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ABSTRACT 

we have studied the flow characteristics of conducting fluid past a conducting 
magnetized sphere rotating about the magnetic axis under the assumption that the flow 
at infinity is uniform and parallel to the axis considering only the first order effect of the 
magnetic field and conductivity. The main results are that (i) the conductivity of the 
sphere affects the flow characteristics, (ii) the rotation of the sphere induces the toroidal 
component of velocity and the magnetic field, (iii) the toroidal component of fluid 
velocity tends to vanish as the stagnation point is approached, (iv) the toroidal 
component of vorticity at a large distance from the sphere is affected by rotation only 
when the magnetic field originating in the sphere has no component due to a dipole, 
(v) rotation does not affect the drag on the sphere, but there is a torque opposing the 
rotation) 

INTRODUCTION 

( Recently Chester (1957, 1961) has studied under various assumptions the 
problem of estimating the effect of a uniform external magnetic field on the 
flow past a sphere or a body of revolution which at infinity, along with the 
magnetic field, is parallel to the axis of symmetry. Ludford and Murray (1960) 
have discussed the flow of an inviscid and finitely conducting liquid past a 
magnetized sphere for small values of the dimensionless parameter 18 representing 
the ratio of a standard magnetic pressure to the free stream dynamic pressure. 
Murray and Chi (1960) have considered the corresponding problem for a 
magnetized cylinder. • • • 
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In all these problems the conductivity of the body does not come into the 
picture. Chakraborty (1962) has recently studied the characteristics of the 
flow past a conducting rotating cylinder under the assumption that the flow and 
the magnetic field at infinity are uniform and normal to the axis of cylinder. 
The conductivity of the cylinder in this case affects the flow characteristics. 
It is found that the Maxwell stresses produce a torque proportional to the 
angular velocity .52 and tends to oppose the motion. 

In the present note we have studied the flow characteristics of a conducting 
fluid past a conducting magnetized sphere rotating about the magnetic axis 
under the assumption that the flow at infinity is uniform and parallel to this 
axis. As in the problem of Ludford and Murray (1960) we have considered 
only the first order effect of the magnetic field and the conductivity. We find 
that (0 the conductivity of the sphere affects the flow characteristics, (ii) the 
toroidal component of vorticity near the sphere and the poloidal component of 
magnetic field are not affected by rotation, (iii) toroidal components of 
magnetic field and velocity are induced by rotation of the sphere, (iv) in 
contrast with the behaviour of the toroidal component of the vorticity which 
becomes logarithmically infinite near the sphere, the toroidal component of 
liquid velocity tends to vanish as the stagnation point is approached, (v) when 
the magnetic field originating in the sphere has originally before rotation a 
component due to a dipole at the centre, the toroidal component of vorticity 
at a large distance from the sphere is not affected by rotation of the sphere, 
but when this magnetic field does not have such a component, the rotation of 
the sphere affects vorticity, (vi) the drag on the sphere is not affected by 
rotation to the present approximation, and (yii) the torque on the sphere is 
proportional to the angular velocity of it andithe magnetic    properties of the body. 

THE BASIC EQUATIONS 

We shall take the centre of the sphere as the origin, the axis of rotation 
as the 0 = 0 axis of the spherical polar coordinates, and use the M.K.S. system 
of units. 

Using the radius a of the sphere, the uniform velocity U at infinity, the 
magnitude h of a representative magnetic field and 1.2 Uh as the magnitude of a 
standard electric field as standard quantities, the equations of the problem 
reduce to the following dimensionless forms : 

curl qxqa — grad P 13 curl II x 

div q a 0, 
	

[2] 

curl H R [E 	x 	div H 0 ; curl E 0, 	[3, 4, 5] 

where 

p p  k (12  ; g 	h2 p  u2 and RAt a AL a a U. 
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We can 	conveniently choose h to be such that tu h2  is equal to the average 
magnetic energy 	per unit 	volume on the surface of the sphere due to the 
undisturbed magnetic field. 	When A is 0. i.e., there is no magnetic field, the 

- 
flow of the fluid is given by the usual potential flow 

qo  1[1 — 1 I rs] cos 	—[I + 11(2 r 3)] sin 0, 01, 	 led 

where qo  ir curl free. 

When magnetic field is weak, we expand in powers of 

q = cio  4- fig i  + 13 2q2  + - • - ; 

H =-- Ho  ± M I  + if H2 + • • • 

P =Po+ f3 pi + 132  p2 + • • - , 

[7]  

From [3], [4] and [71 we shall have 

curl Ho  t Rm  [E0  4- (10  x Hob [8] 
dire Ho  =-- 0 ; 	curl Eo  ------ 0, [9,10] 

go being given by [6]. Also equations [I] and [2] give 

curl q 1  x qo  = grad P1 + curl Ho  x Ho, 

dire q i  0. 	 [I2] 

Here 	 Pt =Pt +gtsgo. 	 [13]  

We shall restrict ourselves to discussing H o, q i  and curl qt . The perturbation 
due to p is regular. 

•.• 

DETERMINATION OF Ho 

We shall drop the subscript " 0 " in H o  and E0  and " I " 
In the axisymmetric case the equation [9] shows that we can write 

1 	A 	n 	I 	A 
Hr  - n 	 n 0 = 

	

IL  sin 0 60 	 rsine 

The equation[l0] shows that 

E4, cc O. 

in q 1  and p i . 

The 0-component of the equation [8], in view of [14], and [15] gives 

2A sin 0 a ( 1 ail) 
• r 	r • 60 sin 	130 

1  
r 

R 	 ) • 61M  it4K1 -11 )COS (342- - 
a 	

1 + - sin 	• 	 [16] 
t' 	 2r

3 
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Noting that qc, to (0, 0, fir sin 0) for r < 1, we have from the 95-component of 
the equation corresponding to [8] holding inside the sphere 

	

r2
?-1 2fte 	6 	I 	6 fe 

	

 	s+ in u 	- - 	•=1 O. 	 111 0 ( sin 0 6 0 

We have used superscript I for inner quantities. The equations [161 and [17j, 
together with the boundary conditions that m II, and H8 are continuous at r = 1, 
determine the poloidal field completely. These equations and the boundary 
conditions are, however, not affected by the rotation of the sphere. Hence, 
the poloidal components of the magnetic field are exactly the same as in the 
absence of rotation, and as have been obtained by Ludford and Murray 
(1959, 1960). 

When R m  is small, an appropriate solution of [16) may be obtained by a 
perturbation which is, however, not regular at infinity. The regular perturba- 
tion is taken by substituting 

	

A = exp. [ RAI r (1 — cos 0)/2], 	 [18] 

and determining a from the equation 

62a 	sin 0 a ( I 	a) 
+ --2—  a  r 	ed sin 	69 

= RAI  [( 	cos ey a sin 0  6 a 
+ Rm  (1 — cose)(1 + 3 cos 	119] 

r3 	r 	2 r4  6 e 	 4r 

If we represent the undisturbed field of an arbitrary magnetic distribution by 

ea 	A  

	

/1 	2 

	

A- 	n  sin 0 	(oos 0), 	 [20} 
n =1 r 

the poloidal field outside the sphere is given by 

	

A c exp. 	Rm r (1 — cos 9)] 1,1 A n  a n , 	 [21] 
n=-- I 

where, to the order R Ai  (low conductivity or slow motion of liquid and sphere), 
a n  is given by 

	

1 	n, 
1  

an = (a„irn) sin2  P' n  (cos 0) + 	R S111 2 0 	 (cos e) S11120
[4(2 n 1) r2 

r 
n  

P rc I ( 
1 	1  

7- -71 P (cog) + 	 +-2- 	
1 ) 	1 

4 (n + (2 n + 1) rn+2
4 -COO) ± 



Flow of a conducting Fluid past a Rotating Magnetized sphere 	5 

• 1 	r 
	(cos 	

1 
+ Rmsin 2  0 A nt — p 1 k 	1 $11? ) + A n, — I)  ni  (cos 0) ± 

1 	n 	i 	„,e, 

+ A,,3— r lc + 1 ‘COSt/ 1* 	 [22] 
Fit+ 1 

Also, for inside the sphere, 

a, 
A'= M A,, .1[(1 Ir") +1‘rn +1 ] sin2 9 P Ec (cos 0) ± 

rt=1 

+RAI sin2 t9 Uni  r" P,c_ i  (cos 0) + I„ 2  r" 4.1  Fe n' (cos 0) + 

+ 1n3 r" +2  Pni  +i(cost9)]}. 	 [23] 

In the above P„ (as 0) is Legendre's polynomial of degree n and argument 
cos O,* and P 41  (cos a) is its derivative. 

The constants A's and l's have been determined by Ludford and Murray 
(1959) by satisfying the boundary conditions on the sphere to the order Rm. 
These are 

(2 n -1- 1) Ai 	 itz On +  2) ,u + (3n 2  + 2n — 2) 4 
an — 	) 	Anl = 

(n +1) ,u +n ,u i 	 4 (2n + 1) [n au + (n —1) ] an, 

3 nRn + 0  au -4- (Pi  — 1) Ai]   
A712 a 01 	 A/13 = 	 • %A 

4 (2 n +1)[(n +2) la +(n + I) du ll
zrn,  

and 

k„ goi 	n ( fru — ,u9 1 

	

ni zer 	
3 n ist  

	

(n+1),u+n,u" 	 4 (2 n + 1) [n ,u + (n — 1) /,12 a" 

3  n(ti + 3),u, 1„2  a 0 , 	 1n3 = 	. an , 
4 (n + 2) (2 n + 1)[(n + 2) au +(n +1) ,u€1 

[23a] 

where bt i  is the permeability of the sphere. 

We shall now determine the toroidal magnetic field component. 
Taking the curl of [8] and using [101, we have, from the 0-component of 

the resulting equation 

• 

*For the various recurence relations and orthogonal properties of the Legend re's 
polynomials and their derivatives used here see Copson (1935). 
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-.2 	I 	421 .1,2 
	 c 1  X - 2 	2 

r2 	r 	a r 

+ 3 xcos  ± I 1 	 •4.  I 
sin2 OLX- 	 [24] 

r3  
=14.1 - ( 1 - 1  )cose--;X  

Or 	r4 	 2 r3 	6 t 

where 	 t 2=t cos 0 and x = r sin Hoi" 	 [25] 

When Rm is small an approximate solution for x can be found out by a 
perturbation expansion, which, however, is not regular at infinity, the right-hand 
side vanishing more slowly than the left-hand side as r— 00 and x is algebraic. 

When r is large and the small terms on the right-hand side are neglected, 
[24] approximates to 

62x 	( 	:2) ,2 
X D 	p0X_L ( 1 — t

2
) O X  

r 	t Or 2 I-  - 2 	• —2  " 	COS 	 • •-•-•-} • 

6 r  
[2 61 

Proceeding as in the case of the equation [I6], we can show here that for large r, 

x,il[TriRm .] sin90 P in  (cos 9) exp. [ 	R m  r(l — cos 0)1. 	[271 

Thus, the 0-component of the magnetic field is swept into a wake behind the 
sphere whose boundary is the paraboloid of revolution r (I — cos 0) = biR m , 
where b is a suitably chosen constant 

Ludford and Murray (1959) have found a similar behaviour of the poloidal 
component of the magnetic field at a large distance from the sphere. The above 
discussion suggests that when R m  is small, we should assume the toroidal field 
in the form : 

x y exp. [ 	R m  r — cos en 	 [2g} 
in [24] and solve for y from the equation obtained by substituting [28] in [24], 
namely 

62  ysin 	6 ( 	6 y 
—16r + —T  t a  ac 

1 
e s---ine s  ô ø 

[3 cos y
+ 1  

, 	cos 8); y sin 0 
- — • — 

r4 	 r3 	r 	2r4 
 

69 

+Rm y 
{ _ (I — cos 02  cos 0 (1  — cos 0)( 	1 )  4  

2  

_F r sin29  ( 1 	1 )11 
• [29] + 2 	2 r 2 r 

by perturbation in R m . Such a perturbation is regular for the function x- 
• 
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From [28] and [29] we find that the solution for x correct upto first order 
in R m  can be written as 

x =exp. [ —+ R m  r - cos 	x 

Hit - 2 	 .1  /1 61 ± 5) P +1  (cos 0) x 	sin 	P 
f 
 (cos 0) +1171  RA,1 (1 — cos 2 0) 

(4 (n + 2) (2 n + 0 rn±2  

P (cos 0) (n + 2)  p 11 1  (cos0) 
2 r' 	+ 	4 (2 n 	rit472— 	RA(1 	COS20) 1,1711  P 

 rif  -1  (COS A) 
71- i 

v„2  P (cos 6)  v„3  P +1  cos 0)} 
• 	 [30] 

rn±i 

where En, 	vn19 V n2 and v„3  are 	constants 	to 	be 	suitably determined. 

that q = (0, 0, r .(2 sin 0) for r < I, and taking the curl of [81 we have 

Noting 

curl curl 	= 0, 	 [3 1] 

The 0-component of [31] gives 

62  X_ sin  0 	I 	x\ = 0. 	
[32] 

o r2 	r2 	Ok sin 0 o ej  

The solution of [32] can be written as 

x =C„ (I — cos2 0) P (cos 6) r"1  + R m [D„+1  (1 — cos 20) P 1  (cos 0) r" 2  

D n 1 —COs20) P (cos 9) rn÷1  + 	1 	COS2  0) Pin-1 (COS 0) el. 	[33] 

To determine the constants B 	D's and C's in [36] and [33] we apply the 
following boundary conditions at r = 1, correct to order R41, 

(i) continuity of the normal component of the volume current, 
00 continuity of x (or 1/43 ) to avoid surface currents, 
00 continuity of the 0-component of the electric field. (E 4, is zero 

both inside and outside). 

The conditions (0 and (it) are equivalent. For the normal component of the 
volume current on the sphere is (curl 	= [l /(r2  sin Oka (r sin 0 H0160 
evaluated at r = 1. Hence, if 1-1,b, is continuous on the surface of the sphere r = 1, 
so is (curl I- ) r  and vice-versa. (ii) gives 

B„ --= C„, 	 [34] 

3 B„ n (n +  3)  
+ 11 1t3= Dit+1, 	 [35} 

4 (2n + (n + 2) 

B„ (3n  +4) 
11 ,12 = D , ;+ v,ii=g D_ 1 , 	 [36, 37] 

4(2n +1) 
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The condition (iii) gives, in view of [8], and the similar equation for inside 

RA4 [curl H — R A4 q x Fib 	{— curl H,— R Attu x He] , 	 [38]  
au R im 	 9 

at r= 1, where R im  a Al i  a a i  CI is the magnetic Reynolds number for the sphere 
and a' 1  is its conductivity. 

In [38], H and q on the left-hand side stand for the magnetic field and the 
velocity outside the sphere and H i  and qi  on the right hand side stand for the 
corresponding quantities inside the sphere in dimentionless forms. 

We satisfy the boundary condition [38] to the order R m . 
to be considered. 

(a) (Rm /R im ) = 0 (I  ), 	 (b) R im -, 1, 

(c) (11 R im) -, Rm or higher powers of' Rm. 

Three cases are 

Case (a): 	n B„ —(M'/p)  (R ml R im) C„ (n + I), 
	 [39] 

obtnined by equating the coefficients of P,c(cos 0) that are of the order I. 
[34] and [39] implies that 

[4o] B„ C„ tt-- 0. 

Similarly by equating the coefficients of R m  P  (cos 6) we have 

Rm  D„(n + I)  n V n2 	 • 
,u km.  

[36] and [41] give 

V ia= Dn = 0. 

[413 

[42J 

The other constants can be easily evaluated similarly. 	We give the 
final results. 

 

4E2'0  +k„)n(n  + I )  
Vnl Dn a' um 

(2n + 1)[(n — 1) + (Ai nR m)1( au R im)] 

AQ' {(1+k)n(n4-1)}  
n3=1  Dn+1 —   	• 

(2 n + 1) 	+ 1) + 	Rm )1(M R im ) (n + 2)1 

[433 

[44] 

where ,s1 = (Ai' Om. 

 

Case (b) : Proceeding as is case (a) we have 

Bn = vn2 cn r---- Dn unt 0, 	 [45] 
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An il (1 + k ijn(n + 1) 
vitt = (2n + 1)(n —1) 

A  n t  ± kOn 
Vn3 = Dn+1 	tin ele On +1) 

[46] 

[471 

Case (c) : The values of the constants are the same as in case (b) . 

BEHAVIOUR OF VORTICITY AND TOROIDAL COMPONENT OF VELOCITY 

Let curl q (Q„ £2., 1.1)) 
	

[48] 

and 	 (curl H) x H (F„ Fo , F* ). 	 [49] 

00 = r (1 +112?) cos 9, and the 
the potential flow [61 as the new 
We take the curl of [111 and the 

We introduce the potential function 
stream function th ril Ifi — ;PE sin 0 of 
independent variables in place of r and 0. 
0-component of the resulting equation gives 

'2 1 2 29 	1 ± 	sin20 r 	_ 7) cos +( 
2? 	6 (Po 

0; RAJ) [5o] 

where 	 (0-  = cob.  sin 

\ 
and 	 f(r, 0; RIO =--- - 1-6—(ria --

60
‘1441• 

r sin 	a r 

The equation [so] in terms of the new variables can be written as 

[5 11 

the integral is taken along 
chosen that when r-->. 00 
the 0-component of [11], 

r 5  f(r,  ; R m )  
d#0. 

(r 3  —1)2  cos20 + (r 3  +1)2  sin20 
[52] 

a streamline 00  = constant and the lower limit is so 
upstream the quantity to tends to zero. Also, taking 
we find similarly that e r sin 0 q 4, given by 

6 e 
(r — —2-1 ) cos ea°

6 	2 
e 	(1 + 	.,-- sin e

6 	
r

2 
 sin 0 Fif, 	[531 

r 	 r'

1 ) 

	0 

i e , (in terms of 0 0  and tfio)- 

[53a} {( 1 — 	
2 
 cos20 + I + 

1 	
sin

2  e w-ooe 
r sin 0 F4) . 

2r-  

2 
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Integrating [53] as in the case of [50, we have 

5 	
r7  sin  F‘  

[(r3  - 	COS 2 9 (r3  -292sin2H] 
d 	 [54] 

where we have taken 	0 as r 	or) upstream. 

Now, in the expressions for Fr  and F4, the contribution of rotation is 0 (RL) 
hence, to our approximation, when r is small, we can neglect the effect of 
rotation in the r and 0 components of Lorentz force and in f(r, 6, R A4 ). 
Hence, as shown in the absence of rotation by Ludford and Murray (1959, 1960) 
the 0 component of vorticity is logarithmically infinite on the sphere. 

From [53], [21], [28] and [491 we find that the 0-component of velocity is 
swept into a wake behind the sphere whose boundary is a paraboloid of 
revolution of half the size of that for the magnetic field. For in the right hand 
side of [53] the argument of the exponential, exp. [ — R,, r(1 - cos e)l, is twice 
that of the magnetic field. 

Noting that in [54] we integrate along a fixed stream line we can write 

r(P) 

r 4 9 F sin 	4, 
6 = 	 dr. 

(r3 — i) COS 0 
r•-•=. co 

• 

[55] 

Using [55] we shall obtain an expression for e near the front stagnation point. 
The integrand in [55] is 

r4+112 	F  
cos 0(r3  — 0312 	

[56] 

The denominator 	0 as r > 1. Hence when rp 	1 and r 1  is sufficiently larger 
than 1, the leading part in [55] is 

r(P) 

r912 k   Fis  dr 
COS 0 (r3  1 f2 ' 	

[57] 
rnzri 

so that the contribution of 

 912 	F dr r 	wbo qs  
sit  cos 6 (r3  — 0312  
= 

being negligible compared 
Appendix A). Also when 
we have to the order RA4, 

with this leading part. (The details are given in 
r is not very large, from [49], [34 [2]] and [22] 
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F= R m  sin e { ° A ni l77 an, P, (cos A) (v„ i  n (n — 1) P„_ i  (cos 0) 
41, 	 _-:, 

rm+2 
m, n=1 	 rn+1 

. 

V„An +  )(n + 2) P„. 1 (cos  0)) 

r
n+s 

°I AAI  m(nz + 1) am Pm(cos A) y  
m+3 

m, n=1 

(n —1) v ni  P:. 1  (cos e) 	(n +1) v„ 3  P: +1  (cos 0)  \ *1 y 
7t 	

r
n+2 1.1 

R M sin U nr, 

Hence [57] can be written as 
r (P) 

2.1 	RAI 	( r, 0) dr 
= 	 [se] 

— 
r =ri 

where 

F1 (r, e) 	r 5  nr, 0) 
cos (r2  r 02 	

[59] 

Now, by the Mean-Value Theorem of the Differential Calculus for two variables 
we have 

Fi (r, 0) 4=g Fel  (1, it) +(r — 1) Fi  [I + 9(r — 1), art + /AO ir)1/4? r 

— tr) .) F1 [1 + 	— 01  
where 0 < < 1. Hence 

r (P) 
R m Fi (r,  9) dr 

act R m [Fi  (1, 4( 
(r1) 2  

r=ri 

1 	 1 	\ 
[ r (P) — 1] +  ( 	1) I 

r (P) 
6 Fi  ri +77 (r- 1), 	+ q(6 — )]/r  dr  

(r —1) 
r=ri 

r (P) 

:L 	
(r -- 1)2  

rirt 

Tr  + 	— -70Ya8  di] • [60] 

We can find two numbers A and B such that 

o F1[1  + 	— 1), i  

ind 
	

16F1[1+9(r —1), Tr + ti(6— arr)j I ate' tc- B 
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Thus, the mod. of the first and the second integrals on the right hand side are 
respectively less than or equal to 

A [log (r 1  — 1) — log (t- (P) — 

and 	 (—Op+4 11 1 

in absolute value. 	Hence, when -7r — 0 p and 	— I are sufficiently small, it 
follows from [60] that 

r(P) 
R m Fi  (r,  ei 

SI 	1) 2 
rani 

\.dr 	— R m  ( 1  77)( 	
1 

r( n.o/ 
From [58] and (59) we have 

ego — R m  F1 (1, Tr)(4 + rp + I) sin Opiti. 

[6 )] 

[62] 

In the case of a dipole of strength A 1  situated at the centre of the sphere, 

A a A 1  sin2eir, 

3 A 1  bi v13 Rm  sin Op (COS 2Op + I) 
(Les 	 • 	 [63] 

(4) + rp + 1) cos op 

We shall now find expressions for (..0 and q o  taking ep= Rm  Pp (I — cos op) to be 
very large. This implies that r is large at every upstream point on the stream- 
line through the point P. We put 

le = r — cos Mrp (1 — cos Op)] — I, 

and [52] reduces to 

exp. — ep  it] f'  rp  — COS O)p  wee  = exp. [— epj  	 du 	[64] 
r(1 — cos 0) 

where 	 f ta exp. -R m r — cos 0)11' . 
By Watson's lemma* (Cospon, 1935) for fixed 6 I 09  we have from [IA 

exp. 	. co, 	 [65] 
RA4  (1 — cos Op ) 

* The function [1' r(1 —cos e r)jj[r (1—cos 0)1 occurring in (64) is a rational function 
of It with poles at u=- lik i cot ( 1 /2 op). 
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where f' is evaluated at (rp , Op ). When, in the undisturbed magnetic field of 
the sphere, there is component due to a dipole situated at the centre, it can be 
shown that, for large r, 

- RL v 1 sin 20 IP: _ 1  (cos 0) 121[r2.4 (1  + cos  0)]. 	[66} 

(The details are given in the Appendix 13). 

Thus, from [651, it follows that 

e R3t4 v,2 1  sin 0 - exp. I- 	 P P n--1 (cos O)} 2/1.2 

	

./ P 	• 	 [61 
Similarly from the equation [54) we have, for large rp, 

exp. [ ej x 
A„  R 3A4  a„ v„ i  n sin% (1 - COS Op) 

p  
4 rp n  R m (1 - cos Op) 

X -1(n - I) P„_. 1  (cos Op) P n' (cos Op) - (n + 1) P„( cos op) P .. 1  (cos 0 p)} . 

Both the expressions [67] and [68] are to be modified in the case it = 1, i.e., when 
the undisturbed magnetic field in the sphere has a component due to a magnetic 
dipole situated at the centre. In this case 

w,exp. [ 	x 
A 21  Rli a; sin o4-  3 +4  cos Op - COS

2 
 ki
0 

 p ± sin 2 
 OpCOS Op}  [69] 

16 14,1  4)(1 — cos 00 

and 

e -.- exp. [ epjAi /eft/ al v 21  s in 4  op 1[4 4(1 - cos 0)J. 	[7o] 

From [67] and [68],  and [43] or [46j it can be seen that co and e are proportional 
to .Q2  and .0 respectively and it follows from [69} that co is independent of 
rotation. 

• 

Drag on the Torque on the Sphere : The 
pressure is a drag along the downstream given 

force on 	the sphere due to the 
by p o  112  a2  D where P 

co 	7 

D, k=4 7V 13 —
d r 

(F8  sin 0 + 2 F, cos 0) sin 0 d O. 

The contribution of rotation to the terms F, and Ft) above is o(4) and hence 
to the order of our approximation it does not affect the drag. The drag 
coefficient Dp is given by Ludford and Murray (1959). 

The force on the sphere also arises due the Maxwell stresses, 

Mt Hri 	m H 2  8u. 
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On a surface element this becomes 

h2  [1- (t42  - 1-1; — H Q?), 14110 , 1-1, H ci,]. 

Hence the drag coefficient due to the Maxwell stress is given by Dm , where 

IT 

Dm  = 27q3ja  [I 01,2  — Hil — 1/4:,-') cos 8 — it Ho  sin A] sin 0 d9 

0 

[72] 

[73] 

and the total contribution to the force is p U 2  a2 Dm . Contribution due to 

rotation is 0 (RL), hence, to our approximation Dm is that given by Ludford 
and Murray (1959). The torque due to the Maxwell stresses is given by 

P a3  U 2  p T„„ where 

7V 

Tr, a 2 Fr fir  Hi, sin2  0 dO 

8=0 

=2-n R m  
A an ti(n± 1)  .12 v, 3(i 1 + 1) 	+ 

" 
n = 1 	(2n + 3) 	t 	(2n + 3) 

2 (n + 1) (n 4- 2) vn , 1  2n (n — 1) 	2n(n-1)} 
 [74] Vn+29 1 	 -2, 3 

	

(2n + 3) 	(2n — 1) 	 (2n— I) 

The case for a dipole can be easily deduced from the above by putting n = 1. 

T„, = (16 -n Rm  A 1  a l  v 13)15 
	

(75] 

where A 1  is the strength of the dipole and al  and v13  are given by [23a} and 
[44] or [47]. Thus 

96 ir au. A i  Rm  fi r  A 2/ ' 
T„, = 	 

5 (2 + P 9 2  [2  + (3 R m 	( R im ) ] 

when 	 R m iRk tor 0 (1), 

	

48  Tr 	S-251? R m  
T„, 

5 (2 ,u 1,02  , 

when Rm/Rim  is 0 (R m ) or smaller. It is evident that the torque opposes the 
rotation of the sphere and its magnitude increases to a limiting value when the 
conductivity of the sphere becomes large compared with that of the liquid 
outside. 
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• 

APPENDIX (A) 

We shall show that the contribution of 

r
9(2 J:  

F4, 

cos 0 (r3 	)3,2 dr 
r=ao 

is negligible compared with 

r (P) 

12a 	
r 912  :fio  F4, 
	 dr 

cos 0 (r 3  — 0312 
r =DPI 

where rp  is sufficiently near 1 and r i  is sufficiently greater than 1. 

By the first Mean Value Theorem of Integral Calculus, we have 

r=r, 
912

0 Fi 
cos 9 (r3  e )3!Zdr  

r=0) 

__ 	2 	[ tfro 	a 	r912  F4, 
(r1 - 0" cos e (r2  + r + On ' 

r=r2 
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where r i  <r2  < co. Now, let 
r9/2 

[COS 0 (T2  r + 1) 3121 =  k ' r- r2 

a finite number, then 

RA/ Ft (1, IT)  

2 k (rp – 1) 

which is large when (r ii  – I) is large and rp– I is small. 

APPENDIX (13) 

In view of the very complex nature of the expression for f and Fis  and of the 
approximation for large r, we shall discuss briefly this asymptotic nature below, 
We write 

A = exp. [ –} R AI  r 	cos 01 A', 

H z= exp. [ 	R m r(t – cos 0)]1-1 1  , 

x =exp. [–I R r (1 – cos n)] xi , 

F = exp. [ Rm  r (1 – cos 0)] F r , 

and 	 f = exp. [ R m r (1 – cos 0)] f' . 

Let in the sequence 	A I , A2, A3, .", An, 14 /141, 

A„ be the first non-zero number. We have 

f 0*, 0; RAO 

c exp.[ .Rm  r( 1  – cos 0)] 
r Sin 0  

[RLI-1- (1 – cos 0) 2  r He; 11: 

—} sin 0 (I – cos 0)r .11,12  + 4- (1 	– cos 0) sin 0 r H;1 2  – -}K ll; r sin20} 

+ R M .1 — (i — cos 0) 11; 11,1  – (1 – cos 0) r H;(5 HWOr) 

r If (1 – cos 0) 11; 11, 1  -} sin 0 11: 21 /.3 r o {1( I – cos 0)142  

(1 –  cos  0) xl  6 x' 	x' – +sin 0 11,' 144} k 0 + 	, 	• — -- • --- -- r2 	0 	r sin 0 	r 
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r 2 
X 	+ r 	(  x' 	\ 	(x?  2  ( 1 —  cos  e)  

• 
2 r2  sin e 	o r 2 r2  sin 0/ 6 0 	2 r2  sin2  0 	) 

11; ri ? OH;Th.' 6 H,' 	; 114 	zi t II ; 	C's 
{ 	

or r 	 r 
-- + li r 	— • 	

6 H r 
60 	or 	 ar 	r ae 

6 {HA' 2 	o H„' + 	u  
0 r 	ar 	r O0 r  

X I  	6  X I 	6  	+ 	X?   
EA2) i] • 

r3 sin2  0 a 	a r r3sin2 e a e 	ai t r2 sin2 d or I 

The coefficient of RAJ  in the above expression can be written as 

6 A' 	cos  (1 - cos 19)2  cos 0 (1  - cos 0)  A la A' -IR A]  r In t 	— • 
6 (cos 0) 3 • r sin 0 2 • r sin 0 a r 

sin  (1 -  cos 0)  A , a A' 	sin 	- cos  0) 2  A ? 6 it 
rs 	6 (cos 0) 	r2  sin2 	6 r 

cos 0 	cos A)  a A I  Of  ye 	sin 0 -  cos 0)  
?sino 	O r 6 (cos 0) 	2 r3 	\a (cos Of 

sin (I -  cos 0)  16 A' )2  
2rsin 2 O 	Or 	s 	 [A2, 2] 

For large r, 

' 	.1? A A4  sin2  (a A 	 -21A, (cos 0) + Am 	(cos 9)) 
re it -I 	2 

and 	 R sin 2 	I"; _ 1  (cos 0) I r" . 

From [22] it is clear that [A 2, 2] is 0 (14j /r2"). Hence in [Al, j, the contribu- 
tion of RL x (its coefficient) is 0 (R 5m /r 2"). Similarly, it can be shown that in 
EA21 1] the contribution of R m  x (its coefficient) is 0 (R,/r 2'). This is 

1 2 AR  JO -L eos 0) 	x _X_ 
t -;i sir-12 	X  a 0 r sin e Or 	2r sin 0 

a (  xf 2   \ 	a ix' 2  (I — COS 0) I 

/
\ +r 

O r 2 r2  sin 0/ 	0‘ 2 r2  sin2  0 	1 

RL v,2, 1  Sini  [Prti _ (COS 

r2" (1 + cos 0) 
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In the coefficient for R At the terms contributed by IV and 14 and their 
derivatives are 0 (tA1 lr 2"). 

Hence they are neglected when compared with the terms involving X' and 
its derivatives. 	The rest of the 	terms in 	[A 2 , 11 	is 0 (1/r2"' 1 ). 	Similarly the 
expressions in [681, [69] and [70] are derived. 	When the original (undisturbed) 
magnetic field in the sphere contains a component 	due to a dipole situated at 
the centre, we have for large r 

A I  a 1  R Ai sin 20 
2 

and 

f 	R, i'23 Sill 2  0 
X ea%"/ 	 • 

These values are used in deriving the expressions [69] and [70j. 


