, 

(b) a structural part that stems from a molecular rearrangement as a result 
of the increased regularity and compactness. 

I t  was also shown2 that the second contribution can be expressed in terms of 
the temperature coefficient of the compressibility. Thus considering the Bulk 
Modulus, 

where KT" and KTa are the geometrical and the structural parts. Now, K T v a n  
be expressed in terms of the dK,/dT for, 

where a is the thermal expansivity. 

Since, dK,/dT is negative for most liquids, 



Further, 

for most liquids, so that the sccond term is about 3 to 4 times KT at room 
temperatures, and the first correspondingly greater by a hctor 4 to 5 KT. 

The first term V b2U/2V"s the one cmployed in the computation of the KT 
in solids, wbere the cnlropy contribution is negligible. Thus 

in solids, and KT" 10 to 20% of K.r. I n  liquids, howewr, thc second term resulting 
from a more favourable distribution of the molecules under pressure, is the major 
contribution to  the decrease in Bulk Modulus as compared to a solid. In f x t ,  
it can be shown that the effect of enhanced molecular distance alone cxnnot account 
for the drop in Bulk Modulus by a factor of nearly 10 from that of the solid. 

A simrlar situation exlsts, as was pointed out by Frenkel, when the exptession 
for the pressure is considered 

The first term is the static or  elaslic part of the pressure, and the second the thcrmal 
part. the volume of thc body representing a condition of equilibrium between the 
thermal pressure tending to expand i t  and the elastic force tending to  restore the 
original volume. The two contributions lo KT will now be evaluated or;* the basis 
of the two simple models adopted for liquids, the barmonic oscillator and smoolhcd 
potential models. 

A quasi-lattice of equilibrium positions of potenlial minima-xo is chosen, 
and the ~nolecules regarded as simple barmonic oscillators of frequency v. For 
convenience, the lattice can be regarded as face-centred cubic. Then, from the 
pprtition function, the following expressions are obtained for the free energy, pres- 
sure, and the Bulk M o d u l u ~ . ~  

Hence, 
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Assuming a Lennard-Jones potential, 

where z is the co-ordination number, the equilibrium 

a 
- N [$IT = 3RT , (ln Y)T 

where the frequency 

and the restoring force, 

is then given by, 

for a face-centred cubic lattice, taking account of only nearest neighbour interactions. 

Now, assuming the equilibrium distance in a crystal is given by Ro. 

/ 3 ~ a / 3 r )  = 0 
b = aRO6/2 

and in the liquid, 

R ' = R o ( l + S ) :  S<1, 

substitution in the equation gives, 

Now, a can he eliminated by the relation, 

-where A,,, is the molar latent heat. Hence, 

RT 
6 0.5 - N 0.0%. 

h,,, 

by Troufon's Rule 

This, of course, is in accordance with the fact that.,,the increase in volume on 
passage to the liquid state .is - 10%. 
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Hence the two components of KT are obtained, 

and this value comes out as nearly 

Sindlarly, for the structural contribution, 

b2 3RTV . Ro2 , -2 390 - 48 3RTV -- (In v) n -. - bVZ 9Va [1 - 148 ] ' 
Substituting the values, the L.H.S. has a value, 

( KTa 1 - lORT -2.4 X 10'" dyne~lcrn.~, 

at T =  300°K., which is of the right order of magnitude. 

The intermolecular potential is replaced by a value averaged over all con- 
figurations and a free volume is introduced. The expressions for the free energy, 
pressure, and Bulk Modulus are given by (3). 

2 m k T  
F = - NX, - RT ln V, + RT In f -f;3-] + RT 

Hence, 
aX b2 

KT = - NV ($) - RTV p (Lit VAT. 

' The geometrical contribution to KT is the same as io the previous case, while 
to find the structural part, some assumption has to be made regarding the free 
volume V,. The simplest is to assume 

v, = (V - V,) 

where V, is analogous to the Van der Waals co-volume. 

The structural part is thus negative, and 

values of V, from latent heat and thermal pressure data give, 



so that 

KT" W1 dynes/cm2 

which is too high by about a factor of - 10. Using a more refined 'cage' model (3), 

so that the structural part is, 

With values of (1 - 8) 

this yields values of nearly the right order of magnitude for I KT" 

Finally, we shall consider the expressions for KT and its temperature coefficient 
on the basis of the kinetic theory, starting from the expression for the pressure, 

[the integral bcing cxtendcd over the volume of the liquid and A, ( r )  bcing the radial 
distribution function] the differentiation with respect to V can be carried out by 
the method following Green.4, 

The integral involves a magnitude, 

R = YV*: y = constant 

so that the limits can be got rid of by the substitution, 

p = V-t r, 

then, 

a dr (dr) = - 
3v 

a a 
,t; [EL . +' . r3] = & . [[A, . $' . la], 
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T ~ C  latter differentiation involves bli,/rlr rind this can be calculated as follows :- 

For a uniform stress, the distance between the lnolecules changes to 

while the molecular density changes by 

Since the probability of finding a molecule in a volume element dV at a distance 
r from an occupied position, in the undeformed state is the same as that of finding 
it a distance r' in the deformed state, in dV', 

This is practically the same as the expression as that derived by Green, taking 
into account a shear modulus as well, except for a difference in the numerical factor. 

The evaluation of KT can be effected by the method of steepest descents. This 
is because the integral distribution function rises to a steep value at r = R, the 
nearest distribution function maximum distance, and is but little displaced when 
account is taken of the multiplying factors ra . a" (r). 

Finally substituting 



and evaluating p, 

where a is the coefficient in the Lennard-Jones potential and R, = P.  E minimum 
distance. 

Now, the temperature coefficient is governed mainly by the exponential term, 
so that 

Hence, 

Now making use of the molar latent heat, A, = Nz/2 . 4 

which for z = 12, is of the order of 3, in accordance with the previous treatment. 

I t  is thus seen that under ordinary conditions, the structural part of the Bulk 
Modulus is a few times KT itself. Further, this term is necessary to explain the 
decrease in the Bulk Modulus of liquids by a factor of 10 as compared to  solids. 
For if we consider only the term V h2U/hV2 with dU/dr = 0, 

An increase of the order of 3% in R would entail a decrease in K, by a 
factor 1.4, only. 

Finaliy, the case of water is peculiar, as i t  is the only known liquid with posi- 
tive temperature coefficient of the Bulk Modulus. This is probably connected with 
a transition from tridymite to ice-like structure, supposed to take place in this 
range of temperatures according to the theories of Bernal and Fowler? This ~ g h t  
account for the positive term TdK,/dT. 

The presence of two contributions to compressibility molecular and slructural 
(the latter relaxing under pressure) has been postulated by Hall' to explain the 
anomalous ultrasonic absorption in water. Calculations by Hall indicate that the 
two components are nearly equal in magnitude. 
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