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ABSTRACT 

The flow of a Bingham plastic between two coaxial circular cylinders rotating 
about their common axis with unequal angular velocities and having a relative 
velocity along their common axis is investigated. The position of the yield surface 
is determined in terms of the relative axial velocity 'of the cylindrical walls and 
the stresses acting on the outer cylinder. These results are presented graphically. 

• 
I. INTRODUCTION 

In the present paper, we investigate the helical flow of a material which 
can support a finite stress elastically without flow and which flows with constant 
mobility when the stresses are sufficiently large. It is assumed' that the 
plastic flow of the isotropic material is governed by the following rheological 
equations of state. 

Pik I's  Pik 	p ik 	 Ei .11 

Pik = 2 71 elk, (p:k dik  v 2 ) 	 [1.21 

eik ) -112  [1.3] 

where pa(  is the stress tensor, Pik  the deviatoric stress tensor, eik  the rate of 
strain tensor, p the hydrostatic pressure, 8 1k  the kronecker deltas, 9 the effective 
viscosity 9 1  the reciprocal mobility and v the yield stress. We further assume 
that the rotatory motion is induced by the relative rotation of the cylinders 
about their common axis, while the axial flow is induced by the relative axial 
motion of the cylinders in the absence of any axial pressure gradient as in the 
investigations of Oldroyd 2 . 

These equations describe the behaviour of the material only in regions 
where park  p i'k  .‘°- v2  (plastic flow regions). It may be noted that when v = 0, the 
viscosity becomes constant as for a Newtonian fluid. 	On the boundary 
surface (yield surface) separating the plastic region from the elastic region, 
the rate of strain components vanish, so that the frictional stress is constant 
and equal to the yield stress v. Thus the boundary conditions to a plastic 
region of the yield surface are 

(i) the continuity of velocity, the elastic regions being treated as 
rigid and 

(ii) the vanishing of the rate of strain components. 
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2. EQUATIONS OF THE PROBLEM AND THEIR SOLUTION 

Without loss of generality (as shown in the text) we may take the inner 
cylinder (radius a) to be fixed and the outer cylinder (radius b) to be moving 
with an angular velocity .12 and an axial velocity V. We shall consider the 
resulting helical flow in the absence of pressure gradient along the common 
axis of the cylinders. 

In cylindrical coordinates, we take the radial azimuthal and axial velocities 
to be 0, r w (r), and w(r). . 

The non-vanishing components of the rate of strain are 

and 

— 4-r (d widr), 

e„ c4(d wld r), 

dwldr and duldr are positive except possibly on the yield surface where both 
of them vanish. 

The stress equations of momentum give 

dpldr — p r w 2 , (p is the density) 	 [2.3] 

d (1. 2  p ro )ldr = 0, 	 [2.4] 

d (r 19,z)1 dr = 0, 0. Pi& =0) 	 [2.5] 

so that 	 Fro en bilr2, 	 [2.6] 

Pr: a b 21r, 	 [2.7] 

dw b 2  r2  dw 	 [2.81 and 	 •••••••■ • -■..• 
'. * 

dr 	dr b i   

where b i  and b2  are constants to be determined from the boundary conditions 
specified later. 

4  From [2.81 it is evident that all the components of the rate of strain can 
become zero on a cylinder coaxial with the cylindrical wall;. 

The effective viscosity n  is given by 

,  v  bi 	 v b 2  r 	. . 
71 3= 91 + r (dwl dr) V(b? + bl r2) = rli + (dwldr) V (bi + bl r 2) 

[2.9] 

On using [1.21 and [2.9], we can write the stress cornponets as 

Prr als  Poe a Pz: ing -pi= - - p f r Atoa (x) dx, 
	 [2.10] 
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b i 	do) 	oh, 	• 
Pro 'al 3=1  '11 r 	+ 	 

dr  
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[2.11] 

b2 	da) 	b 2   r 
— Tit  

dr + il(b? + bir2) 

and 	 Per O. 

[2.12] 

[2.13] 

Equations [2.11] and [2 12] together with appropriate boundary conditions 
will determine the velocities to and iv. 

It may be noted that boundary conditions to be imposed on to and Iv 
are different in the two possible types of flow, namely 

(0 there is plastic flow in the region arCR(R C b) and the material 
in the region Rcrcb moves as a solid plug with the velocity of 
the outer cylinder and 

00 there is plastic flow in the entire region aCrC b. 

We shall now determine the velocities in the above two cases. 

Case (1): It is convenient to non-dimensionalize the various physical 
quantities by means of a length R (inner radius of' the plug), a velocity Rid 
and a stress 7, 1  £2 and use the following dimensionless quantities 

r –– 
r = 	, (0, 	, 

12 	RD 
• 

b 2  
b i 	, b 2  4=1 	9 

R 	S2 	1Z g i  

V 
m 	, 

RD 

and (Bingham number). 

The parameter K indicates the relative importance of plastic and viscous 
stresses. 

The equations determining the velocities become 

d w 	 Kb1 	 [2.11 ____ 
di' 	7.3 	wricV 	+ b3r 2) 

dwb 1 	K b2  r [2.15] 
d;  
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with the boundary conditions 

; (1) = 1, ;1(1) en m, (d t is 71 d -r) = 0 at 17  = 1, 	[2.16] 

cno (n) = w(n) = 0. 	 (2.17] 

The conditions [2.16] ensure the continuity of volocity and the vanishing 
of the rate of strain tensor at the yield surface and the conditions [2.17] 
ensure the no slip condition on the surface of the inner cylinder. 

The solutions of equations [2.14] and [2.15] are 

i - 	i 
tt) a a  — - 

K 10g{Anif +3]-1-9) –i s) } r  

2 ; 2 	 r 	
+1,3,  [2.18] 

and 	 IT = b2  log 7. (K/ -1)2) V(b 4- ai3 7.2) + 1'4, 	 [2.19] 

... . . . 
where the arbitrary constants b 1 , 1,2, b3, b4  and the ratio it are determined from 
[2.16], [2.17]. 

. . 
The occurrence of the constants 1)3, 174  in the above form shows that 

*there is no loss of generality in taking the velocity of the inner cylinder to be 
zero and considering only the velocities relative to the inner cylinder. 

We may write co and e in the form 
. . 

	

ig;1" 	 — bi) r 

	

z = _( I . _- 	 OC..) 4. 1 + K lo g 1----- —1 t 	[2.20] 
2 	7.2 	 Va? + Ei /2) – li 

and 	 ;= m + -g2 log; 4. (ilia [K – V(R + 7)3 721, 	[2.21] 

_ 
with 	 bi 4.  14 -ar- K 2. 	 [2.22] 

The condition [2.12] is equivalent to the presence of a yield surface r cc .1? on 
which the deviatoric stress satisfies the relation 4pik iik  = v2  

_ 	Setting b 1  = Kcos 6, 	Ksin 0 we have the non-dimensional yield stress 
vik  acting on the yield surface as 

i0 

	cos 0 sin 0 

"i; ik ma 	co 

	

K 	s 0 	0 	0 	 [2.23] 

sin 0 	0 	0 
• 
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The constants 0 and n are determined by means of the following equations 

V(cos2 a + n2  sin 2  0) =(m1K) sin 9 + sin 2  0 log n + 1, 	[2.24] 

and 
n(1 — cos(9) cos 0 (n2 ._ 0 ± log  {  	— 1 + ( 1/K) tzt a [2.25] 

2 n2 	 V(cos2  0 + n2  sin 2  0) — cos 0 
, 

We note that we may determine the various constants in terms of K and 0 
which describe the stresses 	acting 	on 	the 	outer 	cylinder or alternatively in 
terms of K and m giving the yield stress of the 	material and the axial velocity 
of the outer cylinder. 

We have solved the above equations [2.24], [2.25] in a certain range of 
values of K, 9 and In and the results are shown graphically in Fig. I, 11, and III. 
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FIG. I 

Variation of the Axial Velocity (Outer Cylinder) with the Stresses acting 011 the Outer Cylinder 
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Variation of the Ratio n with the Axial Velocity of the Outer Cylinder 
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FIG. Hi 
Variation of the Ratio n with the Stresses acting on the Outer Cylinder • 

Fixing in and 0 in any particular flow, we may see that increases with K 
and remains less t an unity for all finite values of K. Thus for large values 
of K we have a thin sheath of liquid surrounding the inner cylinder in a state 
of plastic flow. Ti decreases with K and the present case describes the flow for 

11 -4C.. (alb) (= 1). 

Case (ii): 	In 	this case, 	we 	use 	the 	radius 	a 	of the 	inner cylinder, 
a velocity a .9 and a stress ti t  P for pruposes of non-dimensionalization. 

S 

• 
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The boundary conditions on [2.11] and [2.12) are 

12.2 6] 

(1) = I , 	(1) 	nz. 	 12.271 

Accordingly w and w are given by 

(-4; c 0;12) [ 1  — ( 1M] K log Iii(b?   - l ) 	 be; 

Er {V(bf +) 	
[2.28] 

aw --b2  logr —K 	(si? 	r--2) /AR + elD1, 	 [2.29] 

where -1-)1  and is72  are given by 

	

Viis2 	121 
( 1 	Klogf 	1  2 J __ 1st  I 	 [2.30] 

2 	is 	/ V(b? °ED 

	

and 	 -1;2  log 	Li-r  CVO +El I') - 	+ 17.01 m. 	(2.31] 

3. PARTICULAR CASES OF THE FLOW 

(i) When Q as 0, we have a purely axial flow as a result 	of the relative 
axial velocity of the cylinderical walls. 	This has been discussed by Oldroyd2. 

00 When V —0, we obtain Couette flow discussed by Reiner-Rivlin 3. 

7. DISCUSSION OF THE REstmars 

It is interesting to 	note that the ratio of the shearing stresses on any 
crIindrical surface coaxial with the cylinder and in particular 

p rz ipre ) inner cylinder 
a n 

(pr:/Pro) core 

which is the same as if there were viscous flow between two cylinders of radii 

r 	1,r 	n. 	e- 

The non-dimensional axial velocity m of the outer cylinder increases with 

K and also with 0 the rate of increase being very large for 0 > 60°  (Fig. 
• 
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For a given value of K, n 
small for m> 0.7 (Fig. 10. 
being very small for 0 <450  

decreases with m. The rate of decrease is very 
n also decreases with t9 the race of decrease 
(Fig. III). 
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