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The distortion of a homogeneous dielectric liquid sphere placed in a uniform 
electric field is investigated theoretically. The results agree wtth those of Thachor 
and O'Konski, obtained by a different procedure. The effect of thrs distortion on 
the static dielectric constant of polydisperse emulsions is considered and it is shown 
that the effect increases if the particle sizes are increased. The exact shape assumed 
by the liquid drop in the electric field is investigated and shown to be a surface of 
revolution of a higher transcendental curve. 

1. INTRODUCTION 

The dielectric constant of emulsions is one of the physical properties which 
could be easily measured. The electrostatic problem of evaluating the specific 
inductive capacity of a homogeneous fluid containing imbedded particles having an 
inductive capacity different from that of the dispersing medium (e.g., emulsions) 
has been solved by Rayleigh, Wiener, Bruggeman and others. Their results indi- 
cate (Kobo and Nakamura, 1953) that the static ("mixture " contribution) dielectric 
constant of the emulsion depends only on the total volume concentration of the 
dispersed phase and is independent of the size of the individual particles. Actual 
experiments, however, have shown a slight dependence of the dielectric constant on 
the size of the particles. Thacher (1952) suggested that this might be due to the 
distortion of the liquid droplets by the applied electric field. Assuming that the 
spherical droplets become prolate spheroids in the electric field, O'Konski and 
Thacher (1953) have discussed this effect for monodisperse systems. In view of 
the importance of the distortion of the spherical shape of the droplets by the 
electric fields in such phenomena like the birefringence of the emulsion in an 
electric field and the dielectric relaxation effects, the influence of an electric field 
on the shape of a perfect dielectric liquid sphere is studied ab initio. The results 
are applied to polydisperse emulsions, limiting the discussion to the "mixture " 
contribution to the dielectric constant, i.e., double layer effects are not considered. 

It is known that an electric field sets up stresses in homogeneous dielectric 
media. Using the rationalised MKS units, the force on a dielectric substance, 
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(panofsky and Philips, 1955). can be written as 

where E i$ thc inductive capacity and 8 the density of the dielectric. For 
simplicity, consider an ideal dielectric body placed in free space, the physical 
boundary being at x=a. In order to calculate the prcssurc on the surface, 
one assumes as usual a smooth but rapid variation of the inductive capaclty from 
x=u, into the body of the medium x = h .  In such a case 

Since the tangential field E ,  and the normal induction E E,, are continuous across 
the boundary, the first term on the right hand side is easily shown to be 

- $ C ~ ( E - I ) ( E / - I ~ ~ E ~ )  

If one assumes the Clausius-Mosotli relation, 

[ I / ~ ]  (e-- I ) / (€  -1 2) = constant, 

and notes that the outside medium is free space, the second term is found to be 
& lo ( E -  1) (6 +2) EL. It must be noted that the quantllies E, E,, and E, refer 
to llie fields inside the dielectric while in free space the field is denoted by E,. 
The pressure difference is then simplified into 

If the surface x = a is at equilibrium, there must be an equal excess pressure 
acting on the surface from insid.: the body of the dielectric. 

FIG. I 

Polar diagram of the distorted particle. + is the polar angle. 



Taking now a spherical liquld drop in a un~form eleclric field E, along the 
z axis in free space, it is easily deduced that the particle will assume greater 
curvature along the Z-axis than in a perpendicular direction (x), 1 e., it w~l l  be- 
come prolate shaped with the major axis along Z Further, the figure must be a 
surface of revolution about the Z and X axes. 

One can easily study the infinitesimal deformation of the spher~cal particle of 
radius a. Introducing polar co-ordinates (Fig. I), the curvature l i R in the plane 
of the figure 1s 

1 1 d2r 
a a"+" 

while the curvature 1 / ~ .  in the transverse section is l/a. Further, 
E,, = E cos + : Et = E Sin $ 

So the equilibrium of the surface gives the relation 

where y is the surface tension of the liquid in contact with the outside 
Putting 

the equation becomes 

The solution is 

But one must have 
they give B=O and 

(i) r (4- $ ) = r  (- $) and (ii) r (n- $ ) = r  (+) and 
a =O. a = O  implies that there is a small change in the 

mean pressure inside the system. ~ a k &  an actual example of a water droplet 
( ~ = 8 0  ; y =7O X newtons/meter ; a= 10-"meter) in air, the fractional 
change in the pressure for E,= 100 KV/m is (0.05 yL and so can be completely 
neglected. But in emulsions where y = 1 X newtonslmeter, this is appreci- 
able. The solution of the equation (6) is, then, 

r = a + t ~ - i B s i n Q $  (7)  

since in the absence of an electric field A=a. 
Compa~ing (7)  with the equation of an ellipse of small eccentricity, viz. 

r=a -4  ae2 sin", one sees that the particle, in the first order approximation 
does become a prolate spheroid, as was assumed by O'Konski and Thacher. The 
eccentricity is given by 
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Since the particles are nearly spherical E =  ~ E O / ( E  + 2) and so 

This is the result for a liquid drop in free space. Using the Wiener proportionality 
postulate, one can calculate the distortion of a drop of liquid of inductive capacity 

in a medium of inductive capacity 6, as 

This is exactly the result obtained by O'Konski and Thacher (1953) by a variational 
procedure of minimising the free energy of the system. 

For all practical purposes, the first order solution given above is sufficient. 
This has been experimentally verified by O'Konski and Gunther (1955). The exact 
solution of the problem is slightly complicated and is presented in the appendix. 
The generating curve becomes a higher transcendental curve which cannot be ex- 
pressed in terms of the more elementary algebraic and trignometric functions. 

One can now calculate the erect of this distortion of the particles on the 
static dielectric constant of the emulsions. For perfectly spherical particles, the 
dielectric constant is independent of the size of the particle and depends only 
upon the total volume concentration of the dispersed phase. However, a spheroid 
of volume 8 m R3 and of small eccentricity e will have an excess polarisation 
over the same volume of the dispersion medium and this excess is given by Thacher 
(19521, 

In the present case, the major axss from (7) is seen to be a +tj3=a(l + b 2 )  
and so the volume is 4?raY(1 - 28'). This volume change has been neglected by 
Thacher and his expression leads to the result that the polarisation of the system 
has increased, even though, the particle has done work in the distortion against 
the surface tension forces. The excess polarisation is seen to be 

or, substituting the value of e5 from (10) 



In dilute emulsions, one can neglect the interactions among the various 
particles and the total excess polarisation is the sum of the excess polarisations of 
the various particles. The excess of thc dielectric constant is then 

a K = ?A!? 
&, 

If all the particles are of the same size 

where C is the volume concentration of the dispersed particles. 

But in practical cases of emulsions, the particles are of various sizes. 
Experimental and theoretical studics (Rajagopal, to be pblished) show that these 
variations are well represented by the logarithmiconormal distribution 

Ilerc o v s  the variance of the distribution and In f is the mean of the dislribu- 
tionof In x. One seas that the average value of x" is (n79,, = [" exp (naoa/2). 
In such an emulsion, on averaging the two terms of (1 1) one gets 

If we denote the mean size of the particle (x),, by (a) the tenn f exp (a o ') 
is ( a )  exp (32). 

The relation (14) shows that larger particles havc geater effect on the 
dielectric constant of the system. This is quite natural since the distortion of 
the drop is incrcased, if the sizes of the particles are increased. The experi- 
mental evidence (O'Konski and Gunther, 1955 ; Pearce, 1955) agrees with these 
conclusions. 

The particle size distribution will also affect the other phenomena where the 
distortion of the spherical drop by the electric field is significant. 

The author's grateful thanks are due to Professor R. S. Krishnan, Prof. 
P. L. Bhatnagar, Dr. V. S. Venkalasubramanian and Mr. A. K. Ra~agopal, for 
many valuable suggestions. 
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The exact shape of the liquid particle in the electric field can be solved in a 
formal way. This is of interest in itself, since no exact solution of a three dimcn- 
sional capillarity problem is known. The matter is treated a1 length by Bakker 

@ FIG. I1 

X -  9 co-ordinate of the distorted particle. $ is the angle made by the normal with the Z a x i s .  

(1928). Following Bakker, one uses x and $ as the co-ordinates of any point on 
the surface of revolution, 11) where $ IS the angle made by the normal with 
thc r axis. The 

SO the equilibrium of the surrace gives the equation 

where X and p are related to a and /3 of (6)., 
The substitution xs in  $ = y  immediately shows that the equation is of the 
Riccati's form and that it cannot be solved fully in terms of the e lemnary 
(algebraic and trignometric) functions ( ~ o r s ~ t h ,  1948). Putting 



the differcntial equation becomes 

which is simply ihe Bessel equation of order zero in the argument ipx. The 
solution is, therefore 

with the usual notation of the modified Dessel function of the first and the second 
kind (Menzrl, 1955). Both K, and &-too as x+O while L i p  0 and I,,-+ 1 in the 
sanre Innit. From the nature of the problem sin I I ,  + O  as x --t 0 and so B,=O. 
The solution is thus 

The solution automatical(y satisfies the conditions of the problem that it 
must be symmetric about the X and Z axes. Sin ./, increases from 0 to I as x 
increases from 0 to 1 (a particular constant depending upon X and after which 
+ is undefincd. The curve is a higher transcendental curve and cannot be des- 
cribed in terms of the ordmary algebraic or trignomelric I'unctions. 


