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ABSTRACT

( We have studied the flow characteristics of conducting fluid past a conducting
magnetized sphere rotating about the magnetic axis under the assumption that the flow
at infinity is uniform and parallel to the axis considering only the first order effect of the
magnetic field and conductivity, The main results are that (i) the conductivity of the
sphere affects the flow characteristics, (ii) the rotation of the sphere induces the toroidal
component of velocity and the magnetic field, (iii) the toroidal component of fluid
velocity tends to vanish as the stagnation point is approached, (iv) the toroidal
component of vorticity at a large distance from the sphere is affected by rotation only
when the magnetic field originating in the sphere has no component due to a dipole,
(v) rotation does not affect the drag on the sphere, but there is a torque opposing the
rotation,)

INTRODUCTION

( Recently Chester (1957, 1961) has studied under various assumptions the
problem of estimating the effect of a uniform external magnetic field on the
flow past a sphere or a body of revolution which at infinity, along with the

magnetic field, is parallel to the axis of symmetry.

Ludford and Murray (1960)

have discussed the flow of an inviscid and finitely conducting liquid past a

magnetized sphere for small values of the dimensionless parameter g representing

the ratio of a standard magnetic pressure to the free stream dynamic pressure.

Murray and Chi (1960) have considered the corresponding problem for a

?agnatized cylinder.
®
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. In all these problems the conductivity of the body does not come into the
picture. Chakraborty (1962) has recently studied the characteristics of the
flow past a conducting rotating cylinder under the assumption that the flow and
the magnetic field at infinity are uniform and normal to the axis of cylinder.
The conductivity of the cylinder in this case affects the flow characteristics.
It is found that the Maxwell stresses produce a torque proportional to the
angular velocity 2 and tends to oppose thc motion.

In the present note we have studied the flow characteristics of a conducting
fluid past a conducting magnetized sphere rotating about the magnetic axis
under the assumption that the flow at infinity is uniform and parallel to this
axis. As in the problem of Ludford and Murray (1960) we have considered
only the first order effect of the magnetic field and the conductivity. We find
that (l) the conductivity of the sphere affects the flow characteristics, (n) the
toroidal component of vorticity near the sphere and the poloidal component of
magnetic field are not affected by rotation, (iii) toroidal components of
magnetic field and velocity are induced by rotation of the sphere, (iv) in
contrast with the behaviour of the toroidal component of the vorticity which
becomes logarithmically infinite near the sphere, the toroidal component of
liquid velocity tends to vanish as the stagnation point is approached, (v) when
the magnetic field originating in the sphere has originally before rotation a
component due to a dipole at the centre, the toroidal component of vorticity
at a large distance from the sphere is not affected by rotation of the sphere,
but when this magnetic field does not have such a component, the rotation of
the sphere affects vorticity, (vi) the drag on the sphere is not affected by
rotation to the present approximation, and (yn) the torque on the sphere is
proportional to the angular velocity of it andktﬁ&magnetlc properties of the body)

THE BASIC EQUATIONS

We shall take the centre of the sphere as the origin, the axis of rotation
as the 6 =0 axis of the spherical polar coordinates, and use the M.K.S. system
of units.

Using the radius a of the sphere, the uniform velocity U at infinity, the
magnitude h of a representative magnetic field and u Uh as the magnitude of a
standard electric field as standard quantities, the equations of the problem
reduce to the following dimensionless forms :

curlg x q = — grad P+ Bcurl H x H, [1]
div q = 0, [2]
curl H=Ry[E+qxH]; divH=0; curlE =0, (3,4, 5]

where

P=p+3q*; B=uh*/pU?and Ryy=pnacoU.
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We can conveniently choose /4 to be such that uh” is equal to the average
magnetic energy per unit volume on the surface of the sphere due to the
undisturbed magnetic field. When 8 =0, i.e., there is no magnetic field, the
flow of the fluid is given by the usual potential flow

g = {[1 =1/l cos 8, —[1 +1/(2/)]sin8, 0;, [6]

where qg ir curl free.

When magnetic field is weak, we expand in powers of 8

G=go+BY + B+ "5 P=po+BPi+B P+,
H=Hy+ fH, + B Hy + - [7]

From [3], [4] and [7] we shall have

curl Hy = Ry [Eg + qo x Hg), [8]
direHo=0; curlEg=0, [9, 10]
gqo being given by [6]. Also equations [1] and [2] give
curl q; x qo= — grad P; + curl Hy x Hy, f11]
dire q, = 0. . [12]
Here Py = p\ + qy" qo. [13]

We shall restrict ourselves to discussing Hg, q; and curl 4,. The perturbation
due to B is regular.

DETERMINATION OF Hj

We shall drop the subscript “0* in Hy and Eg and “ 1 in g, and p,.
In the axisymmetric case the equation [9] shows that we can write

Hyo=ge— 28, Hym ———— .28 [14, 15]
r°sinf 96 rsinf 3r
The equation+{10] shows that
E, =0. [15]

The ¢-component of the equation [8], in view of [14], and [15] gives
¥4  sinf 3 ( 1 _aA)

37 T P 36\sind 260

=RM[(1—-]T)COSGM——]—(1+—1—) sinﬂg]- [16]

r aor r 273
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Noting that go= (0,0, 2rsin8) for r <1, we have from the ¢-component of
the equation corresponding to [8] holding inside the sphere

2 4 J
0 T 1_.5_1}_0_ 17
d ar? L 30 lsinf a6 [17)

We have used superscript i for inner quantities. The equations [16] and [17],
together with the boundary conditions that u H, and Hy are continuous at r =1,
determine the poloidal field completely. These equations and the boundary
conditions are, however, not affected by the rotation of the sphere. Hence,
the poloidal components of the magnetic field are exactly the same as in the

absence of rotation, and as have been obtained by Ludford ahd Murray
(1959, 1960).

When R, is small, an appropriate solution of [16] may be obtained by a
perturbation which is, however, not regular at infinity. The regular perturba-
tion is taken by substituting

A=aexp.[ = Ryr(1=cosf)/2], [18]
and determining a from the equation

da , sinf é( | .P‘u)

3 r a3l sinf a9

cosf\da sinf da a
= Ras [(1 - -?3*).3_, -5 . = + Rar (1 = cosB)(1 + 3 cos 6) -z—r?] [19]

If we represent the undisturbed field of anarbitrary magnetic distribution by
A= 2 -f-i—" sin’f P, (00s8), [20]
n=1 T ~
the poloidal field outside the sphere is given by

A = exp. ["“'%'RM"(I — COS 9)] i Ay Ga, [2']

n=1

where, to the order Ry, (low conductivity or slow motion of liquid and sphere),
an IS given by

an = (a,/r") sin®> @ P, (cos8) + a, Ry sin’f . l P . 6
( ) M 4(2n+l) e l(cos )+

1 f H(H— I) ] '
+3——p
et e @ 1) P”*‘“""‘”] ¢
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]
r

42 Aﬂl '"'_nl_.,."‘; P:l+l (COSQ)] * [22]

r

Also, for inside the sphere,

A 5 4, {[(1/r™) + kor™*'] sin®9 P,(cos 6) +

n=]
+ Ry sinzﬂ [Inl r’
+ 1.2 Ph.i(cosB)]}.

In the above P, (0os @) is Legendre’s polynomial of degree n and argument
cos 6,* and P:,(cos 9) is its derivative.

* Pr1(cos @) + 1,2 P, (cos 8) +

[23]

The constants A’s and I’s have been determined by Ludford and Murray
(1959) by satisfying the boundary conditions on the sphere to the order Ry;.

These are

[n(3n + 2) u + (3?1 + 2n — 2);;,"]

4d2n Dnp+@m-Da] ™

g (2n+1)u , R o —
(n+1) u+nu

3n[(n+1)u+(n=1)u] i

An =0: AH =~ W
: 3 4Q2n+1)[(n+2)u+(n+1)u]
and
kﬂ"" H(M—,(.Lf) ,,1"""'—‘ 3"}.1. ¢
(n—}-l),u.+n,u“ " 4(2n+l)[n,u+(n—-l),u'] :

3n(n+3),u.
I?:Z“O: !113
4(13-1—2)(2!1-1— l)[(n+2)p.+(n+l)pt]

?I!'

[23a]

where u' is the permeability of the sphere.

We shall now determine the toroidal magnetic field component.
Taking the curl of [8] and using [10], we have, from the ¢-component of

the resulting equation

——. e

* For the various recurence

relations and orthogonal properties of the Legendre’s
polynomials and their derivatives used here see Copson (193)5).
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ar r’ 31
( 1 Ay 3 xcosh 1( 1\ .o ax}
= Rz —_ — - +—f 1 + — }sin"0—"-} , 24
R l((1 = S5 )oos 02X + 24 {14 5 Jsin'e) 24
where t =cos8 and y =rsin 0 Hy,. [25]

When Ry, is small an approximate solution for y can be found out by a
perturbation expansion, which, however, is not regular at infinity, the right-hand
side vanishing more slowly than the left-hand side as r— oo and y is algebraic.

When r is large and the small terms on the right-hand side are neglected,

[24] approximates to

%y (1-=1%) 3y { ay (1=17%) Bx}
NI u _— R coSs 9__ 4 - . . 26
2 ar N dr ro ot [26]

Proceeding as in the case of the equation [16], we can show here that for large r,
x~A[1[Rpy ] sin®@ P, (cos Q) exp. [ -4 Rayr (1 —cos @) ). [27]

Thus, the ¢-component of the magnetic field is swept into a wake behind the
sphere whose boundary is the paraboloid of revolution r (1 —cos8)=5/Ry,
where b is a suitably chosen constant

Ludford and Murray (1959) have found a similar behaviour of the poloidal
component of the magnetic field at a large distance from the sphere. The above
discussion suggests that when Ry is small, we should assume the toroidal field
in the form:

X=9 exp.[—-‘fRMr(l—cose)] [23]

in [24] and solve for y from the equation obtained by substituting [28] in [24],
namely

3% +sin6._a ( 1 _ay)

dr? r* d6\sinf -6_9

5 .
=RM[30059;V+(1 _cosﬂ) ¥ smf)_ay_l_

!'3

rsin®9 [ 1 ]
= (?*T)H [29]

by perturbation in R,,. Such a perturbation is regular for the function X
®

2
+RMy{--(l_COS62 _cose(l-—cosﬁ)( 1)+

¥
4 2
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From [28] and [29] we find that the solution for y correct upto first order
in Ry can be written as

x =exp. [ =< Rpr (1 =cos8)] x

X [5— sing P (cos 0) + By Ry (1 —cos?) | (7 + 5) Ppay (cos 6)
r 4(n+2)(2n+1)rm?

4 Pu (FOS 9) i (H +3) Pn"-l (‘_:OS B)} it R}Lj(l _ 80526) {vﬂl Pn-—! (COS 9) ‘

2% 4(2n+1) /" !

[30]

where B,, v,, v, and v,3 are constants to be suitably determined. Noting
that q = (0, 0, r 2sin §) for r <1, and taking the curl of [8] we have

curl curl H =0, [31]

rﬂ, rﬁ,—+ 1

4 Un2 P;' (cos 9) 4 L3 Py+1 €OS 9_)_” ;

The ¢-component of [31] gives

3y sinf 3 1 3y
—% + : : = 0. 32
drt  r? ae(sine ae) 3]

The solution of [32] can be written as
x =Cp (1 =c0s’0) P,(cos0) r™* ' + Ry [ Dy (1 - cos’@) P,y (cos ) r**? +
+ D, (1 =cos®0) P,(cos9) r** '+ D, (1 —cos?8) Pi-;(cos8)r"]. [33]

To determine the constants B,, v’s, D’s and C’ in [30] and [33] we apply the
following boundary conditions at r =1, correct to order Ry,

(i) continuity of the normal component of the volume current,
(ii) continuity of x (or Hy) to avoid surface currents,
(iii) continuity of the 6-component of the electric field. (E; is zero
both inside and outside).

The conditions (i) and (it) are equivalent. For the normal component of the
volume current on the sphere is (curl H), =[1/(+*sin 8)]-3(r sin 6 H;)/36
evaluatedat r=1. Hence, if Hy is continuous on the surface of the sphere r =1,
so is (curl H), and vice-versa. (ii) gives

Bu L Cm [34]
3B,n(n+3)
—- + V3 = D-u+ * 35
4(2n+1)(n+2) e ‘ 133]
V2 = Du. ; Bﬂ (3" i. 4) + Vy1 = Dﬂ-l! [36! 37]

4(2n+1)
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The condition (iii) gives, in view of [8], and the similar equation for inside

[

[curl H — Ry, q x H], = M, [3;"’ curl H; — Ry, q; % H;] ; [38]
p L Ry g

at r =1, where Ry =u'ae;U is the magnetic Reynolds number for the sphere
and o, is its conductivity.

In [38)], H and q on the left-hand side stand for the magnetic field and the
velocity outside the sphere and H; and q; on the right hand side stand for the
corresponding quantities inside the sphere in dimentionless forms.

We satisfy the boundary condition [38] to the order Ry. Three cases are
to be considered. .

(a) (Rm/RM)=0(1), (b)

(c) (I/RL)N Ry, or higher powers of Ryy.

Case (a) : nB, = — (u'fu) (Ru/Rss) Cn(n + 1), [39]

obtnined by equating the coefficients of P, (cos @) that are of the order 1.
[34] and [39] implies that

B ), [40]
Similarly by equating the coefficients of Ry P, (cos8) we have
ny, o — M RMD,,(in-Fl). [41]
M R
[36] and [41] give
V2= Dn = (). | [42]

The other constants can be easily evaluated similarly. We give the
final results.

Vo - A, Q(|+kn)ﬂ(n+l)
O G Dl = 1) + e nBan) (aRe)] [+3]
T 4. 2 {(1 + k) n (n+l)}
S ¢TI ey o kT 7 Ty R
where & ! O,

Case (b) : Proceeding as is case (a) we have

B, = Va2 = Cn — Dn =0, [45]
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4,2 (1 + k) n(n+1) [46]
2n+1)(n—-1) '

Vi = Dy =

(1 +ka)n, [47]

=D, = —A,0Q
Vn3 1 n (Zﬂ-i-l)

Case (c) : The values of the constants are the same as in case (5).

BEHAVIOUR OF VORTICITY AND TOROIDAL COMPONENT OF VELOCITY
Let curl q = (2,, 2,, w) [43]

and (curlH) x H=(F,, F;, Fy). [49]

We introduce the potential function ¢g=7r (1+1/2/) cos9, and the
stream function g = rv/ {[1 — 1/r*]} sin @ of the potential flow [6] as the new
independent variables in place of r and 8. We take the curl of [11] and the

¢-component of the resulting equation gives

-

] . 2 1 ‘2.2 dw
r | — cos“f + l+—-—-3)sm9 -——-=f(r, 0: Ruy) [50]

r 2r o (,'bn
where W = m/r sin O
I o d
and f(r, 8; Ry)=— -(rFy) - — (F) |- [51]
rsin@|ar Xy,
The equation [50] in terms of the new variables can be written as
” f(r, 05 Ru)
~ r 2 5 RM
- ‘ , d ¢g. 52
® _[ (= 1)%cos®9 + (r* +1)*sin%0 P 2

the integral is taken along a streamline i = constant and the lower limit is so
chosen that when r—> oo upstream the quantity w tends to zero. Also, taking
the ¢-component of [11], we find similarly that & =r sin 6 g, given by

(r——lz-)cosﬂ%;—-(l+51;3)55“9§‘§=’25i“6ﬂ [53]

r

i e, (in terms of o and o).

2 2
[( 1 — -15-) cos’0 + ( 1 + -=-]—-§-) sin’6 ]EE = rsin 0 Fj. [534]

r 2r g
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Integrating [53] as in the case of [50], we have

ép -
r'sinf Fy

[ (r3 —1)* cos®a + (r3 -+ -;_.—)zsinﬂﬂ]

d ¢ho [54]

ey
|

where we have taken £— 0 as r—> o~ upstream.

Now, in the expressions for F, and Fy the contribution of rotation is 0 (R%,)
hence, to our approximation, when r is small, we can neglect the effect of
rotation in the r and @ components of Lorentz force and in f(r, 6, Ry).
Hence, as shown in the absence of rotation by Ludford and Murray (1959, 1960)
the ¢ component of vorticity is logarithmically infinite on the sphere.

From [53], [21], [28] and [49] we find that the ¢p-component of velocity is
swept into a wake behind the sphere whose boundary is a paraboloid of
revolution of half the size of that for the magnetic field. For in the right hand
side of [53] the argument of the exponential, exp. [ — RMr(l —cos 8)], is twice
that of the magnetic field.

Noting that in [54] we integrate along a fixed stream line we can write

r(P) .

r'sin 9 F, .
- d
d (P=1)cos 8 " (53]

F= o

Using [55] we shall obtain an expression for ¢ near the front stagnation point.
The integrand in [55] is

r4+”2l£9F¢ - [56]
cos 8(F — 1)*"2

The denominator = 0 as r— 1. Hence when rp ~ 1 and ry is sufficiently larger
than 1, the leading part in [55] is

r(P)

P o Fy dr
J cos @ (P —1)"%’ [57]

r=rj

so that the contribution of

ri

j l"gfz lﬁg Fg, dr

cos 9 (r*—1)*?

r=om

being negligible compared with this leading part. (The details are given in

Appendix A). Also when r is not very large, from [49], [30], [21] and ["2]
we have to the order Ry,
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. > A ma,P,(cos8) [vyn(n-=1)P,_,(cos8)
F¢ = RjssIn 6[ ..\..r_.l }'n_+.2.ﬂ_ ___) ( ! g s -1

n+3 . m+3

: qu(” + l_)(n + 2) P"--I(COS 8)) _ ‘; Ay Hi(f?!i 1) 27 Pm(COS Q)
r r

m, n=1

n+2
r"‘ !l y

5 ((ﬂ o ]) Vni Pr::_l (COS 6_2_ 4 (H + ]) Va3 AP::+I (COS 8) )]

= Ry sin8 F(r, 8).

Hence [57] can be written as
r{P) ( 6)
| Ry Fi\r,0)dr
2 — —r
g o= l,ng (I' _ 1)2 [58]

r=ri

where
P F(r, 0)

cos (P +r+1)2 [9]

Fl(r!9)=

Now, by the Mean-Value Theorem of the Differential Calculus for two variables
we have )
F(r,9)=F(,=)+(=1)3FR][1 + q(r-— 1), m+9(0- ~)|/ar+
+(0-xw)aFR[l+g(r-1), m+ n(6- x~)]/20,
where 0 <5 <1. Hence

-
R G RN =)

r(P)
+[ B3R +nlr=1) =+y(@-mlar ,

(r—1)

r(P) '
(0—m)>F{1+9(r=1), =+ (9 -=)]/26 1.
+J TR d] [60]

We can find two numbers 4 and B such that
aFl[l +q(r—l), ﬂ+q(6—ﬂ)]/é!‘l5f‘1:
and aF,[l+1)(r—-]), ﬁ+q(9—ﬁ}]/69‘53.
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Thus, the mod. of the first and the second integrals on the right hand side are
respectively less than or equal to

Aflog (r, - 1) =log (r(P) - 1)]

and (-99‘*"")3[[,(5-1]'_'(:'1}-1)]

in absolute value. Hence, when =~ —0, and r, — 1 are sufficiently small, it
follows from [60] that

r(P)

J Ruk, (r,_‘@_ dr >~ — Ry F5 (1: 7‘-')(

(r— 1)? 6t]

r P)l- 1))'

From [58] and (59) we have
go = — Ry Fy (1, 7)) (rk +rp+1)sinBp/r3. [62]
In the case of a dipole of strength A, situated at the centre of the sphere,
A = A, sin’8/r,

3 Ayt vi3 Ry sin Bp (cos’fp + l). [63]
re(rt +rp+1)cos6p

G¢ =

We shall now find expressions for w and g4 taking £p = Rasrp (1 = cos 65) to be
very large. This implies that r is large at every upstream point on the stream-
line through the point P. We put

u=r(1—-cos8)/[re(1 —cosfp)] -1,
and [52] reduces to

;=¢XP-[—§P]J. exp.[—fpu]}_' rp (1 = cos 6p) i [64]
r{l —cos @)
where f—cxp.[-—RMr(l—-cosﬂ)]f'.
By Watson’s lemma* (Cospon, 1935) for fixed 9,, we have from [64]
@ exXp. r— fp]f sin 9,: . [65]

.RM(l — COS 9?) “

* The function [ f* r_ (1—cos g,)1/[r{1—cos §)] occurring in [64] is a rational function
of u with poles at u=—1%i cot (/1 g,).
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where f' is evaluated at (r,, 0,). When, in the undisturbed magnetic field of
the sphere, there is component due to a dipole situated at the centre, it can be

shown that, for large r,
[~ = Ry vkisin®@ {Pn_y(cos 6) }2[[F™* ' (1 + cos 6)]. [66]
(The details are given in the Appendix B). '
Thus, from [65], it follows that
w~ —exp. [~ €p] Risvarsin 8p{P,_, (cos 0p)}3/ra "+, [67]

Similarly from the equation [54] we have, for large rp,

Ay RM dpVm i S‘nzep (l — COS ep)
4!"9“ RM(I — COS 9?)

é~ —exp. [ - £,] %

x {(n—1) P,y (cosBp) P, (cos8p) —(n+1) P,(cosBp)P,_,(cosbp) }.

Both the expressions [67] and [68] are to be modified in the case n = 1, i.e., when
the undisturbed magnetic field in the sphere has a component due to a magnetic
dipole situated at the centre. In this case

A Ry atsin 0p [ — 3 + 4 cos Op — c0s*Sp + sin®Bp cos Bp]
i 3 [ g?] 16 R‘Mrp(l—COSGP) [ ]
and
£~exp. [ — &p)4) Risay vy sin® 0p [[4rp (1 = cos 6p)]. [70]

From [67) and [68], and [43] or [46] it can be seen that «w and £ are proportional
to 2° and Q respectively and it follows from [69] that w is independent of

rotation.

Drag on the Torque on the Sphere: The force on the sphere due to the
pressure is a drag along the downstream given by pq U a? D, where

o™

=fn-ﬁ’-[ J(lﬂ‘gsme+21’7vn:cne‘.ﬁ)smé’4:;1“-3l (71]

1 0

The contribution of rotation to the terms F, and Fy above is O(wa) and hence
to the order of our approximation it does not affect the drag. The drag
coefficient Dp is given by Ludford and Murray (1959).

The force on the sphere also arises due the Maxwell stresses,

wH Hy— 3 H* 8.
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On a surface element this becomes
W [L(H? = H} — H}), H,Hy, H, Hyl. [72]
Hence the drag coeflicient due to the Maxwell stress is given by D,,, where

Du = 2'?\'BJ. [L(H}? - 1§ — Hi) cos 8 — H, Hy sin A] sin B 44 [73]

0

and the total contribution to the force is ,\:)Uza2 D,,. Contribution due to
rotation 18 O(Rﬁ,[), hence, to our approximation D,, is that given by Ludford
and Murray (1959). The torque due to the Maxwell stresses is given by
pa’U? B T,,, where

™

T,=2x|H H, sin>0 db

§=0
= _A,,a,,n(n+l) 2v,,3(n+1)(n+2)
= R 1 (2n+3) { (2n+3)
2(n+1)(n+2) vy 2n(n-1) 2n(n—1)
e e e (2n—l)} [74]

The case for a dipole can be easily deduced from the above by putting n = 1.

Ton = (16 7 Rps 4, ayv3)/5 [75]

where A, is the strength of the dipole and a; and 3 are given by [234] and
[44] or [47]. Thus

96 MME Rmr-Qr A%

Tm= - sy -
S(2u+u) 24 (3R ')/ (u R
when RulRi = 0(1),
48w uu' Q' A3 Ry,
T = — | Y
5(2u+ u')

when Ry /R, is 0 (Ry) or smaller. It is evident that the torque opposes the
rotation of the sphere and its magnitude increases to a limiting value when the

conductivity of the sphere becomes large compared with that of the liquid
outside. -
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APPENDIX (A)

We shall show that the contribution of

Fi

912
.[ s _)‘ #0F¢ . d
l J cos9(r -1)*? '

rF=

1s negligible compared with

r(P)

[1“[ rgmzﬁ;uFd’
i cos 6 (r* = 1)*2

dr ,

r=r)

where r, is sufficiently near 1 and ry 1s sufficiently greater than 1.

By the first Mean Value Theorem of Integral Calculus, we have

r=ri

92
I|=J’ r ‘ﬁﬂ F$ . 2¢,0 rgszé
cos & (r° —1)32 (ri— 1) — :

r=wm



16 B. B. CHAKRABORTY

where ry < r;, < oo. Now, let

!'9;"2 F¢ ~ 3;14‘ =k,
o8 (Part ") n

a finite number, then

IRy R Fi (1, m) 'ﬁo(rl:DE?
B AT Zk(?'p—l)

which is large when (r, — 1) is large and rp~ 1 is small.

APPENDIX (B)

In view of the very complex nature of the expression for f and Fy and of the
approximation for large r, we shall discuss briefly this asymptotic nature below,

We wrile

!

A=exp.[-—-} Ragr (I ~cos 8] A,

¥

H ==e}{p, :-—*ll,' RMr(l — COS 9): H =

'

X = €XP. :—'{,“RMF(I —COSH): X s

F = exp. :- Ry r{] —cos 8)] F,
and - f=exp.[ = Ryr(1 —cos8)} f'.

Let in the sequence Ay, A,, As, *+*, A, Ay, *

A, be the Orst non-zero number. We have

f(r,0; Ruy)
_exp. [ —RM_{'(I — cos §)] [R;,{-}(l —~cos )* rHé H]
r sin 8

—~4sin@ (1 ~cos@)rH2+4 (1 ~cosB)sin@rH}? - $H, Hyrsin®}
+Ru{ — (1 ~cos0) Hy H — (1 —cos @) r H, (3 Hj[ar)

+(1—cos 0) H (3 H,/[38) — Hy*sin 0~ rsin 0 Hy (3 H) > r)

+sin@ Hg (2 H,[36) =L (1—cos9) H, H + >sin@ H,?
—r3{i(1—cos@) H, H' - Ysin 0 H,% [3r - 3{4(1 = cos 6) Hy?

~dsin0 1 B} fag + U500 3 x| Ay
r?sin? @ &6 rsin@ ar
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r2 r2 r2
A (1 —cos@
o +r—a—~--2x_ e )1
2r°sin@ dr \2r'sinf 36 2 r°sin“ @ )
! 4 4 ! ! 13
+{H,H,+H,_a_f_1§_ﬁ;‘ay;}+ a{H,HJ_'_H:g_H_Q__H: GH,}
r

r " ar r 30 Br-

r ar

r2 r ’
.. {~H" + H, a-———H”—E-Q-iH:-}
dO\ r Q7 r 36
’ 4 ! ’ ! ’
o ) o s a
T3 .xz “sid r_{—:'.?{z ) x}+__{-2}-(2 ¥ X | ’ [42, 4]
r’sinf@ 98 drirsin®@ 36 QO \rsin“é arf

L 2 bl - .
The coefficient of Rj; in the above expression can be written as

QA cos@(1 —cosf) cosO(1—cosB) ,04
) 3 - ¥ 5 o A
d (cos 8) r° sin 0 r°sin 6 dr

";—RA,; r {Ar

e P il
r d(cosf) r’sin®@ dr

_sinﬂ(]-—cose) i B_{l' sin A (1 —cos #)? :BA’}

_cosB(1—cosf) a4 34 _sinf(1 —cos@)/ a4 \?
r*sin 6 dr 3(cosb) 2r d (cos 8)

+_§_in9(l--cos‘9)(§_;£)2. [4,,]

2rsin® @ dr

For large r,

. 2
A’ An er_s;m 6( ‘;" P, (cos8) + A,y P,-, (cos B))
aﬂd | X’ﬂ-' RM sinzﬁv,u P;_I(COS 6)/"’t-l.

From [22] it is clear that [Az, 2] IS O(RL/F"). Hence in [A;_, 1], the contribu-
tion of R3; x (its coefficient) is 0 (R3};/r*"). Similarly, it can be shown that in
[42,1] the contribution of Ry % (its coefficient) is 0 (R, /r*"). This is

Ry, {Q_‘;CE’?G) dx __x_ 3x " x

r*sin? @ a6 rsinf dr érzsinﬂ

+r._a_.(_ x© Y\ _3(x*(1—cos#) }
dr\2r2%sin 8 d 6 2 r’sin* 0

_ Rivisin® 8 [P, (cos 6)]” |

r** (1 + cos @)




18 B. B. CHAKRABORTY

In the coefficient for R, the terms contributed by IH' and Hy and their

derivatives are 0 (R3,/r™).

Hence they are neglected when compared with the terms involving »' ang
its derivatives. The rest of the terms in [4,, 1] is 0 (1/r*""). Similarly the
expressions in [68], [69] and [70] are derived. When the original (undisturbeq)
magnetic field in the sphere contains a component due to a dipole situated at

the centre, we have for large r

. 2
A[ a R;},f §ID_§

2

A*‘-‘A| Xy =

and

x! RM V2 sinzﬂ

r

These values are used in deriving the expressions [69] and [70].



