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ABSTRACT 

We consider the steady rectilinear motion of a Maxwell fluid in straight tubes of 
arbitrai y cross section. This type of motion in a circular tube is possible in the absence 
of body forces. The velocity at any point of a cross section is less than the correspond- 
ing velocity of a Newtonian fluid, the midstream velocity being the same in both Cases. 
We derive the conditions necessary for the maintenance of a purely rectilinear flow in a 
tube of arbitrary section in the absence of body forces. These conditions restrict the 
form of the strain energy function in its dependence on the strain invariants. 

INTRODUCTION 

1. Rectilinear flow of a Newtonian fluid in a cylindrical tube of arbitrary 
cross-section is always possible in which the streamlines are parallel to the 
generators of the cylinder. 	 • 

In 	the 	present note we 	find 	that, 	in 	the case of a Maxwell fluid,' for 
maintaining a purely rectilinear flow of the above type in a cylindrical tube 	of 
arbitrary cross section, certain body forcess are essential, a circular tube being 
an exception to this statement. This situation also arises in the case of a 
Reiner-Rivlin fluid as was shown by Green and Rivlin 2  and Bhatnagar and 
Rao3. 

2. In cylindrical coordinates (r, 0, z) taking the z-axis along the axis of 
the circular pipe, the deformation tensor a, for an incompressible fluid is 
given by 

1 	0 	0 

a I= 0 	1 	0 

(dwldr)t 0 	1 

where w is the velocity independent of time t. Since 

0 
	

0 
	

0 

(daft -101-1  = .  0 0 0 [2.2] 

(dividr) 0 
	

0 
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is independent of time t, the condition for time-independence of stressess l  is 
satisfied. The internal deformation tensor 	is given by 

((daldt)a -l -c; g cc; — 	o 	[2.31 

where p is the reciprocal of the relaxation time and 1 is the idem tensor. Thus 

1 	0 	0 

c 	0 	I 	0 	 [2.41 

	

2 tan 0 0 	1 

where 

/g) (dwl dr) = 2 tan 0. 	 [2.5) 

Resolving the internal deformation tensor Tri  into an orthogonal tensor R 

and a real positive symmetric tensor sEts, such that 

	

a = as R 	 [2.6] 

we have 

I • 1 	0 	2 tan A 
"-- 1 -? 	- - 	I 	IN t 
Qs Qs n a a - 	v 	1 	0 	 [2.7] 

. 	 2 tan n 0 1 + 4 tan2  0 

and 

1 I cos 0 	0 	 sin 0 
1 —1 	I 	1 	 0 	
1 

n 	 [2.8] %.,  

I sin 0 	0 	cos 0 + 2 (sin2  0/cas e) I 

where the tensor ct- : gives the pure deformation following the rotation R. 

The stress tensor s; is given by 

c2Q' + RC t's  + PI 	 [2.9] 

where I?, Q are the partial derivatives of the strain energy function with respect 
to the first and second invariants I, J of the pure deformation tensor ct : given by 

fa Tr [a:1 and Jo  Tr [ a. ird 	 [2.10] 

and P is the hydrostatic pressure. 
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In the usual notation, the stress components are given by 

a „ nt R cos + 2t9 + P 

a „ R [cos + 2 (sin 2  Aicos 	+ 2 Q (1 + 4 tan 2  0) + P 

Cr rz = zr R sin 0 + 4 Q tan 0 

giro 	or mar es or= c rza = O. 
	 [2.11] 

We consider, for the sake of simplicity, the case in which R and Q are 
constants in view of the absence of definite knowledge about them. We have 
the equation of motion along the axis of the pipe as 

(en) a (a  ) rz 	 zz 	0  
Zr 	p.-A, [2.12] 

where 

a z 
	C 
	

[2.13] 

[2.14] 

[2.15] 

is the pressure gradient. 

From [2.11] and [2.12} 

a rz  (CrI2) =-- R sin 0 + 4 Q tan 0 

so that 

C  — V) 

	

nR (1 + cos 0) + 2 Q tan 2  0,2—T 	0 Is- it 
4 	le 	 2 

where V is the velocity along the axis of the pipe. Making 
condition on the pipe, we get 

V 	R (1 4cos6j)- 2 Q ta&ZOi  

2a 13 	R sin 0 1  + 4 Q tap 0 1  

use of the no slip 

[2.16} 

where a is the radius of the pipe and the skin-friction on the wall of the pipe 
is given by 

(d W 
dr 1 r 

is 2 13 tan 0 1  [2.11 

If 11/0  and A are the non-dimensional parameters 

V 
o  W- 

/3 
[2.18] 



0 	0 

1 0' 

q I 	I 

[3.3] 
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and 
, R 
A a ' 	 [2.19] 

4Q 

we have 

A (I —  cos ea) — + tan2e0 
W01=1 	 [2.20] 

A sin f90 - tan t90 

where 

00 c lt - 09 1 

[2.21] 

The rate of dissipation of energy 

(8E1 di) = Tr HP (I — 	= — 2 C r .. $ tan 0 	[2.22] 

is positive for all values of 0 in the range 04 2 as. e -- s. ir, when A < 1. 
Fig. I shows the variation of W0  with 00 for A = 0.125, — 0.125. We note 
that Wo  is proportional to the inlet velocity and 00 increases with decreasing 
skin-friction. 

3. 	In rectangular cartesian coordinates (x, y, z) the axis of the pipe 	is 
taken 	as the z-axis. 	W is the velocity 	parallel 	to 	the axis and is indepent 
of time. 

The condition of incompressibilite gives 

6w/6z r-- O. 	 (3.13 

With the same notation as in 2, we have 

0 0 0 

 

0 

(aw/ax) 
0 

(aw/ay) 

[3.2] 

which is independent of time. 

with 

p = (I Ifi) Ow I ex) and q = (1 / /3) (ow/ay) 
	

13.4) 
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FIG. I 
Effect of inlet velocity on skin friction 

A, is =-- X-0.125 and A, is X —0.125 
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and the pure deformation 111, by 

V(p2 472 + 4) . ;iv  

2 p2 q2 V(p2 112 + 

p2 172 

pq{2-8/(p2 +q2  ±  
p2 q2 

pq { 2 — il(p2  4- 112  + 41} 

p 2 q2 

2 q2 p2 	p2 (72 + 

2 	2 p +q 
[3.5] 

2 +p2 + (12 

The equations of motion along the x-, y- and z-axis, in the absence of body 
forces are 

r  I? 	2 p2  + q2  AI( p2  + q2  +  +2Q+11 
x[p2 + q2. 	V(p2 +q2  +4) 

6 [ Rpq  2 — 	P2  + e + 4)  1 0 [3.6] + 	p2 ei v(p2 	+ 4) 

a {  Rpq  . 2  — Ai(p2  + q2  + 1 + 	R  . 2q2  + p2   V1p2  +  q2  + 
ox p2  + q2 	V(p2-1-q2+4) 	oy p2 q2 	,V( p2 ±q2 4. 40 

+2Q+ P1=0 [3.7] 

	 11 j_ 	I 1,7n_ R 	OP 	F2  
bax

[
P{2Q+  V(p2 ±q2 +4)) .1 eyrr + V(p2 i-q2 -1-4)1 1-  Oz =- ‘1  La.ljj  

where (a naz) 	c is the pressure gradient. 

Eliminating P between [3.6] and [3.7], we have 
,2 	Rp2 -e)  Fri ( 

0

6 	

a x 

2 	2 

xoy 	 t  --7 
6

[Pq Fa]---i) 	= 0 
Y  

where 

F , a  R . 2  — ii(p2  + q2  + 4) 
P2  -E. q2 	p2  + q2  + 

Also from [3.8] we get 

62 	2 	 62 	62 

axoy [ (/) q2) F1 4-  (-2 —i)EF + D sa 	 0 
ay 6 x 

[3.9] 

[3.10] 

4. 
	

4. 
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where 

D.p  6p .  OF . g o9 . 6F ±q 6p .  OF sp. aq . oF 

6x by 	ay ox 	oy oy 	x a x 

vanishes in view of the fact that F is a function of (p2 + q2), and . 

F--= 2Q + RI[V(p 2  +q2  + 4) 
] 

[3.12} 

[3.9} and [3.11] are consistent if 

(a) R = 0 Or (b) R1Q = 2A (I —MTh + A (1  + h)] 	 [3.13] 

where A is a constant and 4 is the first invariant of the tensor aals• 

[  /2  + 4 11  + 1 -1-2/A1 
4+1 -1-1/A 

W=i 	 [3.14] 

where 11  and 12 are the first and second invariants of the tensor -c-t : and f is an 
arbitrary function, is an example of the strain energy function satisfying the 
second of conditions [3.13]. 
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