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ABSTRACT 

Following the work of Bondi and McCrea, we have considered a point 
stationary star surrounded by an infinitely extending cloud of gas. The material 
in the cloud moves towards the star due to its gravitational force ·so that a 
spherically symmetrical steady motion is established . in the cloud and matter 
continually falls in the star. . 

The main contribution in this paper is th:" inclusion of radiation efftcts 
through the adiabatic coefficient introduced by K limshin. 

INTRODUCTION 

1. The phenomenon of accretion of interstellar gas by stars is of 
considerable importance in astrophysics. Bondi! considered this problem in 
the following form. A point stationary star is assumed to be surrounded by 
an infinitely extending cloud of gas, having uniform density and pressure at 
infinity and at rest there. The motion of the gas is assumed to be steady and 
spherically symmetrical. The star acts as a sink and the gravitational force 
on the gas is due entirely to the star of unchanging mass. " The gas is 
assumed to be perfect and the motion of the gas is taken to be isentropic. 

Under these conditions, he considered the accretion of this inward 
moving gas by the star and dealt with three difTerent cas~s: when the rate of 
accretion is less, equal to and greater than a critical value. determined by the 
maximum rate of accretion. Only this critical value of rate of accretion gave 
a solution which satisfied boundary conditions at infinity, but a finite jump in 
acceleration would appear at a point, where Mach number is unity, which, 
though physically possible, was not givcn meaning to by Bondi. 

McCrea2 reconsidered essentially tbe same problem and corroborated ~t 
by introducing the existence of a stationary sho.:k wave in the flow. ThiS 
made all the solutions of Bondi for the maximum rate of accretion pllusibl~ 
and his type [ and II solutions appeared as extreme cases of the general flow, 
including a standing shock wave. 

The gas surrounding the star is generally at a very high temperr.ture and the 
neglect of radiation effects is not valid in general. We have incorporated the 
elrcct of radiation pressure and radiation energy. but have neglected radiation 
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flux. In the discussion we have used the adiabatic coefficient, introduced by 
Klimshin3  that renders the whole treatment quite analogus to ordinary gas 
dynamics. Finally, we have given a numerical example which satisfies boundary 
conditions at infinity and which allows a standing shock wave in the physically 
meaningful region. 

2. EQUATIONS OF THE PROBLEM 

The following equations govern the problem : 

Equation of continuity : 
4 Tr r2  p v = A, 	 [2.1] 

where A is a constant flux across any spherical surface surrounding the origin 
and so is the rate of flow into the sink at 0. 

Since 	 p. 0 0 as r 	co , it follows that 

	

v 0 (r ' 2 ) as r—> 	 [2.2] 

Bernoulli's equation: 

02  + f (44) —(GM1r)= constant. 	 [2.3] 

Here r is the distance from the origin, where the point star of mass Al is 
situated, p is the density, v is the radial velocity, p is the sum of the gas 
pressure and radiation pressure, Le. p s g  +pR, and G is the gravitational 
constant. 

Equation of energy : 

E 	(i 	n  
p— —)=u, 	 [2.4] 

a r 	3r p 

where the total energy E is given by 

E = 	ER. 	 [2 5} 

For a perfect gas, 

	

Eg= Pe* —1 ) P 	 [161 

and 	 pg  R p T, 	 [2.7] 

where T is the absolute temperature, y the ratio of specific heats and R the 
gas constant. 

Assuming local thermodynamic equilibrium 

p ER = 3p R  = a T4, 	 [.2 8] 
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where a is Stefan's constant. 

If we set 	 pg  cap 13 p,  

Ip E aca — — * 	 [2.9] then 
k — I P 

where 	 k — 	 
P + 3(I — 13)(y — 1) 	

[2.10] 

This adiabatic coefficient k has been introduced by Klimshin and is 
different from y and r1. 1' 2, 1 3 , the three adiabatic coefficients associated 
with a system consisting of matter and radiation' s. This is equal to y when 
p - 1 and 4/3 when p f=t 0 so that it coincides with the three adiabatic coefficients 
F1 , r, and 13  in these extreme cases of pure gas and pure radiation. 

Thus, the energy equation now becomes 

1 , a ( p ) 4. p  (i) . 0  
k — 1 or p  

or 	 pp
—k a constant, [2.12] 

and Bernoulli's equation becomes 

0
2 	k p GM 

— ÷ — • -- — a= constant. 
2 k — 1 p 	r 

3. SHOCK CONDITIONS 

[2.13] 

The shock conditions with the inclusion of radiation pressure and 
radiation energy are 

P1 °I = P2 V29 

PI 4.  P101 = P2+ P24 

I 2 ,_ ,,, 	 I ,2 ,_ 
i ill "7" ill =I 7 v2 "r ,V2s 

[3 . 1] 

[3.2] 

[3.3] 

where w Is the heat function 

(4 — 3 f3)(y  — 1) +p pk 	p 
w a 	 _ a.......-- — .... a  —a— .... 

Y — I 	p k — 1 p ' 
[3.4] 

and suffixes 1 and 2 denote the conditions just before and after the shock front. 
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The equation [3.3] can be written as 

1 2 	Pi 	1 2 	1c2 	P2 	 [3.51 2 1) 1+ 	 t°3-V2-1" 	--- • 

	

k1 — 1 P t 	 tc2 	P2 

No doubt, we have taken k J  and k2  to be constants for the entire flow 
in front and behind the shock front, k i  0 k2  as k depends on p which takes 
different values on the two sides of the shock front. 

In view of the equation [3.1, the Bernoulli's equation [2.13] holds every- 
where, whether the shock is present or not. 

Following McCrea, we also introduce pseudo-sound velocity squared 

2 kp 
Co, 4•111 [3 63 

in place of the actual sound velocity, given by 

pi  P c 

and the pseudo Mach number 

14 = 
V 

— • 
C 

The word pseudo ' will be dropped henceforth. 

Introducing c and u, equations [3.11, [3.2] and [3.5] become 

Pi u i ci  a p2  142C2, 

(3 .8] 

[3.9] 

(1 + 	(I k2 

	

k1 	 K2 112 

	

^2 (1 	 ) "2 ( 1 	1 
cti 	1,41 -r — 	 — /42 -r 

	

2 	
— 

1 	2 	k2  — I 

[3.10] 

[3.11 ] 

Combining [3.10] and [3.1I], we obtain an equation giving u 2  in terms of 
k l , u1  and k2  : 

(k1  —1)(k2 — 1)04 — IAD — 2 k i  (k2 — 1) kl 	+ 2 k2  (k it  — 1)k utu i 

-1- 2 Rki  —1) k3 	2 -- 1) ki 	+ 4 k k2 (kJ, — k 2) 	sc3 O. 	[3.12] 

Since 

PR 	a714  
pa 

 1.p3(1—flY 
[3.I3j 
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P a 713  
and 	 0 

[3.141 

we have 
(ELY (12 y tog  (fiL  )4  ( 1  82  

[3.151 k PI / P2/ 	\th / 1  — PI / 

Solving [3.1], [3.2] and [3.5], we get 

P2/Pt a=  1  ± a F (a), 	 [3.11 

P2 = 	1 
[3.1 

P1 I F (a) 	
1 

where 	 a gas 	 [3.18] 

and 

no.) 	a — k2  I + 	+ 2 (k2  + 1)  Oci  kz) 	• 	[3.191 
k2 + 1 	a 	j 	(k, - 1) (a _ k2)2  

The equation [3.151 now becomes 

[I + a F(a)P El — F (Or r2 11)41 !Id?!  ) 
/32 	1 	13  I 

[3.20] 

• 

or  
k /32) k 1- /33 •  

[3.20] 

This equation determines p2  and k2, knowing p i , 1( 1 , u1  but its 
solution is difficult. We have solved it graphically (Fig. I) for the 
case corresponding to k 1  as 1.585, 	= 0.86 and y c 5/3. 

exact 
special 

4. EQUATIONS HOLDING ON THE 1WO SIDES OF THE SHOCK 

Using the boundary conditions at infinity, the equation [2.13] which 
holds on both sides of the shock becomes 

02
• k 	M a  k 	P 	 [4.1] 

9 4  — 1 p 	r 	k - 1 p. 
[4.1 r X GM C;2, If we write 

where 

[4.3] Ca; — 
P 
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Solution of equation (3.20') with k1r-1.585, 131=0.86 and I-=5/1 

equation 14.1] becomes 

2 2 (1 

C  14 	
) 	2 (1 

2 k _1 u2 
x k i — 1) .  [4.4] 

The equations [4.1] and [4.4] are true for the flow domain in front of the 
shock. If we assume that the shock is situated at r =r 1 , the conditions for 
F > ri  and r <r 1  can be separately discussed. 

Conditions on the front side of the Shock r > r i  : 

From the energy equation 

PIP. c (pip cur', 	 [4.5] 
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We can show that 
film. a (cic arith  -1) 	 [4.6] 

Making use of the equation of continuity and [4.6], we can write 

2 	( 	UcL+1)/(ki —I) 	 3 Ac x u 	 cci  	 A , 	 [4.7] 
ce 	 4 IT G2M 2p 0, 

where A is a non-dimensional quantity of matter that falls into the star per 
unit time. 

Eliminating ((lc.) from [4.4] specialised for r > r 1  and [4.7], 

—2 (ki-1)/(ki-1-1) 	z-(5-31c1)/(ka 1-1) 

u -2 (kis Inact+i) 	2 
u

2 
± 	 x + 2)• [4.8] 

This equation gives the Mach number at any point distant x from the 
centre on the front side of the shock, x and r being connected by [4.2]. 

Conditions on the back side of the Shock front, i.e. when r <r 1 : 

The Bernoulli's equation becomes 
2 	k2 	p GM 	1(1 Po 3 	 [4.9] 
2 + FC2 -- 1 p 	r 	k 1  — 1 p. 

As before, it can be written as 

2 2( 1 	1 	1 ) 	2 ' 1 	1 	) 	 [4.10] C U 
2 	k2 -1 142 	c°  ; 	k i  1 

The energy equation now becomes 

p .(c \21(k2-1) 
[4.11] 

p 2 	c2  

In this case, 
. 

x2u (c/c.) (Icl-Enitk2- 0 	Act   	p a, ( C \ 21( k2 a 1) 

a 
4 Tr G2  M 2  p.  

) . A P- m p2 ( c c2  21(kr - l )  , 

P2 p \c2  c c. 

A P CD ( C2 \ 21 ( 1c ,  — I) 

P2 C. ) 	
[4. 1 2] 
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making use of [4.11]. 

We can easily show, on employing equations [3.9] and [4.6], that 

FIL.,( c2  21 (k2 -- 1) 	1,2 	c2  (k2-1-1)/(k2-1) 	c. 	2 (kg ski)/(ki-1)(k2 - 1) 

• 	[4.13] 
P2 CCP 	 U1 CI 	 CI 

Thus, the equation [4.121 can be written as 

2  ( c  Itz+0/(k2 - I) 	
A  " 

..
2 L 	

Icn
2 
 ( 2+ I)/(k2 - I) Ca  

	

X 74 — 	
c 

	

__

C. 	 11411 CI 	 Cl 

C v (say). [4.14] 

Eliminating (cic.) from [4.10] and [4.14] 

- 2(k2 -1)iik2+1) U2 ± 	2  ) = V -2(k2-ollk2+0 x.-0-3k2mic2+1) 	2x  + 2)• [4.151 u 
k2  — 1  

This equation defines the Mach number at a point distant x from the 
centre on the back side of the shock. 

5. CALCULATION OF CRITICAL A. 

Following Bondi, the equation [4.81 giving u as a function of x in 
front of the shock can be written as 

100 c A - 2 (ki -1)1(kt+1) g(x), 	 [5.1] 

where 	 A u) = Er 2(k 1-- °Akin) 112 -- +  1  ) 
t 

	

2 	k1-1 	
[5.2] 

( Az) a x -oesv( kik)+0 	x — — + 1) • 
ki  — 1 	

[5.3] 

f(u) and g(x), each being sum 
their argument have a minimum. 

of a positive and a negative power of 

f(u) has its minimum at umfr , a 1 and is given by 

[5.4] fn.  

1 in 	2 k1-1 • 
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while g(x) has its minimum at xmin 	— 3k0/4 and is given by 

k 1  +115—  3k3 - (5-3ki)/(ki-4-1) 
gnarlcm 	 - 

k i — 1 	4 	 [5.5] 

Now x varies between infinity and the value corresponding to the surface 
of the star, which will usually be very small so that x,„ lies in the physically 
significant interval. 

The lowest value that the right hand side of [5.1] can take is 
girth: . The equation 

f(U) = A -2(k1- 	+I) er  
6min • 	 [5.6] 

should hold for some value of u, but f(u) cannot be less than La, so that 
ofikt+i) 

grnin?i fmin 

or 	 A c  &flan oct-migk,- 

	

fm/n) 	
[5.7] 

Thus, the maximum value of A is 
( A, c 	1 on+ on(ki- i) 5  _ 3k 1  - (1/2) (5 - 3ki)/(ki -1) .  

[5.8] 
2 	 4 

Hence the rate of accretion, given by [4.7] cannot exceed 

4 -TT A, G2  m2 c -0-2 3 pa.  

When A <A,. one branch of the solution gives throughout supersonic 
velocity and the other throughout subsonic so that in the first branch 
boundary conditions at infinity is not satisfied and in the second, the shock 
wave cannot exist. The solution A> A, does not give any meaningful solution, 
showing the impossibility of a rate of accretion greater than that corresponding 
to A cs A.  Thus, only A a A, gives physically realisable solution of the present 
problem i e. only this solution satisfies the boundary condition of zero velocity 
at infinity with the Mach number gradually rising inwards and having a value 

unity at x x„, b, and greater than unity for all x < 	. We can, therefore, 
assume the shock to be situated at any x <x„, i„ with the Mach number of the 
flow greater than unity there. Using x = x 1  (say), A e A, and g,, k i , corres- 

ponding to the temperature conditions at infinity, we find from equation [ 4 8] 
the value of u t . 	The additional shock relation [3.20] determines k2. 
Substitution of u l , k 1  and k2  in [3.12] gives u2 , Equation [4.7] gives c i  and c2 

then is obtained from the shock condition [3.11]. Knowing u 1 , u2, c1 , k 1 ,k2 ,A0 

we can find v from equation [4.14]. Finally, equation [4.15] gives the variation 
of u with x for x x i , that is behind the shock. 
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6. NUMERICAL ILLUSTRATION 	 . 

Let us consider a hypothetical situation for a star with mass and 
radius given by 

M no 40 MCY R 1=15 R09 

and for the following conditions at infinity : 

T. =(104t Kelvin, p a  =10' 2°  grnjan s, 

Me 0.86, k 1  a 1.585. 

xsurr = 0.00013. 

A, a 0.3881, x„, 4=0.06125, v,,, t:e 1. 

For r > r i  : 

u-0-4526 (u2 + 3.4188) = (O.3881)- 0-4526 x -0.13948 (3.4188 x + 2). 

Assuming the shock to be at x i  tes 0.001, we find that u i  —2.271. Behind the 
shock, k2  ma 1.527 and u2  is determined by 

19.3710 ull — 125.0085 u3 +34.1574 c. 0, 

admitting meaningful root u 2  to 0.5357, also v c= 0.9070. 

log to  X 

FIG. H 

Accretion of interstellar gas by a star in the presence of radiation 
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The value of u behind the sbock is determined from 

n -0•4171 (u2 + 3.7951) = (0.9070)-°.4171 .x.-0 1658 (3.4188 x + 2). 

Figure II shows the graphs of u against x with shock at x =10 -3  (curve A) 
and x=10 2  (curve 8). 
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