
TRANSPORT PROCESSES IN A MULTI-COMPONENT 
ASSEMBLY ON THE BASIS OF 

GENERALIZED BGK COLLISION MODEL 

BY C. DEVANATHAN, (MISS) C. UBEROI AND P. L. BIIATNAGAR 
(Department of Applied Mathematics, Indian Institute of Science, Bangalore-12) 

Received on April 8, 1965 

ABSTRACT 

Bhatnagar, Gross and Krook developed a collision model for one component 
neutral assembly of particles in order to overcome the inherent difficulties of the 
Boltzmann collision integral. This has been generalized to an N-component 
assembly of charged and neutral particles by Bhatnagar and Devanathan. However, 
the transport equations obtained directly from these kinetic equations are far from 
simple. In this paper, simpler and elegant transport equations have been obtained 
by expanding the distribution functions in generalized Hermite Polynomials 
following Grad. From these generalized coefficients of direct electrical conducti- 
vity, diffusivity, viscosity, and heat conductivity are obtained in the presence or 
magnetic field. Also the relaxation times have been calculated. These naturally 
lead to a mechanism of the occurrence of Gross-gaps. 

1. INTRODUCTION 

The transport processes are essentially non-equilibrium processes. In the 
study of non-equilibrium processes one attempts to derive from the kinetic 
equations a consistent closed system of transport equations involving the 
macroscopic quantities associated with the system like density, velocity, 
temperature, stresses, heat flux, etc. In such macroscopic equations certain 
parameters occur. For instance, the stresses are proportional to certain space 
derivatives of velocity components. The corresponding coefficient of pro- 
portionality is defined as the coefficient of viscosity. 	Similarly, the heat flux 
vector is directly proportional to the temperature gradient and the coefficient 
of proportionality is the coefficient of heat conductivity and so on. In certain 
siMple flow problems of an ideal gas, we can identify these coefficients exactly 
as the momentum transfer and heat transfer per unit area.per unit time due to 
molecular interactions. But in general, the dependence is very complicated 
and we consider the fprmer statement as the definition of transport coefficients. 
Thus, the main purpose of the present paper is to start with suitable kinetic 
equations and to deduce a closed system of transport equations in order to 
obtain expressions for transport coefficients such as viscosity, heat conductivity 
and electrical conductivity. In § 2, we shall discuss the basic kinetic equations 
106 
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which we have used and in § 3, the outline of the procedure for solution is 
explained and the closed system of transport equations are derived. a  In § 4, 
we consider three simple problems to derive the coefficients of viscosity, heat 
conductivity and the electrical conductivity. These simple processes are 
generalized and stationary -non-equilibrium processes in the presence of 
magnetic field are considered in § 5. Finally, in § 6. we disouss the unsteady 
relaxation problem and attempt a plausible physical explanation of Gross gaps 
in frequency spectrum. 

2. kINETIC EQUATIONS 

Consider an assembly of N kinds of particles. Let m s  and es  denote the 
mass and charge of a particle of s-type. Further, let, at time t and position r, 

C. be the molecular velocity and F., be the external non-electromagnetic force 
acting on that particle. _ .*Then, the state of the system is described by the 

distribution functions fs  (es, r, 0 satisfying the Maxwell-Boltzmann equations 
and the self-consistent electromagnetic eqtiations. With the usual notation of 
Chapman and Cowling', these equations are : 

Maxwell-Boltzmagn equations 

6f, I 
—
6 

+ 	—{Fts, e, (Ei  +111c1 cum  es)  14)1.-L—fs 
6 t 	: 6 xi 	ms 	 6  e s i 

In  I  11  [ 	( e; I 11 2 tifsies• r) r) - 4 (r, t) is (e 31 r, 	x 

x g13 bdb dt d e,, 	s =1, • • • , N 	[2.1] 

Maxwell equations 

• 

c\7 x =4 ,7TJ + 6E/6.1, 

cv x La. — Hie t, 
V •H =0, 

V•E=4-n-q, 

[2.21 

[2.3] 

[2.4] 

[2.5] 

where the current density J and the charge density q are given by 
• N 

Ja. 	ej  f ef fi  (6, r, t) d 	 [2.6] 
• j=1 

	

N 	-4. 	-* 

	

and 	 [2.71 , 

	

. 	
,t. 

	

. 	 , 
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The above equations are highly coupled nonlinear integro-partial 
differential equations and in order to simplify the basic kinetic equations, 
Bhatnagar, Gross and Krook 2  proposed a simple tractable Collision model 
retaining the essential physical characteristics of the Maxwell-Boltzman n  
equations. This has been generalized to a multicomponent assembly by 
Bhatnagar and Devanathan 3. In the collision integral, the term 

-+ 	 -+ 	 -÷ 
fs  ( es . r, 	f f fi  (e;  r, gig  b db de de, 

represents the number of s-th type of particles removed from the velocity 

range (e s, d e s) by the interaction with ph type of particles and hence replaced 
by an equivalent model 

0.15 	s 

where Ari  (r, 0 is the number density of j-th type of particles given by 

Nj  (r, 	f f;  (6, r, d 

The nonlinear term 

If 	(el, r, t) f (e:, r, g)s  b db d€ de j  

representing the number of particles brought into the velocity range concerned 
is replaced by the following 

(total number of collisions per unit volume per unit time) x 
x (probability that the particle goes into the concerned velocity range) 

We shall denote the average total number of collisions between s-th type and 
j-th type by 

—1- 	 - =__ LVI s 
f f fj 

1 	r, L (es , r, t) ,g1, b db dc dej  des, 	[2.81  cis 

and'instead of taking the detailed 	mechanism of collision 	in 	evaluating the 
probability mentioned above, we take it to be locally Maxwellian given by 

t)  ( 2 -rim; Tj s  )312 
exp -- 

2KmsTis 
 I e, 

assuming that the s-particles are scattered randomly by the j-particles. In the 
above expression K is the Boltzmann constant, up  and T13  are mean velocity 
and temperature of the scattered s-th type of particles during their interaction 
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with j-th type of particles. For these cross-velocities and temperatures we 
choose the phenomenological relations 

'If s  a all VII 	ajs  Uts  

and 	 bll Tij 	tss Djstlij Ejs u 1 	Fjs U 2ss  

where au  and Tu  are the mean velocity and temperature of the lath type of 
particles. Subjecting the collision terms to Maxwell's relaxation problem and 
to the instantaneous conservation laws of mass, momentum and energy, we get 
(for complete details refer 3) 

an a 1 — 

pis 	12-  Ejs = Fin  

bll  212/  1 ""' bit 

)71 3  aii  to in;  ass 	A is  = A sh  

bjj = b SS Bi ts a BSI 

and 
+ Ds' s 110 10 A Is (2  

, 
These relations determine only half of the 	phenomenological constants. 
considering the average momentum transfer and energy transfers, we find 

But, 

and 

A ir = 
rn,rnis  

+ 

[ 	ins! e; —  

[m; m sl(rni + ms)1 gig J., 
I. 

-.2 -.2 
rn 	r m sl e: e  s  I  6 K Di, c 	 

• 	 mj  ms  [} ms, nom;  + in silg,3 a , 

Also Ba  is just the coefficient of direct heat transfer between the two com- 
ponents. From the knowledge of the law of interaction, these constants have 
been determined in refcrence 3. For ready reference we shall record them 
below 

for elastic collisions 

.-~=- 0.113 
mi  in s 	

for Coulomb law 
+m , 

 

tn•rn 
0.023  ' 	for Maxwellian law 

+ nis 
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'n?  n1 3  2 Dis 	 for elastic; collisions 6K  
m+ 

s. 

	

tit 0.10 	
il

2 
j 	for Coulomb law 

mj  + mos  

s  

	

0.04 	
m 

--1 	for Maxwellian law. 
rn + in 

Thus, according to the above model, we replace the set of Maxwell- 
Boltzmann equations [2.11 by the following set of kinetic equations : 

6 f., 	f 	+
t 	

[r si 	Ei  + 	Eiike si 	s  
6 t 	a xi 	in s 	 c 	 i o E51 j  

N 
; 

	

n a-e 	k. —is+ Ns 41),), 
a Js 

a 1, 2, • • • , N. 	12.91 

This leads to physically meaningful transport equations. However, as 
in the earlier transport equations of Chapman 4  or Burnett 5, this set of tiansport 
equations also does not form a closed system of equations. 

3. TRANSPORT EQUATIONS FOR NON-EQUILIBRIUM PHENOMENA 

We have already pointed out that the set of transport equations obtained 
earlier do not form a closed set. The usual procedure to obtain transport 
equations, followed often, is to consider the given system in a known 
equilibrium state specified by the distribution functions Lc, and a small 
deviations jsi  from this equilibrium state resulting from the preassigned 
non-equilibriwm situations like density, velocity, and temperature gradients. 
Then using the perturbation techniques first order transport equations are 
established which yield directly the respective transport coefficients. 

One of the earliest of such methods is the classical solution of Chapman - 

Enskog-Hilbert6 ' 7 '8 . We may note that their solution turns out to be a series 
solution in terms of a parameter involving the mean free path and even the 
first order corrections are quite complicated and higher approximations are 
almost prohibitive owing to enormous mathematical complexity. 

Another effective method, due to Lorentz 9  and adopted successfully by 
Morse et al l°  and Margenau n , is to expand the velocity dependence of the 

	

distribution function in spherical harmonics in velocity space. 	Spherical 

harmonics in velocity space are eigenfunctions of Boltzmann collision operator 
for Lorentzian gas, the corresponding eignvalues depending upon the collision 



Transport processes in a Multi-component assembly 	 111 

frequency. Naze I2  extended these results to more general case. Thus, the 
mathemat'cal advantage of the method is off-set by the fact that physically 
this expansion is a series expansion in terms of collision frequency and has very 
limited scope. 

Grad" developed anothor method, which is also an orthogonal function 
expansion in the velocity space, employing the generalized Hermite Poly- 
nomials 14 . This method has decisive advantage over the earlier methods. 
The distribution functions are taken in the form 

fserifs.P: a(n)  H (n)j, s i=• 1 , 2, • • - , N, 	 [3,I] , 

where the weighting factors fso  are exactly the equilibrium distributions. 
The second and the successive terms represent the deviation from the postu- 
lated equilibrium state with coefficients a ( n )  as linear combinations of the 
macroscopic variables of the system. Such a procedure is evidently very 
much suited for the solution of transport processes under consideration. 
Besides these expansions may be managed to be convergent by taking the 
deviations to be small. Further, on truncating the series at a convenient 
stage, we can obtain a closed system of equations for the physical variables. 

Thus, the kinetic equations [2.9] and the expansions [3.1] form the basis 
of the present investigation. 

In the subsequent working we concentrate on a three component 
assembly consisting of electrons, ions and neutral particles respectively denoted 
by the suffixes a, fl and y, as the generalization to any number of components 
is straightforward. Further, in order to facilitate the orthogonal function 
expansion, we introduce the nondimensional distribution functions ga  of the 
nondimensional molecular velocities v 	by 	 , 

312 	4. ga  a  1 t Kr 	a,a\ 	.. fa (ea,  r,  01 	 [3.2] 
Ara \ ma / 

va  — (  ma ) 112 1, . 	 [3.3] 
Kr aa  

Then, the general expansion can be written in the form 
Co 

ga (v a , r, 0 = w (v a, ) 2: 4" )  (r, t) H (n)  (va  ), 	 [3.4] 
11=-0 

where 	 „ co (va ) — 
(2)4 " 	2 

1 	 1 	2 
	 exp{ — — v a}, 	 [3.5] 

the nondimensional Maxwellian distribution function corresponding to the 
postulated equilibrium situation. Because of the orthogonality property of 
the Hermite polynomials with kernel co,„ we have 

1 dan )  (r, t) = — f IP)  (v..) g a  (17 a , r, t) d v a , 	 [3.6] 
I(n) 



112 	C. DEVANATHAN, (MISS) C. UBEROI AND P. L. BHATNAGAR 

where 	 X( ,) = tiGti ('v a,) [if (4) (v a)j 2  dV g .  [3.7] 
Since 10+0 is Merely a polynomial in velocity components, the above 
expression clearly shows that der )  (r, t) are linear combinations of the 
moments of the distribution function. For convenience we have given the 
Hermite polynomials upto the fourth degree and the corresponding coefficients 
in terms of the moments of ga  in Appendix 2. Since we are dealing with 
Hermite polynomials in three dimensional velocity space, the number of 
distinct types of a (" )  of order is can be shown to be (Appendix 3), 

1  47 + 36n 4-6n2 +(-1r(9 +16 cosi 
721 3 

[3.8] 

This differs from Grad's results who, from an analogy with Cartesian tensors, 
inferred that there are n ! distinct components. This leads to a slight 
inaccuracy in his numerical coefficients. _ 

Accordingly, the non-dimensional distribution functions ga  satisfy the 
kinetic equation 

6 g a  (K T aa )112 	ga 	1 	 1 (K Ta.  a   ) 112 	r 	gc, 
 m a  

Fai ea (Ei + 	 EiPc vai n k ) —
6 Eal 6 t 	m a 	6 X1 M a 	 C 

) 

a - 

( 	 m, 	'Kr  aar a, 	-{logN ma I  
3/2 

K T „ 
ga {— log N  	+ 	 a r  

at ( 	a 	a, 	m a 	 n. act 	1 

No (  
—taga 	

Ta  a   ) 

31 2 

CXP 	--Ta-s- (v 	äa )2 	[3.91 
a  irk,2 IT T1 	Taa  

where Na /VP MY t a w .  
	 ----- 

	

a a a e pa 	la 

[3.10] 

and vac , vfi a , vara  are the non-dimensional mean velocities u aa , ufi a , and ala . 

Similar equations hold for fi and y components of the assembly. In [3.9] and 
in the subsequent calculations, we shall use the suffixes i, j, k, 1, al• nt 	• 

for dummy summation indices and the suffixes r, s, I, 14, v, • • • for fixed indices. 
. 	Substituting the expansion [3.4] in the equation [3.9] and integrating w( it)h 

respect to v a  after multiplying with IP )  (va ), we get the equation for aa 
Since va  is explicitly present in the equation [3.91 the equation for da4) will 
contain arm. Hence a suitable cut off is essential to obtain a closed set of 
equations for 42 ) . 	To effect this cut off, we have retained only the terms 
up to aa(4) . 	The explicit expressions (Appendix 2) for these coefficients in 
terms of the moments of the distribution function lend justification f or the  
cut off at 44)  . For instanoe,: dal)  contains the mean velocities and consequently 
for an assembly consisting of charged particles the current density term. 
Thus, 41)  takes into account the anisotropy caused in the momentum space. 
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Similarly, 42)  contains both the material stresses and the Maxwell stresses and 
the Poynting flux. a?)  mainly accounts for heat MIX and energy flux and 4 4)  
takes account of the interaction between material stresses and Maxwell stresses.. 
This Fact has been pointed out by Burgers" and Bhatnagar I6. Hence we have 
included the terms up to 441  and neglected 45)  and subsequent terms, since 
the above physical quantities govern most of the natural phenomena that occur. 
However, if any physical situation warrants the inclusion of some particular 
higher order term, the formalism is general enough to include it. Consequently 
we consider the truncated expansion. 

4 

g 0; ea  tz)  a I Clan)  H @I)  (V a ) 
n=0 

This process of truncation provides a natural way of expressing the fifth and 
higher order moments of the distribution function in terms of moments upto 
fourth order in contrast to the arbitrary definitions of earlier approaches ° . 

The equation for dan)  is given by : 

d 	[n + 3 
A (n) 	 zn) a  (an) + x 2)  (.2) a(an _2) 	

log Ma- 
o t 	2 	 a 	K Taa  

(K Tat) 112  

A (n+1) 
1)1 a 	 x, • 

n + 4[ 	(n +1) x 	8(2) a(ri-1)1 	( l og  ma. ) A (n+ 1) act 	A 	(n - 1) i 	a 2 	 c)xi 	K Tact  

d a ( n  ( 	a -1)  

	

Xon,.1) 2) oi • 	X(tt,3)  82) 6(2) a (an-3) a 	log  ma   ) 1 
x, 	 5 xi 	K T„,„ 

(

m a  \1/2 (Is . El 4_  1 r  

KTaa) 	 — A at X( t _ 1)  8(1 2 ) ao-i) 
a

m a  

e cz 	Hk  x(n) 8r ) a ) 	8 (2) 6(2) a(an- 2) 
"net 

3/2 
I log N 	712

a( 	 rot) dc:1)  
6t 	K Taa  

	

, (Kraft )" 	 ( 	fi2 [ ____ log  No. 	a - 	+ a (zni+i) 	ey(...1)  8 i2) 
oXi 	 KT aa   

• 

( 	 
' — ta  X (n)  dc:4) + I N . hi a 	Tact  )312 

a 
 f r

A(An) 
a u  2pri  Taa  [3.121 
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where 
Tact  -42 	-** 

	

A ;cc! 	a --- 	d co a . 	 [3.131 
2 Ta ct  

Putting 4,5) , 1a6), • • • equal to zero, we get a closed system of equations for 
(n a 0, 1, 2, 3, 4). Reverting back to the physical variables, we have the 

following transport equations : 

Na : 
61  + "rxi  l 

I 
./Va Tiara) a" 0, 	 [3.14] 

1 3 	 N6 	 1 	6 
kria  Ua  3 4-  Ta Muir 	1-•° 	riaar 	• —( Iva  Pak) 

Ara  ot 	 8 co a 	Na  oxi  

1 
— (fELE,.+—Far) — 	e • k u H*  — au) 	— 0 	 [3 151 

ma 	ma 	cma  

1 6 
-- • — kn. rani + 'p a  Parr — 

2e 
a  Erik PH j k ar  

  cm a  

1 	
(Iva

cv 	n 	 1 r  
ar) Haar --- • LIctirr ± 	Lir 	 -4-  ri A  a 	+ 5-18-2  

	

o Na, a Xi 	 ma oa 

Aarrt 	
[3.161 

1 6 , ea l 

	

• 	(1Y a  Pars ) t a  Pars — 	I Erik Pais Esjk Pak k 

	

Na 	 ona 

I 	6 \ 	I f 
a ... ....• • .... 	( Na  Sairs) 4 sat- (Er Ua a s + Es  ti c:A O + •-•-•"a kicir  licias 4- Fas Uaar) 

	

Na  bxi 	 m a 	 m a  

v  N5 	 [ i. 171 
+ As — U e ar  "fear  ...--m Bars  p 

a aaa  

*I 6 , 	 3ea  
(iv a  43a.rrr) I -  a Sarrr 	Erik Scots, 

	

Na 	 CM a  

1 	o 
(N a Qairrr) 3( tit - Er  + 	Far) parr 

Ng ?xi 	 m a 	m a  

E No [ ular  3Krga  , 	 [3.18] 
1.4  a r 	arrr• 

	

3 a aa 	Ma 
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.-t (NaSa„s) Ta Sens 	

ea 
IL Erik Sajrs Esik Sap') 14

Na  dt 	 cm«. 

1 
I  • 	(N Q • ) + 2(fg- Er  + 	P 	( e  r 	1  r D a atm 	 r) - ctrs • -Lim  Los + 	z as) z arr 

6.x-i  a 	a 	 a, 	M a  

2 	_1_ KTaa 
4-' 5ar "Sac -I- 	"bas} e Barri 

a aa L 	 Ma 
[3.191 

I 	6 if N T c 
• -- vire  -"rug I 	c 4-marst 	

e 
(Erik Saist 	E p ik Sm its + Erik Saks) The 

Na  t 	 CMct 

	

1 	,„ „ 	e r 	r 	 r, 	E, D  
f=t — • — vi a  Vairst 	 Aar -1m —,  02) 1  as t eaSt" la s 4 —

1 
las)* atr 

Na  sex, 	 Ma 	ma 	 M a 	M a  

e 	1 r, 	
ears 
	Nt fi x  u x  LA I  .m C (--2-4  act 	— at Fars . 	 m ar - v ar - v at - - arst t 	 [3.201 

m a, 	 a To o. %ma 

6 	
T 

n 	 n 	4e 
4— • __viva  Varrrr) ar aVarrrr 	Er Qajrrr Hk A a rrrrt 	 [3,211 
Na  et 	 cm a  

1 • 6 	 ea, ( 

-(
Na Varrrs1 + taQarrrs 	 kesik ajrrr + 3 Erik Quin's) irk r  Banns 	[3.22] 

Na  6 t 	 cm a  

1 	 n 	 ea j 
(Na  Va rrst) + Ta Qa rrst 	kEsjk Qa rrjt + Etjk Qa rrjs 

Na  et 	 c Ma  

+ 2 (Ersk Qa ssrt + Era Qa 	H k4=-- C a nits 	 [3.23] 

1 	6 
(k

, 
V
„, 	 2 ea 	 314arrrs) + i s  a Ca rtss — 	(Erjk Qa ssrj+ esj1; Qarrsj) 	= Darrss• 	[ •`'

• 

N a  et 	 cm a 

For convenience, we have recorded the lengthy expressions Aarrm Barns, Ca rrsts 

and Dar,„ together with the solutions of Q a  in Appendix 4. 

Equations [3.14] - [3.24] along with similar transport equations for 
components 18, and y with el,2-r- 0 govern the behaviour of the assembly. 

4. TRANSPORT COEFFICIENTS DEDUCED FROM SIMPLE FLOW PROBLEMS 

In order to understand the significance of the transport equations 
[3.l41- [3.24], we shall consider three simple flow problems. 
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In the case of a steady plane Couette flow with no heat flux, we replace 
the third order moments by the equivalent moments of lower order and obtain 

6 Sa221/6  x2 	Ta Pa121 	 [4.11 

or 
(  2 K  Taft  X 6Uaa t) 

Pan 	 [4.21 Ma  ta 	a X2 

Hence, we conclude that in this simple problem the coefficient of viscosity is 
given by 

2 KTaa  • 
ma  ta  

[4.3] 

Similarly, if we consider steady one-dimensional heat flow in a fluid at 
rest, after replacing the fourth order moments by their equivalent lower order 
moments, we get 

6  Qaffll 
x, — isa SaII II [4.43 

or 
(  5 K2  Taay  Tau  gal = 	— 2 

	

Ma  eta 	6 xi  

This leads to the coefficient of heat conductivity : 

k 	
K 2  Taa  

• 
2 

rna 

[4.5] 

[4.61 

Finally, considering Lorentz problem of steady, homogeneous flow of .a 
tnacroscopically neutral mixture of charged particles in the presence of electric 
field E (E, 0, 0), the basic momentum equations reduce to 

NA Asa  , u
n — 	

x 
+ 	

Ns?  ity  / . 	
a 	 [4.7] 	 k pi 	ilacti) 	" 	' a  t n" - Ucta i) 	— i=g 	ei,,, E, 

0 a 	 cr 7 a 

Ne  kyg I 	, N a g a  A i  cant  uppi ) 4- 	 Waal -- upp i) = — e p E, 
(Lig 	 a ap 

and 
Na  A ae.j, 	 NpAp7  
" 	 [4.9] 
—a kitaal Uinfi) 	 tit p gi tiro) =0. 

aP7 
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Eliminating ti.ryi  and substituting for the current density 

ji -e 1  Arm  ti dal  +eg Ng Ugg i 	 [4.10] 

and making use of the neutrality condition 

ea  Na  + tip Ng ar O. 

we obtain 

ga E, 
	 [4.12] 

where 

1 (e Ar kg— e a  Nar 
= 4 	NaNp 

N A wyI wy  + NpAp 7 /u psy  

	  [4.13] 
-Na  Ag a  'a7 	parr Tay) + N Aiy g Ag a gc r y ga pay  + N , Ala  A a fl 1(a -ya trap) 

Thus, we can interpret a as the direct electrical conductivity of the macros- 
copically neutral medium. Thee  expressions [4.3], [4.61 and [4.13] have the 
same structure as those given by Chapman and Cowling' and Grad 13 . 

5. STATIONARY NON-EQUI LI BRIUM PHENOMENA 

In this section we generalize the simple results obtained in the previous 
section to include all stationary phenomena such as density gradient, velocity 
gradients, stress variations, and heat flux vector. We shall as usual consider 
the system to be macroscopically neutral. 

We shall first cons;der the expression for the current density J. In order 
to find the contribution of the density and temperature gradients to the current, 
we shall replace the second order moments by their equivalent lower order 
moments. Then from the momentum equations [3.15], after straightforward 
calculation we get the expressions J 11  for the current density parallel to the 
magnetic field H and J a z. and Jfit for perpendicular component of the current 
densities due to electrons and ions : 

J il  e a E, 1  + a a  [V ii (K T aa) + K T aa, V il log Na  — Fan] 

+ a p [V 	TEO + K Tfi Pp V 1 log Np  Find, 	[5.1] 

c(e Na  e N 
Jr 	g  fi  E x H a  2112 
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c Na  
	{V(KT aa) KTaa  V log Na  —Fa ] x 11 

H 2  

cN N A 7 	r 
	1V Try ) K 	cr  lOg - F 7 1 X 

D2H 2 	/3 7  

2 C 2 Na  Ng Di 	• 
(Na KTaa  + Ng K Tfig + K Try) 

(eg Np_ea NJ D2 H 2 
1,17 

 

- (NG 	+ Ng Ffi + istI F 1)19 [5.2] 

C(eg Ng — N„ 
	E x H 

2H 2  

c Alp 
r  [S7  Tgg) + K T gg V log Ng —F x H 

H 2  
.41 

C N'y N pAg), r•
log NI, — Fey} x 

D2 H 2 	orP7 

2 c2  N a  Ng D i  
	, IV (N o, K Taa  + Ng  K Tgg + K Ty) 

(ea  Na —eg  Ng) D2 He 

— (N, Fa  + Ng.  F fi  ± 	E.i ) 

where 
(eg Ng— eallo.) 2  D2 

a 	 
4 Na  Ng  

[5.4] 

a 	
(e g  Ng — e a  Na) 

a
.. 

  . 
2D 1  

[5.5] 

(ea  Ns — e  g N p) Agy  
ct p 	 

2D1 	•gfty 

[5.63 
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Na  Ag a  A a ty  Ng Ayg A ga P4
Di  	 9 	 [5.1 

ago. cuT 	 ° fla 	e a') g ig 

A ay 	Ng A (3 7  
D2 a 	  and 	 [5.8]  

a7 	Cr t3.), 

These expressions clearly exhibit the effect of temperature and density 
gradients as well as that of other external forces on current density. From 
[5.1] we conclude that a is the direct electrical conductivity along the magnetic 
field, while e a  and o p can termed as diffusion coefficients. We note that the 
expression for a is the same as 14.11 	However, the dependence of current 
density in [5.2] and [5.3] are more complicated. 

In order to deal with other physical variables we shall choose the 
coordinate axes in such a way, that H (0, 0, H) without loss of generality. 

Solving the stress equations [3.16] and [3.17] and denoting the electron 
and ion gyrofrequencies by oh, and cog , given by 

	

H 	e pH 
 	olg ccr 	  

	

c M a 	 CM g 
(5.91 

we have 
I 

'a33 = 	na 33 9 

T a  

[5.101 

1 	 2 
Pall — 	 W a T a  B a n + (T 2a  + 2 co a  ) A an  + 2 CO a  A a221 

A2 Ta 
[5.11] 

1 
Pa22 	[ — 2 Ci) a  T a  Ba n + 2 (0 A20, al  + (r 2c, + 2 ca2a ) A „ 221, [5.12] A   

T a  

Pa 12 	a 2) Fr0.B12 	(A all — A a22)1, 

where 

pa23 a 0 i A 0 Era Ba23 — (Oa Ba3111 

Pa31 ' ( 1 / A 1) [(.0 a 11a23 + Ta Ba3119 

A I  = ra  z  ma.'  A 2 = 7422  + 4 (o il. 

[5.131 

[5.14] 

[5.15] 

[5.16] 

We note that Pa33  is not affected by the magnetic field and 
	

• 

Pan Pa22 Pa33 = Diral (A711 + Aa22 + Aa35) 

is also independent of the magnetic field. Thus, the stress component along 
the magnetic field acting on a plane perpendicular to the magnttic field and 
the isotropic pressure and hence the total internal energy are unaffected by the 
magnetic field. 
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Concentrating on the dependence of the stresses on the 	gradients of 
velocity components, temperature and the density, we find that 

Pa33 P3 ea33 b 

	

al it (  33 	T al) 	 (2)  aa Ma33 V Na , [5.1 7] 3  

(0)  2 K Taa 
where 	 Pa33 	a 	 [5.18] 

ma gra 

(2) 
iuct33 	

K 
	 1 Acta i 	licta2 	 [s 191 
m a  ta  

(2) 	Uaa3 	(0) 
Pa33 = 	Ma33 • 	 [5.20] 

Na 

We can call these bz matrices the generalized viscosity matrix. it.i at3  has the 
same form as [4.3] and is unaffected by the magnetic field. 

Similarly, we have 

Pa23 s 	mco ( ea1.3 ) 	(1) c-7 	(9)n 	 [5 21] Ma3 V rad — )11  a3 V My 
Pa31 	 e a 31 

(0) 	2 K T EL , Ta 	(0a 	 15.221 where 
m a  A hi 1 —a 	Ta) 9 

(I) 	K I — Uf a, Uaa 3 	T a  tiaa3 	T a liaa2 	taa 	 [5.23] a3  
nia A 	Ta tiaa3 (Um Uaa3 W a iIaa l 4 ta wato 

(Taa/Na) 4U(ail• 	 [5.24] 

Regarding the viscosity matrices associated with the stresses along the 
magnetic field acting on planes containing the magnetic field, we note that 
asymmetry is caused by the magnetic field. Moreover, the primary viscosity 
coefficient is reduced by the magnetic field since the diagonal terms of jun can 
be written as 

2 K 	, 	2 
). 1 

	

2 	9 
Ma ta 	 tti 

	

Ta 	a  
[5.25] 

The stresses due to temperature gradient and and density gradient are 
proportional to each other. 
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writing 
I— 	— 
Pall 

Pa 22 

P (02 
 

• 
(0) 

T2c,  

eal 1 

e a l2 

ea22 

+ 2 oil 

— Ma 

2 co a  Ta 

aa ")  Ma 

2o c 2c, 
a. 

[5.261 

(0) 	2 K Taa  
we have m a  -•  	—Cti ct  

fh ct t ct  A2 
2 (02a 

2 
T a  

 

[5.27] t. •rT a 

T 2a  ± 2 cla  

 

    

2cu r•  T a  U2 (3T2a  + 8 Ca2a) liaa l 

(1) 
Ma 

K  2 
T 	— 2 W a T 	lima ] 

+ 2Wo. Ta Uaat  + (r2cr. + 8  CO 2a) uaa.2 

1_ 2 0.) a  T ar  Uaa 2 

— 2 W a  T a  ilddi 
maYaa2 

'2) 	Tao. 	(1) 
Ma =—  AT   Ma 9 [5.29] 

( 2 , Q 2 \ 2co a r a  Liam ' + Oa a  -r at° afilaa 2 	A 2 tiaa 3 

„ 
a  Ls aa i 	 0 

(37 2a  + 8 04) uaa2  d 2 tiara 

[5.281 

Thus, considering the viscosity matrix corresponding to the stresses 
perpendicular to the magnetic field, we conclude that the magnetic field 
introduces anisptropy. Considering the diagonal terms we see that for P an  
and Pa 22 the corresponding viscosity coefficient is 

2K  Taa   ( i 	2 (42  
[5.30] 

M a r a 	 Pr 2a  + 4 col 

while corresponding to Pa  12 we have 

2K Teta(
1 	

4 (02  
2 Aa  2 )9 	

[5 31] 

Ma Ta  

Once again the stresses due to density gradient are proportional to stresses due 
to temperature gradient. 

Comparing the expressions [5.18], [5.25], [5.30] and [5.31], we conclude 
that the magnetic field introduces intense anisotropy. Further, the coefficients 
of viscosity in the plane perpendicular to the magnetic field are less than the 
the viscosity in a plane containing the magnetic field. 

From the other terms we can deduce the effect of electric field, external 
forces, collisional transfers, etc., on the stresses. 
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Solving the equations [3.18] —[3.20] for heat flux tensor, we have 

1 
So.333 a—  na333 S [5.31] T a  

5a331 ( 1 / A 1) Fra 8a331 Cda 8a3321, 	 [5.3 3] 

5a332 = (lia 1) [TaA8a331 	8a332], 	 [5.34] 

8a123 (1/  2) Eta Ca123 	(Ba223 Ba113)}9 	 [5.35] 

Sa w a= (lira A2) [ 2  wa ta Ca123 + (Ta2  + 2 Caa,2 ) Bain ÷ 2 wa2  Ba221 [5.36] 

Sa 23 (lira  112) [ — 2 co Ta  Ca 123 4- 2 w a2  Ba in (Ta2 F 2 	Ba2231, [5.31 

Sa m =(1/6.1 	E(Ta2  + 3 CO:f.) (lea Bain (Oa Aa111) 

± 2 taa  7 a  (T a  8a221 4 wa  4222) 1, 	 [5 38] 

Scan =( 1 /A1A3) [2  Wa Ta (Ta Aal 11 - Wa 8a112) 

• (Ta2 3t0c2s) (Ta Ba221 t 	Aa222) I) 	 [5.39] 

112 g Ta ‘Ta2  

+ 6 Cda,2  (Ta Ba221 + Cea Aa222) 19 	 [5.40} 

Sa222 ' ( 1 / 11  1 I:13) i6 C0 a2  (Ta Ball2 - (Oa Ain) — 3  Wa (ra2  + 3 (Viz) 8a221 

+ 	+ 7w) A 1 
a.222.1 ,  

whtre 	 A3  = 	9- toiz2 .  

[5 41] 

[5.44 

Concentrating mainly on the temperature and density graditnts of the heat 
flux vector 

[5 43] Sat = Surat 

we find that we can write 

5 K 2  Taa  a Taa 	5 K 2  Ta2 c, a Na  
- 	2a ta 	 Tr-TAr M 	al x3 	4. M Iv a  7 a, a x3  

and 
Sa i 	Kaw ( (6 Tajo XI) I Kw 10 Nab) Xit 

Sa2 	 (6 Taa  /6 X2) 4- a  
where 

K"  cn (5K: Taa 	Ta  co a  } 

X Mit 	 CO a 
and 

= Ta_a 
a 

 
2N a  

[5.44] 

[5.45] 

[5.46] 

[5.41 
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From [5.44] we conclude that the heat conductivity kP3)  coefficient in the 
direction of magnetic field is unaltered and is the same as the expression [4.5]. 
But the heat conductivity tensor transverse to. magnetic field is modified due 
to the presence of the magnetic field. The collisional contribution to heat 
conductivity is given by 

5  K 2  Tact( 	z co  
[5.48] 2 	 2 	2) ' 

ma. Ta 	 Ta  

which decreases as the magnetic field increases. The heat conductivity 
tensor le arising out of the density gradient is directly proportional to the 
heat conductivity tensor k,c())  due to temperature gradient both along and 
perpendicular to the magnetic field as seen from [5.41 and [447]. 

We emphasize here that the generalized stress and thermal transport 
coefficients have in their denominators factors of the type 72a.  co zo T2a  ± 4 w2a,  

r2ci  + 94.  Proceeding in a similar manner we have established the corres- 
ponding coefficients for the fourth order moments (Appendix 1V). The only 
remark of interest about the fourth order moments is that the denominators 
have 72, + 16 (02„ as an additional factor Generalizing we can state as follows : 
For any n-th order moment, if all the suffixes are along the magnetic field 
direction then it contains (1 tr a ) only ; if (, - 1) suffixes are in the direction 
of magnetic field it has a factor (1/6, 1 ) and generally if (n r) suffixes are in 
the direction of the magnetic field, it has a factor (lia r) where 

2 	22 
T a  r W a s [5.49] 

This point is of great 	importance while establishing 	the 	relaxation 	times in 
§6, as it leads to an explanation of Gross gaps 18. 

6. RELAXA noN PRObLEIsi 

Finally, we shall consider the relaxation problem. Following Bhatnagar 19  
we shall suppose that the physical quantities depend only on time and there Is 
no external force field excepting the magnetic field. 	Further, for simplicity, 
we shall suppose that the axes are so chosen that H t=s (0, 0, 11). 	From the 
zeroth order continuity equations, we conclude that 

constant. 	 [6.1] 

The relaxation times p for the velocity components are governed by the equations 

( 
N g pa  ,m a  N A m 

p + 
A 

7 	a 
—• Uaar 	E rj3 U aaj ga 	crla 

Ng A t3 a, M a 	N 	m 'Y 	sYcz 	a  1477„ 	[6.2] 
Gri3a 	 Cf1a 
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Neglecting the square of the collisional terms, for the components along the 
magnetic field, we have 

1  Na A apMp  { 	 N p A p 7  my  N p A p a  m a  NI  Lya  m d  
p es .. ei  .....—.— + -- 

Na  Awymy 
+ ----. --. ± — ---- + —__...—___ 

(t a p 	 it ally 	 UM/ 	 trim 	
'1,13 

ity ging 
[6.3] 

e  
which is unaffected by the magnetic field. 

For the transverse components, we have three modes given by 

(AT a A cry in  a  , N p 	y msy 

	

et- 	 p — e 	e 137 

A ypmp 
+ —Nallafting) 

P2 Ism  ± hi) 	 g 	dap 7 

N 'llama 	 [6.4] ( 
Ng  Aparna 4.  7 ._____ • p3  =, ± haul .. 	elect 	cr a  7 

We note here that the self-collisions do not contribute to these relaxation times. 

Procceding in the similar fashion, the relaxation time for the temperature 
is given by 

( 	Ba p  
vu- 	

N gBga  Ng 13,37 	1•1 7  B7a ÷ N7  itygi [6.5] 
2 Up 	easy 	ga 	g  187 ya. 	7 

while the off-diagonal terms of the pressure tensor have the relaxation times 

	

Pi — Ta P2 	ita a — Ta I P3 • ± 2 ho c, Ta • 
	 (6. 61 

The relaxation times of the third order moments are determined by 
equations identical in form to [5.32] — [5.41] with T a  replaced by ra. +P• 
Hence proceeding as in the calculation of transport coefficients we obtain the 

following relaxation times. 

P= 7 a for S a333, 

P •••±ZW a  ta  for S,3, and Sam 
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Pi =I — er a , P2 a ± 2 L W 	— Pr a  for Sa 123, Sa w, and Sa223, 

P i t  ± Ito a — Tail P2 = ± 3  jai/a — rpm . _ 
for Sam , Sa  i 2, 5a122'  and 5% 222. 
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[6.71 

Finally, we shall record the relaxation times for the fourth order moments. 

cti 	Ta  for Q a 3333 9  

P= ±i 	Ta Va 3331 and Q a3332 , 

Pi a — Tat ,  P2 	± 2 	Ta for Qa3311, Qa 3 31 2, and Qa 3322) 

1 " 	a 	T a. • P2 	± 3  i coo. 

for Qa.31119 Qa3112. Qa3122, and Q a 3/12, 

Pt 	Tat P2 a ± 2 	Ta P3 n  ± 4 	Prat 

for Qa1111, Qa1112, Qa11221 Qa1222, and Qa222 1 . 	[6.81 

From the above expressions, the following plausible explanation of 
Gross gaps can be given. If we take the dependence of the physical quantities 

as ei P t  instead of el' then the amplitudes of the moments of the distribution 
function will be obtained by putting i a  + ip instead of r a  in § 5, so that the 
complex frequency of oscillation will be determined by expressions of the type 

±ncu a l-it a . Correspondingly, the amplitudes of nth order moments 
having no suffix along the magnetic field will contain in their denominators an 
expression of the type ( p 	Ta  )2 112032a 	Thus, in the absence of collisions 
era  =0) these amplitudes will become infinity when p =n w a  or n w g . It 
appears, therefore, that the wave is dissipated away on account of making nth 
and higher order moments infinity. This result was obtained by Gross for one 
component assembly and extended to multicomponent assembly by Bhatnagar 
and Devanathan on the basis of kinetic equation. Here we have obtained the 
physical mechinism responsible for the decay of such waves in detail. 

APPENDIX I. 

Average number of Collision 

The average number of collisions between p and a components is defined by 

	

Ng Na la fia fffifl fa gfla b db d I di /3 di a 
	 [ALA 

The exact expressions can be evaluated by using the expansion for fa  and ftsi. 
But as can be easily shown from the kinetic equations [2.9] that for small 
deviations from equilibrium position only the equilibrium value of N fi  Naicrg a  is 
necessary. Correspondingly we choose the equilibrium Maxwellian distributions 

fa 
3'2 

= Na( ma 	) EZI 2 K T tr 	o. „ 	 2 K T CUL 	
[A 1.21 
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with similar expression for fg• 

1 	( M a  Mg \ 312 

d' 	K 2  Taa  Tgp 

Then [AI.I1 reduces to 

M a 	n 	e2  if  f  exp. [ 
• K Taaec: 	2KT gg  P  

gga b db de di a clig 	 [A1,3] 

The integration over the impact parameter b can be caned out exactly on the 
same lines as Chapman and Cowling', for the force law I F I =Kg aje. In 
order to ensure convergence we have to introduce cut-off. In terms of the 
non-dimensional impact parameter v o  we have 

1  312  1 m a  m a  \ I (ma 	Mg) 

cr ig , 	2 K‘T ac, T g g 	m a  m g  

	

ma -4. 2 	ni g -÷p2 if exp. { 	ea 	 
2 K Tflfi

gg  
2KT a, a  

11 

(

V ou  gioi) 
2 

s 5 
gpa  s - 1 de a de„ [AIM 

By changing the variables to 

gga e 	ea and V ga  

and carrying out the elementary integrations we get finally 

2s-4 
1 	1 [ Taa Tøp1 iii 

Cpa (2-rt) 1 t m a 	Mg 

2 

I (Ma ± m P K ga  s - 
ma nip 

(

2 
Vou  V o2i) X F(s) [AU] 

to 
-x 

where 	F(s) — r ( 2s — 4

)if s   2 and F (.0 = ilb  L— d x 
s —1 	 x 

x* 

if s 

• 
x * being suitable lower cut off. 

APPENDIX II 

The Hermite Polynomials of first four degrees and the first four moments 

H (°)  —1, 11,1; )  v a i HZ1 Vai Vai 8i; 

I I cipilk  = Val VajVak — (VaiSik + VajSik + Vak 

HaWk i = Via Va .! Vak Val — (Vai Vct jSki + Val VakSil + V al V al 43ik 4 Va j VakSil + Vai - al 

+ Vak VaiSij) + (SO Ski + Sik Sp + SilSJk) 

4-  



Transport processes in a Multi-component assembly 	127 

(0) 	I 
Oa = I, 

mai 	K T act, 

	

(2) 1 {( _Ma ) 	I 
(tali c  -2- 	K Taa

au  

(2) ( ma  

aajj 	Kr 
) D

a 	a" 

	

3/2 	 )112 
(3) I  [( ma 	as 	( 	a  

	

K Tact 	
— 

K Taa 	
Uata 

	

)3/2 	
a 

 )1/2 

a(a3lil =1 1( K 	Taa 	
Sa 

	

K Ta CL 	

Ilaail, 

) 
,,(3) 	ma, 	

3/2 
Sauk, utific Kr a. 

a (4) 	[(  ma  )2 	 m 	n  
wain, = 2  7 	 r au + 31) 

K Ta 	
Q aim 6( K Taa, 

(4) i 	
2 

,t( 	n 	 n  
"aiiij = 6 	 -3( 	 ) 1.-  aiji0 

	

K T aa 	K Taa 

2 
a(4) 

= 
I 	 (  ma  ) p 1(--a-- 	 iv  rr 	afki 9  

	

K Taa 	 ft. a d e, 

(4)[

K 	T

(  rna   )" 

	

aiin ( 	) fra u + Pan  

	

act 	K Taa  

APPENDIX 3. 

Number of Distinct Components of a (n)  

Since we are dealing with generalized Hermite polynomials of the 
velocity in three dimensional Euclidean space, the number of distinct 
components of a( n)  is nothing but the number of partitions of n each partition 
containing terms not exceeding three in number. Denoting this by P3  (n) , 
we have from elementary number theory2° 
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f 	 1 	it P3(n) 'nth! e[(1 — 9(1 — x2)(1  

1 
47 +36n+ 6 n2 + 	On( = 72L 

by actual differentiation, 

9 + 16 cos n  

3 } 

A PPENDIX 3 

Solution of fourth order moments 

ta Qa3333 = Aa3333, 

A1 Qa3331 = Ta Ba3331 + Cia B3332, 

A1 Qa 3332 a  Ta Ba3332 — Wa Ba3331• 

era A 2 Qa3311 (17a2  + COa2 ) Da3311 + 2 Cda(Ta Ca3312 + Wa Da2233), 

A 2 Qa3312 a — Dia Da3311 + T a Ca3312 + Wa Da2233v 
nt. 

f 2 , 	2 Ta A 2 Va3322 2  Wa (I& D'a3311 	 er Ta Ca3312) k Ta A' w
\ n

iz/ L'a2233, 

A a 3 Qa2223 = (Ta2  + 7  wa2 ) Bann — (.0cL (Ta2  + 3  tha2 ) Ca2231 

4a Ba m3), 

at 1 A 3 Q2213' (Ta.2  ± 3 coa2 ) (Wet Ba2223 + Ta Ca2231) 

— 2 coa-  er a  7 a Cd1123  41 	11131 

a A 3 Qa2113 2  Wa 	(c0a.Ba2223 	Ca2231) 

(Ta2  + 3  Wa2 ) (Ta Ca 1 123 	Ba1113), 

= 6 coa2  (0.1a Ba2223 + Ta Ca2231) a A 3 Qa 1113 ▪3  0)4 Ta2  + 3  cot!) Ca.1123 ar 	(Ta2  + 7  wa2 ) Bairn,  

Ti 42 AtQa1111  (#: 
4.  1 671 coa2 + 24 coci4)Aatitt 

+ 4 wa 	+ I 0 col) R -F a un 4 12 tot! (sr,: r 4 col) Da1i22 

4- 24 cog (Ta  Ba2221 + (Da A a2222), 

-Fa  A 2 4 Qa lin 	Ta2  ÷ 1 0 COD Ora 8a1112 	Aat11I) 

+ ?tea  T a  (T 'a2  4- 4 wa2 ) D al122 is 6 col T o.  (T a  Ba 2221 Wiz Aa2222) 1  

Ta A2 a4 Qa1122 gr-  2  coa (Ta2  wa2) (co.a. Aattit Ta Ba1112) 
2 	A 4 vra, 	-t ata2 )2  Da ; 122 P 2 fga  k 	t 4 co t! (67. a t o 0, A a2222)? Ba2211 
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2 

	

A 2 A4 Qa)221 ° Ctia era 19 a1112 	tom Aa11111) 
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 ailz) D1122 + ta(72a + I° W2a)(Ta 81222 1 1 +tV Aa2222)+ 
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112 6 Uaar 
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Ma 
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Xs 

6 + 3 	Sans  + 3  Sarrs 	(log N a  Tact  ) 
ma 

+3  S  an  + 3  Scars 	(log N a  K T")] 
a x, m a   a x, 

( K Taa  ia u 	 K T 	} + 3 ---- 	---5- 	21lactr—
a {log Na 

m 
a- 

m 	 x., 	xs  

u K T 2  

	

± 	 tia as  — {log N a  a x y. 	a xr 
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Fas) S arrr + 3  (ea' E,+ 	Far) SILL s 
M a 	M a 	 m a 	M a  

± 	ular uaas + 
3  K raa 

near neas 9 
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a Sa  
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