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ABSTRACT

Bhatnagar, Gross and Krook Jdeveloped a collision model for one component
neutral assembly of particles in order to overcome the inherent difficulties of ths
Boltzmann collision integral. This has been generalized to an N-component
assembly of charged and neutral particles by Bhatnagar and Devanathan. However,
the transport equations obtained directly from these kinetic equations are far from
simple. [n this paper, simpler and elegant transport equations have been obtained
by expanding the distribution functions in generalized Hermite Polynomials

following Grad. From these gencralized coefficients of direct electrical conducti-
vity, diffusivity, viscosity, and heat conductivity are obtained in the presence of
magnetic field. Also the relaxation times have been calculated. These naturally
lead to a mechanism of the occurrence of Gross-gaps.

1. INTRODUCTION

The transport processes are essentially non-equilibrium processes. In the
study of non-equilibrium processes one attempts to derive from the kinetic
equations a consistent closed system of transport equations involving the
macroscopic quantities associated with the system like density, velocity,
temperature, stresses, heat flux, etc. In such macroscopic equations certain
parameters occur. For instance, the stresses are proportional to certain space
derivatives of velocity components. The corresponding coefficient of pro-
portionality is defined as the coefficient of viscosity. Similarly, the heat flux
vector is directly proportional to the temperature gradient and the coefficient
of proportionality is the coeflicient of heat conductivity and so on. In certain
simple flow problems of an ideal gas, we can identify these coefficients exactly
as the momentum transfer and heat transfer per unit area.per unit time due to
molecular interactions. But in general, the dependence is very complicated
and we consider the former statement as the definition of transport coeﬂ‘icient‘S-
Thus, the main purpose of the present paper is to start with suitable kinetic
equations and to deduce a closed system of transport equations in order 1O
obtain expressions for transport coefficients such as viscosity, heat conductivity
and electrical conductivity. In § 2, we shall discuss the basic kinetic equations
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which we have used and in § 3, the outline of the procedure for solution is
explained and the closed system of transport equations are derived. In §4,
we consider three simple problems to derive the coefficients of viscosity, heat
conductivity and the electrical conductivity. These simple processes are
generalized and stationary -non-equilibrium processes in the presence of
magnetic field are considered in § 5. Finally, in § 6. we disouss the unsteady
relaxation problem and attempt a plausible physical explanation of Gross gaps

in frequency spectrum,

2. KINETIC EQUATIONS

Consider an assembly of N kinds of particles, Let m, and e, denote the
mass and charge of a particle of s-type. Further, let, at time ¢ and position r,

£, be the molecular velocity and F; be the external non-electromagnetic force
acting on that particle. Then, the state of the system is described by the

—_
distribution functions f; (&, r, t) satisfying the Maxwell-Boltzmann equations
and the self-consistent electromagnetic equations. With the usual notation of

Chapman and Cowling', these equations are:

Maxwell-Boltzmagn equations

> f, 30fi v 1[5 . > f,
31 +§::‘axi +ms[E" + & (E[+[l/C] ijk gsj HL)] agﬁ

N - - — -
- ? JJ‘[.[; (§;! r, t)ﬁ'r(g;l I, f)_fi(éf? r, t)f;(f;, I, :)] &

x gibdbdedt;,  s=1,-+-,N [21]

Maxwell equations

cV xH=4nJ +3E/31, - [2.2]
¢V x E= —3H/a1t, | [2.3]
V:H =0, [2.4]
V'E=4ng, [2.5]

where the current density J and the charge density ¢ are given by

N e -+ -
J = 12;'1 e & i (€, 1)dé, [2.6]

and‘ ’ q =,§1 ¢ [ fi (é:, r,t)d f-; [2.7]
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The above equations are highly coupled nonlinear integro-partial
differential equations and in order to simplify the basic kinetic equations
Bhatnagar, Gross and Krook? proposed a simple tractable Collision modei
retaining the essential physical characteristics of the Maxwell-Boltzmann
equations, This has been generalized to a multicomponent assembly by
Bhatnagar and Devanathan®. In the collision integral, the term

£ Bor, ) [ £ (Eim0 1) g bdbde dE,

represents the number of s-th type of particles removed from the velocity

-5 ->
range (£, d £,) by the interaction with j-th type of particles and hence replaced
by an equivalent model

_N(r,1)
T js

AR

where N,;(r, t) is the number density of j-th type of particlés given by
N} (l', ’) o f ./J' (ﬁj& r, I) dgj'

The nonlinear term

[ 5 Ent) £ (En, 1) g bdb de dE,

representing the number of particles brought into the velocity range concerned
is replaced by the following :

(total number of collisions per unit volume per unit time) x
x (probability that the particle goes into the concerned velocity range)

We shall denote the average total number of collisions between s-th type and
J-th type by

NiNe 1115, 0) £, (B v, 1) 835 b db de dE; dE [2.8]

Js

and instead of taking the detailed mechanism of collision in evaluating the
probability mentioned above, we take it to be Jocally Maxwellian given by

IO Y (e e (Fm Y |
¢ = ,f - . €X T . _'.'_u.!
MRS (Zﬂ'KT;,) P| " 2kT,. ’

assuming that the s-particles are scattered randomly by the j-particles. In the
above expression K is the Boltzmann constant, u;; and 7, are mean veloc_llY
and temperature of the scattered s-th type of particles during their interaction
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with j-th type of particles. For these cross-velocities and temperatures we
choose the phenomenalogical relations

U =a; ¥ + a; ug

and Tis = by Ty + by Tes + Dy “5 + Ej ;- g, + Fjul,

where u; and T;; are the mean velocity and temperature of the i-th type of
particles. Subjecting the colliston terms to Maxwell’s relaxation problem and
to the instantaneous conservation laws of mass, momentum and energy, we get

(for complete detatls refer’)

aj=1-a;,
Dj_g: _%E)5=Fjli
bfjn ] '-bj_g’

M Gy =M ds; = Ajs=-'4.tjr
bjj=b.rs"='Bja = Dy

and
Dj_-; -+ D.sj o= 1/(3 k) AJ; (2 — Qj; — ﬂ”).

|
These relations determine only half of the phenomenalogical constants. But,

considering the average momentum transfer and energy transfers, we find

P m,m; [ mslg_-ésl__]
s m; + m; [mjms/(mf+ ms)]gf: ay

and

-

6KD}I= mims [*
¢ mj+m,

-1-;2 —-+2
[% m; mﬁ/(m}' + ms)]gjsz ay

[ ]
Also By is just the coefficient of direct heat transfer between the two com-
ponents. From the knowledge of the law of interaction, these constants have
~ been determined in reference’. For ready reference we shall record them
below :

Aj =~ &/l for elastic collisions
m,- + m,
~0.113—1"s for Coulomb law
m; +m,
>~ 0.023 Bl for Maxwellian law
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2

m. m . &%
6KDj, =2 3 for elastic collisions
mj + m';
mim
) ) | (O ol for Coulomb law
m; - g
m m
~0.04 B for Maxwellian law.
n; + mq

Thus, according to the above model, we replace the set of Maxwell-
Boltzmann equations [2.1] by the following set of kinetic equations :

d f a i 1 ’
'—f + &5 qul"l' , [st+ €, ( Ei + — €ije &5 Hk)af' ]
. 4 C

s=1,2,+++,N. 12.9]

This leads to physically meaningful transport equations. However, as
in the earlier transport equations of Chapman® or Burnett®, this set of transport
equations also does not form a closed system of equations.

3. TRANSPORT EQUATIONS FOR NON-EQUILIBRIUM PHENOMENA

We have already pointed out that the set of transport equations obtained
earlier do not form a closed set. The usual procedure to_obtain transport
equations, followed often, is to consider the given system in a known
equilibrium state specified by the distribution functions f;, and a small
deviations  fy from this equilibrium state resulting from the preaSSigﬂfd
non-equilibrium situations like density, velocity, and temperature gradients.
Then using the perturbation techniques first order transport equations are
established which yield directly the respective transport coefficients.

. One of the earliest of such methods is the classical solution of Chapman-
Enskog-Hilbert®”®,  We may note that their solution turns out to be a serics
solution in terms of a parameter involving the mean free path and even the
first order corrections are quite complicated and higher approximations are
almost prohibitive owing to enormous mathematical complexity.

Another effective method, due to Lorentz’ and adopted successfully bY
Morse et a/' and Margenau'!, is to expand the velocitly dependence of the
distribution function in spherical harmonics in velocity space. Spherical
harmonics in velocity space are eigenfunctions of Boltzmann collision operatof
for Lorentzian gas, the corresponding eignvalues depending upon the callision
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frequency. Naze'’ extended these results to more general case. Thus, the
mathematical advantage of the method is off-set by the fact that physically
this expansion is a series expansion in terms of collision frequency and has very

limited scope.
Grad"® developed anothor method, which is also an orthogonal function

expansion in the velocny space, employing the generalized Hermite Poly-
nomials'®. This method has decisive advantage over the earlier methods.
The distribution functions are taken in the form

, fsmﬁn[za(") H(n)]l 3“']1 2: "t N: [3,11

where the weighting factors f,, are exactly the equilibrium distributions.
The second and the successive terms represent the deviation from the postu-
lated equilibrium state with coefficients a'” as linear combinations of the
macroscopic variables of the system. Such a procedure is evidently very
much suited for the solution of transport processes under consideration.
Besides these expansions may be managed to be convergent by taking the
deviations to be small. Further, on truncating the series at a convenient
stage, we can obtain a closed system of equations for the physical variables.

Thus, the kinetic equations [2.9] and the expansions [3.1] form the basis
of the present investigation,

In the subsequent working we concentrate on a three component
assembly consisting of electrons, ions and neutral particles respectively denoted
by the suffixes a, 8 and y, as the generalization to any number of components
1s straightforward. Further, in order to facilitate the orthogonal function
expansion, we introduce the nondimensional distribution functions g, of the
nondimensional molecular velocities v, defined by

L

1 KT,, 312 -
Ea = .(_ ) ) fa.(‘far r, I)# [3'2]
Nﬂ'. LY mﬂ
- 12
Vg = = a - 3.3
(KTEE) g [ ]
Then, the general expansion can be written in the form
8a (Vu y T, t) = W (va, ) 2 as:) (rr t) H(n) (Vu )1 [3"4]
n=g
] 1
Where w (Va) — —i,ﬂ):”z exp[ —_ "2—' “'2] ’ [3.5]

the nondimensional Maxwellian distribution function corresponding to the
postulated equilibrium situation, Because of the orthogonality property of
the Hermite polynomials with kernel wq We have

a (x, 1) =~ [ H® (v,) go (Ver 1, 1) d Ve [3.6]
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where X(n) = f(‘-” (va.) [H ™ (Vc:)]z dv,. [3.7]

Since H™ (v,) is merely a polynomial in velocity components, the above
expression clearly shows that al” (r, t) are linear combinations of the
moments of the distribution function. For convenience we have given the
Hermite polynomials upto the fourth degree and the corresponding coefficients
in terms of the moments of g, in Appendix 2. Since we are dealing with
Hermite polynomials in three dimensional velocity space, the number of

distinct types of a™ of order n can be shown to be (Appendix 3),

I 2 nT .
— 147 +36n+6n° + —1“(9 16 cos —
72[ n (=D 9+ 3)] [3.8]

This differs from Grad’s results who, from an analogy with Cartesian tensors,
inferred that there are n»! distinct components. This leads to a slight

inaccuracy in his numerical coeflicients,
Accordingly, the non-dimensional distribution functions g, satisfy the

kinetic equation

3ga , [ KTua \'* 38, 1 Lf KT ¥ 3 2,
—_—  — v + — | Fg+ e \E+ - ilk Va H )
31 ( - ) al 3% | m, ar + e (E, c\ m, Sk Pa) el |3 £

> m ml kKT..\'"* 3 m "””
o[ 2o (1 )L (KDY 0, 2 figi, e
g [at{ g (KT.:,;) ) ( m, ) : axi g * KTGG)

Y 3/2 o
— 1’4 ga + Z Na ( Tnﬂ e-tp [ — __7:-%. (‘F p— “'au )-] [3.9]
3=a 73a 2m 15a 2

N , Np , By 3.0
Oga ORa Taq

where To =

and Vg4, Yga, V4o are the non-dimensional mean velocities Ugq, Ug3a s and .
Similar equations hold for 8 and y components of the assembly. In [3.9] and
in the subsequent calculations, we shall use the suffixes i, j, k, /, m,m * °°
for dummy summation indices and the suffixssr, s, 7, u, v, - + - for fixed indw_cs-

Substituting the expansion [3.4] in the cquation [3.9] and integrating W:S‘
respect to v, after multiplying with & ™ (v,), we get the equation fnr)aa_-
Since v, is explicitly present in the equation [3.9], the equation for aq" will
contain a"*"). Hence a suitable cut off is essential to obtain a closed set of
equations for o,  To effect this cut off, we have retained only the terms
up to al’. The explicit expressions (Appendix 2) for these cocfficients 10
terms of the moments of the distribution function lend justification for the
cut offat ¢’ . For instanoe,: a'" contains the mean velocities and consequently
for an assembly consisting of charged particles the current density teri:
Thus, af’ takes into account the anisotropy caused in the momentum space:
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Similarly, ag (2) contains both the material stresses and the Maxwell stresses and
the Poyntlng flux. ag’ mainly accounts for heat flux and energy flux and a(®
takes account of the mteractxon between materlal stresses and Maxwell stresses. -

This fact has been pointed out by Burgers'® and Bhatnagar’®. Hence we have

included the terms up to a{¥ and neglected a/” and subsequent terms, since

the above physical quantities govern most of the natural phenomena that occur.
However, if any physical situation warrants the inclusion of some particular

higher order term, the formalism is general enough to include it. Consequently
we consider the truncated cxpansion.

8o = g > al? H™ (v,). [3.11]

n=0

This process of truncation provides a natural way of expressing the fifth and
higher order moments of the distribution function in terms of moments upto
fourth order in contrast to the arbitrary definitions of earlier approaches'’.

The equation for a'” is given by :

(n) 3
X[,,) 0 dq — [H;— X(n) ﬂu + X{n- 6{2] (" 2)] :[( IOg .._n_r_a'_)

KTGG Bi2 { aaﬂ'l'l)
+ X (n
( m, ) (n+1) 3 X, .

n+4 2) (n-1) | & m
SR Xﬂ an +X'H. 8(3 (n=1) ]0 a
5 [ (n+1) Qay 1) ax; & KT..

dal"~V | )
+ Xy 82 282 _ ) 5 5@ gn-h O log e }
a3 X; S Xi

112
m e 1
: “E+— Fu ) X(u-1) 887 oY
( ua) ( . ! m, ) (n-1)

e p—
- = €, Hj, [X(n) 3(2) (") + Xn-2) 8}2) Sjm af{' 2)]

cm,

D m, 312
+—1{log N Xiwy at™

af{ g (KT.;;;) ]’ (n) Gz

KT ‘B m, 312
& aa (nt+1) (2) ,(n~1)
( m, ) 3%, {IOEN ( KTaa) } [X(nﬂ)aa.:‘ S 2 Yn- 1) 5 Qg ]

3:2
= “TuX(n}ag_") + 3 Na( Tcm ) AB"J, [312]
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where

’ Los ]
Afﬂ) JH{“)( P ?aa) exp.[ ot e i] d(ﬂa. [3*13]
T&u

Putting >, a'®, + - + | equal 10 zero, we get a closed system of equations for

o4

a (n=0, 1, 2 3, 4). Reverting back to the physical variables, we have the
following transport equations:

oN, d
Z + Ng Ugqi) = 0, 3.14
= axi( i) 3.14]
1 3 <« Ny 1 3
r a S —— Ugar T+ =y N P r
N a (N ﬂa_“)-}"r Uga -‘g . da Na axi ( Q uf)
e
- (E’—Er . = -r—nl- Far) = cr: €rik Yaaj Hy =0, [3'15]
a a a
1_.3 (N P )-!—1' Porr — 2€aE'kP,*Hk
Na af afarr a farr C'mu r} ar}
N K T3
[ 1 (N Sufrr) + 2 E + _L Far) I‘au, + 2 '_"'_§ ( ugur + ﬁ_)
N axl ma mﬂ 5 06“ mﬁ.
EAarn [316]
1 o 4
T h (Nn. Pa.rs) + Tq Pr.u: — = (Grjk Paj.: 5 €5k Pa.jr)lfk
N, &t cmy
e "!_ "'_'(N Snfrs) + “_ (E Ugas + E “nﬂ.r) + —"(Fﬂtr Ugas + Fﬂ-“u““’)
N, dx m,g m,
+ b S Usar Udar = Bﬂ.ﬂ' ¥ [317]
3 O3,
1 3e
T L — N Su_rr + (s 4 n.rrr = r S rr H
N af( r) T emy €rjk Qarrj L

(N errr) + 3( E T '_l"' Fu,r) Parr

1

N 3KT
+ Z 9 [ u?ﬁur + 8e “&Ml
3 Oaa "IE

Aa.rrn [3 18]
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€
__1 . :* (Na Sarrs) + Ta Su.rr.f - cmu (2 €rjk Sﬂfﬂ‘ + €sjk Sﬂf") Hfi
N, o «
pa— _-L--P—(Nuanrrs) + 2("6"'“— Er"' '_I" Far) Pa.::: -+ (f'i Es“""l_ Fas) Parr
m m
N, oX; My mg a a
KT
- E Na I-!izﬁa_r Usas + ga uﬁns] = Bu.rr.r [319]
6 aaal mﬂ-
e
....l.-. --E— (Nﬂ Sm,,) + Ta Sarsl = ¢ (Erjk Sa._f:l' o €,k Su;’rs g €k Sa.jrs) Hk
Na. o1 cm,
1 A €a 1 €q 1
= - . (Na.Qairst)"l' ""‘Er'l'"_'Far -Past'l' "'"Es“l'_pa.s Pa.l'r
Na &X; mg me me mgq
e l v No - [3.20]
4 -——E; +"'—F¢;f Pa_rs"l" — == Ugar USar Y dat = Lgrst s .S
\ma mu, 6 Tﬁu
4e
-1 . C (Na. Qm-rrr) + 7o Qarrer — — € rjk Qn'.jrrr Hy, = Agrerrs [3-?"1]
N, &t g

»

: ‘ g (Na Qa.rrrs) + Ta Qa.rrrs s (Esik Qﬁj"’ + 3 €rjk Q“J"”) Hy = Bﬂ'""' [322]
N, 31 Cmg

I a e ‘
N,;- Y (Nu Qn. rr.ﬂ)  § Ta Qa rest T c;a(e.fjk Qa. rrjt -+ Egjk Q:r. rejs
+ 2 (E’-"‘k Qﬂ- ssre t €rek Qa :rrs)] Hk o Cu rrste [3-23]
1 3 | 2e
i (Nn Qarrrs) + Tq Qra rrss 2 ('-"-'rjk Q:r. ssrj T €sik Qu.rr.cj) H, = Darrss- [3-24]
Ng, 3t cm,

For convenience, we have recorded the lengthy expressions A .rrs Barrrss Ca rrses
and D,,,, together with the solutions of Q, in Appendix 4.

Equations [3.14] - [3.24] along with similar transport equations for
components B, and y with e, =0 govern the behaviour of the assembly.

4. TRANSPORT COEFFICIENTS DEDUCED FROM SIMPLE FLOW PROBLEMS

In order to understand the significance of the transport equations
[3.14] - [3.24], we shall consider three simple flow problems.
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In the case of a steady plane Couette flow with no heat fiux, wa replace
the third order moments by the equivalent moments of lower order and obtain

BSam/a X2 = —~Tgq Pa.lZ: [4_]]

2KT, ou
P = ac 4 ___Fag.l)_ 4.9
@12 ( Mg Tq )( 2 ax [ ]

Hence, we conclude that in this simple problem the coefficient of viscosity is
given by

or

_ 2K T, [43)

Mg Tq

M

Similarly, if we consider steady one-dimensional heat flow in a fluid at
rest, after replacing the fourth order moments by their equivalent lower order
moments, we get

aQﬂ"ll — Sa.llh [4.4]
E!xl
(1) §
SK:T..\3T |
Gal =3 Sq1 = — - ) e [4.5]
\ ma. Ta a:‘:l

This leads to the coefficient of heat conductivity :

k - 5 K2 Tu.t:. . [46]
Mg T4

Finally, considering Lorentz problem of steady, homogeneous flow of-a
macroscopically neutral mixture of charged particles in the presence of electrc
field E (E, 0, 0), the basic momentum equations reduce to

Ng A4 N, A
i e (u gAY — taa1) + : L (uwl - Uggy) = — €q E, [4*7]
Ba v &
N‘Y ATB Ne Auﬁ [4 8]
(”—m«l - uﬁﬁl) ) (“aal -_ Hﬁﬂl) = —eég E, '
Tyg O.8

and
N, 4

a NgA
£ (Hnul o 14771) + BBy (Hﬂﬁl - ”'n'l) = 0. [49]
ﬂu'}— Gﬁ,},
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Eliminating .., and substituting for the current density

Ji=ey Ng tigaq +eg Nﬁ Uggy [4.10]

and making use of the neutrality condition

eu, Na"'eﬁ N.B"Os [4.11]
we obtain -
fl =g En [412]
where
2
.-.:-l-(eﬁ Nﬂ__iﬂ.Nﬂ.) %
N, Ng

N Aa'r/"'u'r + NgAg, /‘757

: [4.13]
N, Aﬁa. Aa.'y /(ﬂﬁu ﬂ'n'y) + Nﬁ' A'yﬁ Aﬁu. /(UTﬁ 7 By ) + N-y A'}-a Auﬂ'/(aﬂyn anﬁ)

Thus, we can interpret ¢ as the direct electrical conductivity of the macros-
copically neutral medium. The expressions [4.3], [4.6] and [4.13] have the
same structure as those given by Chapman and Cowling' and Grad®.

5. STATIONARY NON-EQUILIBRIUM PHENOMENA

In this section we generalize the simple results obtained in the previous
section to include all stationary phenomena such as density gradient, velocity
gradients, stress variations, and heat flux vector., We shall as usual consider
the system to be macroscopically neutral.

We shall first consider the expression for the current density J. In order
to find the contribution of the density and temperature gradients to the current,
we shall replace the second order moments by their equivalent lower order
moments. Then from the momentum equations [3.15], after straightforward
calculation we get the expressions J,, for the current density parallel to the
magnetic field H and J . and Jgs for perpendicular component of the current
densities due to electrons and ions:

Ju -0 Ell + 04 [V“(K Ta.u.) + K Taa. Vu IOE Nu. - Full]
+ O'ﬁ [V 11 (K Tﬁﬂ) + KTf;ﬁ V“ lOg hrﬁ "'Fﬁll]! [51]

c(éN—-e Ng)
T o i g YA
1 3L ExH
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c N,
HI

[V (K Ta0) + K Tag Viog N, — Fo] x 1

¢cN, Ny, 4
Dsz d'ﬁ.?

Y [V(KT,,) +KT,, ViegN,—F.]xH

2¢°N, Ng D,
+ 5
(83 Nﬁ-—-é'aNa)DzH

[V(N KT,o + NgKTgg + N,KT,.)

— (Nn F, + NB Fﬂ e 5 N‘l’ F-.,)], [5.2]

c(eﬁ Nﬁ — €4 NE)E

T x H

Jﬂl—

cN
—-'—I;i'ﬁ [V (KTﬁﬂ)-i-Kng VlogNﬂ—F,;] x H

-y

CN‘y NBA&,,
S g [V(KT,,)+KT,,V logN,-F,]xH

- C;Nn NB Dl
3 )
(e, Nn—e‘g Nﬁ) Dzﬂz

[V (N,_ KTgo + Ng KTgg + N, KT‘W)

—(N.F, + N3 Fg + N, F.)] [5.3]

_ 2
where G - fiﬁ ﬁﬂ ¢a Na) D2 [5_4]
4 N, Ng D,’

No—
o, =Im(‘?ﬂ g~ €a Nn)' Aa-y ’ [55]
2Dl 0,;7
_'(ea Na - €g Nﬁ)l Aﬂ-y [5 6]

¢
B 2D| ﬂ'ﬁ.l,
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N, Ap., A NogA. g A N, A,. A
D, - a 1fa Aoy + B AvB 1fa 4 Ty B ’ [5'7]
OfaTay Ty 0 Ba Tay T8
N, A4 Npg A
and Byt O, 5 ZEN, [5.8]
Tay T 2y

These expressions clearly exhibit the effect of temperature and density
gradients as well as that of other external forces on current density. From
[5.1] we conclude that ¢ is the direct electrical conductivity along the magnetic
field, while ¢, and o g can termed as diffusion coefficients. We note that the
expression for o is the same as [4.13] However, the dependence of current
density in [5.2] and [5.3] are more complicated.

In order to deal with other physical variables we shall choose the
coordinate axes in such a way that H = (0, 0, H) without loss of generality.

Selving the stress equations [3.16] and [3.17] and denoting the electron
and ion gyrofrequencies by w, and wg, given by

ea_H eﬁH

Wy = , Wwg = - [5.9]
cmg, Cmfg
1 | .
we have Pa.33 = — Aa33 ’ [510]
Ta
Poy = l [2we 7o Barz + (72 + 2w%) Aoy + 2l Aga)] [5.11]
L\z Ta
Pppm [ 2wy 7y Bupy 4202 gy + (12 +202) Ade)y  [5.12)
AZ Tga
Py =(1/A)) [7aBi2— wa (A — 4a22)]s [5.13]
Ponn=(1/A}) [ra Bazs - @we Banls [5.14]
Pu.lil = (I/Al) [‘-Ua. Ba!S + Tq Ba'}I]! [515]
where A1=7§_+w:, A2=7§+4w§. [5-16]

We note that P,,; is not affected by the magnetic field and

Pﬂ-ll + Pa22 + Pa.33 -— [I/Tu.] (Au.ll + Au’lz + Aa35)

is also independent of the magpetic field. Thus, the stress component along
the magnetic field acting on a plane perpendicular to the magnetic field and

the isotropic pressure and hence the total internal energy are unaffected by the
ma gnetic field.
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Concentrating on the dependence of the stresses on the gradients of
velocity components, temperature and the density, we find that

(0) 2
Piy3 = — ,ua33 Ca33 — Maasv Tga— #;3]3 V3 N, [5_17]
o 2K Taa
where Ma33 = — [5.18]
My tx
(2) K
Mai3 = { Uoai Hea2 un.u'.j'} [5 Ig]
ml.'l. Tﬂ.
{2) Yaa3d (0) -
Ma33 = ——""-Ug33 . [).20]
Ng

We can call these u matrices the generalized viscosity matrix. uS5) has the
same form as [4.3] and is unaffected by the magnetic field.

Similarly, we have

Pq23 0 2

( u ) _P'("';( . ) (l}ana .ul:f;vNa- [52']
Fas: €q31

where #i%) - 2K Toq (T“' - wa) [522]

m, A, Faf s
pfl% o K _ ( — Wgq Ugg3z Tg Ugal Tglge2— Wq lgal ) [5 23]
! . :
mg A | Tallga3 Wqlgq3y g Hggr+ Ty ¥aat /s

uB = (Tea/ Vo) ul) [5.24]

Regarding the viscosity matrices associated with the stresses along the
magnetic field acting oh planes containing the magnetic fieid, we note that
asymmetry is caused by the magnetic field. Moreover, the primary viscosity
coefficient is reduced by the magnetic field since the diagonal terms of !—‘u; can

be written as

2KTM(| __ wl ) | [5.25]

Mg Ta

The stresses due to temperaturc gradient and and density gradient 2T€
proportional to each other,
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Finally, writing

Pan - €ail ‘
0) | 2
Pa.lﬁ'- _1“(4.‘:. €a12 _“é)vTau_PLJVNa [526]
P¢22 €a22
24208 2wgT, 2 wa
2KT 2
we have ul = L | —we T Ta —WyTe | [5.27]
Mg Ta Az 9 2 2
2wy, -—2::1),‘,,'7":|t 7a+2mu_
- " 5 =
20),; Tu uu,u,z + (37{1 + 3 mﬂ.) uﬂ.ﬂ'.l - zwﬂ-‘rﬂ- uﬂ.ﬂ-l + (Ti + Swlzﬂ-)uﬂ.ﬂz AZ“:W.S
K ' 2
E) e A - T: Uga2 — 2 WaTg Uzal 2"—'3& TqUaa2 + TolUgar 0
Mg Yaeld2 ' -
+ 2wy Tg Ugat + (1‘2‘1 + Smi) Yya2 —2wg Ty Udn + (37§. + 80«’2:1) Uga2 A‘Jumﬂ
[5.28]
9y T ;
a‘-‘-a.J = au{a ) ’ [5'29]

N

Thus, considering the viscosity matrix corresponding to the stresses
perpendicular to the magnetic field, we conclude that the magnetic field
introduces anisotropy. Considering the diagonal terms we see that for Py
and P_,, the corresponding viscosity coefficient is

- 2
2 K Taa_ (l _ 2(!),:_ ) ' [5‘30]

2 2

while corresponding to P,,» we have

\

.
ZKT,:“(I_ 4&’;; )_ [5 3']

2 2
Mg Ta Te + 4wy

Once again the stresses due to density gradient are proportional to stresses due
to temperature gradient.

Comparing the expressions [5.18], [5.25], [5.30] and {5.31], we conclude
that the magnetic field introduces intense anisotropy. Further, the coefficients
of viscosity in the plane perpendicular to the magnetic field are less than the
the viscosity in a plane containing the magnetic field,

From the other terms we can deduce the effect of electric field, external
forces, collisional transfers, etc., on the stresses.
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Solving the equations [3.18] —[3.20] for heat flux tensor, we have

1
Sn oy em— An_ 3 :
333 . 333 [5.3I]
Sasn = (1/ A1) [7a Bassi + wa Basna]. [5.33:
Sa3z2 = (I/A 1) [Ta.*Ba.Bl — wg Baszl, [5_34:
Sa.l23 - (I!AZ) [7:: Cn123 + Wg (Ba.223 s Bull!)]s [5.35]

Su.llS = (I/Ta. AZ) [2 Wy Tg Cn123 + (7: +2 wi) Ball3 + 2 f-ﬂi Ba?E?;L 536

Saizs = (11a A [~ 2w 7, Carny + 2008 Banys + (72 + 2w2) Buans), 5.37]
Sa112 = (I/AI As) [("*".m:2 +3 wi) (Ta Bai12 - wq Aalll)

—+ 2 We Ta ('j"a Bq!!l + wy AG.ZZZ) ]! [S 33]
Sd.221 = (I/AIAS) [2 Wg Tg (711 Au.lll = Wy Ba;l[z)

5 (Tnz + 3‘”:) (Ta By + wy Au!il) ]: [539]
Sainn = (1/51 As) [3 Wq (‘T: fe.3 wi) Biii2 4+ 74 (7': 5 7’-0.:) Aain

+ 6 wi (Ta. Bga +wy Au.222) ]! [5*40]
Sn222 - (I/AI ﬂi!) [6 w: (Tn Bnllz_ Wy Alll)_ 3 (g (Ta.z + 3"-’&) Ba22l

}
+ 7 (72 + Tw}) Azl [5 41}
wheére As=121 9l [5.4]

Concentrating mainly on the temperature and density gradients of the heat

fiux vector
Sar = "!I Sﬂ.ﬂ'h [5 43]

we find that we can write

5 K? P § 51(2_7_“_2?_ dN,

Sa3 = e -, 5.44]
% m: te O X4 z m: Nerqe 0OXx5 [

and

(Sa.l) o s Kéﬂ) ( (a Taa./a xl) } _ Ké” l(a Na/3 xl)} , [5_45]
Snz 1 (a Ta.a.Ia x2) (a Nﬂ./a xZ)
where
Ka(g) _ (5](2 Tan){ T Wa } [546]
mazai — Wg Ta

and

KW Taa KO . [5.47]

2N,
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From [5.44] we conclude that the heat conductivity kﬂ) coefficient in the
direction of magnetic field is unaltered and is the same as the expression [4.5].
But the heat conductivity tensor transverse to.magnetic field is modified due

to the presence of the magnetic field. The collisional contribution to heat

conductivity is given by
5 Kz Ta.a. wi
( b= 2) * [5.48]

p
My Ty Wq + Tq

-

which decreases as the magnetic field increases. The heat conductivity
teneor k' arising out of the density gradient is directly proportional to the
heat conductivity tensor ki’ due to temperature gradient both along and
perpendicular to the magnetic field as seen from [5.44] and [4.47).

We emphasize here that the generalized stress and thermal transport
coefficients have in their denominators factors of the type 72 + w2, 72 +4 w%,
r* +9w%. Proceeding in a similar manner we have established the corres-
ponding coefficients for the fourth order moments (Appendix 1V). The only
remark of interest about the fourth order moments is that the denominators
have 72 + 16 w% as an additional factor Generalizing we can state as follows :
For any n-th order moment, if all the suffixes are along the magnetic field
direction then it contains (1/r,) only; if (n—1) suffixes are in the direction
of magnetic field it has a factor (1/A,) and generally if (n — r) suffixes are in
the direction of the magnetic field, it has a factor (1/ A,) where

A, =75 +r’wl. [5.49]

This point is of great importance while establishing the relaxation times in
§6, as it leads to an explanation of Gross gaps'®.

6. RELAXATION PROBLEM

Finally, we shall consider the relaxation problem. Following Bhatnagar"
we shall suppose that the physical quantities depend only on time and there is
no external force field excepting the magnetic field. Further, for simplicity,
we shall suppose that the axes are so chosen that H = (0, 0, #H). From the
zeroth order continuity equations, we conclude that

N, = constant. | [6.1]

The relaxation times p for the velocity componeats arc governed by the equations

(P+ NﬁAﬂ“m_“_ 4 N’Y A‘Tﬂ
0ga c

me
) Ugar — Wy €,j3 Ugqj
va

Ng Az, mg N, A.,.m,
s ﬁ Ig uﬁﬁr + “? 1 u-]r'rr: [62]

7Ra Ora
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Neglecting the square of the collisional terms, for the components along the
magnetic field, we have

NaAﬂ-ﬁmﬂ_l_ Nqu.,m.?-*_{VB ’_‘ﬂ'rm':r_'_
0ag 0oy 0 g Opa Tng

N, A
W ’rﬁmﬂ] [6,3]
0.8

Nﬁ Aﬁ_u mg, i N‘T A‘?ﬂ my

p-—%[

which is unaffected by the magnetic field.

For the transverse components, we have three modes given by

2 (Na A”mu Nﬁ"‘ﬁ?’"?)
j = e

2
Oay T3y

N, A,gm N, A.am
pz_i,-wﬁ_(_*r____vﬁ ﬁ.,._i_‘ff?_f)
7 Tag
NgAgo.m, N, A .mg,
P3=i:iwa-( £ b2 )‘ [6*4]
O La 0 ~na

We note here that the self-collisions do not contribute to these relaxation timcs.

Procceding in the similar fashion, the relaxation time for the temperature
1s given by
N.B N. B NgBg, NgzB N.B., N.,B
p—-%‘( i Wi i PO i S < i ’B), [6.5]
Top Tay 7 ga O By 0 o o8

while the off-diagonal terms of the pressure tensor have the relaxation times

[6.6]

Pr= —Tqgys P2 ™ ifwa._'ra.s P - :L_'zjlwu.‘“"ra.'

The relaxation times of the third order moments are determined DY
equations identical in form to [5.32] —[5.41] with 7, replaced by 7o+ /7
Hence proceeding as in the calculation of transport coefficients we obtusin (b€

following relaxation times.

p= — 7, for §,133

P= +iwg— 74 for Sgi3 and Sgis,
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P1= — Tas Pr= :|:2 fl'-ﬂa. — Ta for Sa.123- SallB* and S::223r

P = ifma,""ra.! P2= 3&31.“’#1—71

for Saiity Sanzn Sqr22, and Sgamn. [6.7]

Finally, we shall record the relaxation times for the fourth order moments,

p=—71q for Ogyn,
p= tiwg ~ 7a Qann and Qgazan,
pl= —Tas P2= F2iwg ~ 7¢ fOT Qgii1. Oginiz, and Qgizag,
[ = +iwg = Tgs P2= +3iwg— 74

for Qasii Qasnzy Cazizz, and Qgzimg,

L= —Ta P2= Jtszm_Ta! Py = :tq'fwu""ras
for Qains Qanizs Qainrz Qarzazy and Qaaran. [6.8]

From the above expressions, the following plausible explanation of
Gross gaps can be given. If we take the dependence of the physical quantities
as P instead of e then the amplitudes of the moments of the distribution
function will be obtained by putting v, + ipinstead of r, in § 5, so that the
complex frequency of oscillation will be determined by expressions of the type
p=+nwy +ir,. Correspondingly, the amplitudes of nth order moments
having no suffix along the magnetic field will contain in their denominators an
expression of the type (p- fq-u)z- nzmi. Thus, in the absence of collisions
(7o =0) these amplitudes will become infinity when p=nw, or nwg. It
appears, therefore, that the wave is dissipated away on account of making nth
and higher order moments infinity. This result was obtained by Gross for one
component assembly and extended to multicomponent assembly by Bhatnagar
and Devanathan on the basis of kinetic equation. Here we have obtained the

physical mech.inism responsible for the decay of such waves in detail.

APPENDIX 1.

Average number of Collision

The average number of collisions between 8 and a components is defined by
NﬁNa./o'ﬁn "ffffﬂfu.gﬁubdbdf dfﬁdfa [AI.I]

The cxact expressions can be evaluated by using the expansion for f; and f3.
But as can be easily shown from the kinetic equations [2.9] that for small
deviations from equilibrium position only the equilibrium value of Ng Na,/ﬂﬁa is
necessary. Correspondingly we choose the cquilibrium Maxwellian distributions

32 5
fomNo| =" exp. | - —= g2l Al.2
: 2 KTy, b 2KTM§“ ALl
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with similar expression for fg. Then [AI1] reduces to
312

1 mg mg Mg -, mg =
I 4 exp. | — s 2
7 2a ( K? Tea Tﬁﬁ) fff P [ 12 KTang 2K Tﬁﬂgﬁ:’ X

gﬁnbdbde a'f,,d§ﬁ [AL}]

The integration over the impact parameter b can be caried out exactly on the
same lines a3 Chapman and Cowling', for the force law Il:‘ﬁ,:,l | = Kga [7.
order to ensure convergence we have to introduce cut-off.
non-dimensional inipact parameter pp we have

1 1 (ma mg g 82 (m meg ;Kﬁa (v i ))(
o, 2K Tau Tﬁﬁ) me Mg ol ol

mﬂ. ~--I--2 mﬁ -1-2 i
cX & & 7
I exe. [ PKT..° 2KT3,3§B] o8

In
In terms of the

| A

o

dé, d_é,; [Al.4]

E— ]

By changing the variables to
a "fﬁ—fa and Vﬁ'u. "gﬁ'l”fa.
and carrying out the elementary integrations we get finally

2
| 1 Tua.+ T.Bﬁ (ma+mﬁ)Kﬁu
aﬁu (:Z'ﬂ')i m ﬁ

];‘-‘1 (02, - o&) x F(s)  [ALS]

MM3

where F(s)-F(25_4) if s=2and F(s) = J E

s —1 p

x*

x * being suitable lower cut off.

APPENDIX 11

The Hermite Polynomials of first four degrees and the first four moments

0 2
H" =1, HP e vy, Ha(ij) = g} Vaj — Oij,
3)
H f;k = Ugi VqjVak — (Um Sjk + Uqj Sflc + Vax SH)

anjkl =VqiVqjVgk Val — (Uai Va j 8};! + Vgt Vg ke 5” + U, 0,1 8”; + Ugj Ugk 8;; + Vyaj Ual 8“‘
+ Vax vufsfj) + (815 ks + Bix 80 +8u8)
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aﬂl
@ _1if Ze Yp .~ 1].
a‘ﬂil 2 [(K Taa )
) _[_Ma P
aﬂ.” (KTau_ ) ﬂﬂ
3/2 12
) i e B e Bl o8 ) Ugsi |
Ouiii = g [( K Ta,u, ) alii ( K Tﬂ,a aki
3/2 1/2
m m,
ﬂSEJFj='_;'[( X = ) Snﬁj e ( XT ) ”anj],
aa ac
\ 3/2
m
ai"}ik - ( KTE ) Su.ijk:
ac
(4) 1 Mg . I m¢' |
Aeiiil =37 T -~} Qaiin— 6 T Py +3),
an \ aa
(4) m 2 m
ﬂuiil’j == %[( P T“'——)Qu_l;,j —_ 3( © Ta )Pufj] .
ca ac
m. \? m
ot 4| (2} Qe ( e |
aa aa
(4) mg \* m,
au.l,”=-}[(KT ) Qﬂ,uj—(KT—)(Pau‘i' Pﬂ.jj)+l]
aa ak

APPENDIX 3.

Number of Distinct Componenis of a'™

127

Since we are dealing with generalized Hermite polynomials of the

velocity in three dimensional

Euclidean space,

components of o™ is nothing but the number of partitions of n each partition

containing terms not exceeding three in number.
we have from elementary number theory?®

the number of distinct

Denoting this by Py(n),
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Py(n) - n]! {dd:"[(l - x)(l -lxzﬂl - "'5]}*‘*

\
=7715[47 +36n+6n2+(—- 1)"(9-}— I6cos¥-3f)} ,

by actual differentiation,

APPENDIX 3

Solution of fourih order moments
Ta Qa3333 = Ag3333,
Ay Qe3zi = 7o Bansat + we By,
AI Qa3332 = Ta Bu.3332 — Wy Bn333l-
2 2
Ta D2Qusn = (Tu o 2 "-Ua.) Dasan + 2w, ('Ta. Casnz + o Da??ﬂ):
a! Qa3312 e (1 P Da.33ll + Tq Ca.3312 + wg Da.2233*
419 2 2
g {52 Qa2 =2 w, (wa Dgyay ~ 74 Cu.3312) + (Ta. +2 w.:) Dg2233,
2 2 3 2 .2
AA, Qa3 =17, (Ta +7 Wa) Byss — 3w, (Ta e !Uu) Ca2231
2 .
+ 6w, (’Tu Ca1123 — g Ba.lll3):
Ay A (1 +3ws) (w, B Caran)
 § 3 Qu_!?.l?u_m Te T wa.) Wg Dgp223 + Ty a2231
. Wq Tq (Ta Cu‘.1123 — Gy, BalllJ);

A A3Qams=2wa 7o (wo Bagns + 74 Coazsy)
2 2
<+ (Ta. + 30-’0.) (Tu. Cu.'123 - Wy BullIS)i
2
A1A3Qa||13 = 6w, (w, Bazna + 74 Canayy)
3 3‘-“.1 ‘Ti + 30-’::2) Cu.ll'..’} T Ta (7: t+ 7‘”5) Ba.lli!:
4 iy g
Ta ﬁZé{i‘Qallll - (T,a + 16.7::. W + 24 w:) Agtitt
+ 4w, 7, (‘r: + ]0(.-.;"3) Biia 4 l?wi (Ti' § 4m§) D122
+ 24 wg (’Ta Bgma + w, Auzzzz),
2 2
Ta aZAQQaIHZ =Ta (Tu I lowa) (Ta. Bnlln - W, Aullll)
+ ?wa. 'T.:(Ta.z +4w§) Danzz + 6w§ Ta (‘Tn Bu2221 4 Wa Aazzz:')-
‘ 2 2
TaA2A4 Qanzz == 2wa (‘-"a. a: wa.) (w.a Anllll — Ta Bn.lll‘.!)

2 242
+ (‘T; L 401;)- Da.u_:ez - 2 Wy (T: t 4 wij ('ra By 1wy Au‘nz!)v
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Ao Ay Qant -6w: ('Ta Bai2 —#ﬁva Aa.llll)
— 3w (12 +4w2) Dayynn + 74 (72 +10 @z ) (7o Banyy + wg A 2222)s
,‘ra A2A4Qu2222—24 W: (Wu.AaIIII — Tqa BEII]Z)
+ 12 m: (T: + 4w:) Dojgz—4w, 74 (’Taz + 10&!2) By
-+ (T; + 160.!2 'i"u_z + 24 uj:) Azr392

mg m
+ 3 N; [ $ 6KTaau§ar 3(KTau. )2],
3 T3 mg m,

mﬂ a x, x.!. mﬂ-
+ 3 a Surrs' 3 Surr.t (log Nn K Ta.ﬂ- )
o X, Xy me,
a‘Sufr.r
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+(€u Es"l’LFas)Sarrr"'?’(m E +— ] Fnr)gn.rrl

3K T

. N 3
+ = Wsar Udas T

Cnrrl“ — (K Tn.n. )[2 B Sur.‘.‘f + 2 51‘1”.'r i(]og Na K Ta.ﬂ. )
3 X,

My o X, Ma
3 :
+ - S“"' & Sa,,, (log N, KT““-)
B x_; a-rs mﬂ
. + S Sarrs + Sarrs i(lﬁg N & Tﬂﬂ )
A X, o g
+ §“Snfﬂ + Saist _a‘ log Ng 2 Taa_)]
3 X; A X; Mg
KT d [au af s KT::. ¢
+ - —= ¥ Ugat —{log N,{-—= }
mg. l Bxs axs me
X 2 | KTos \
Adrom—r=on" o Wgg log Nn
2 X{ ax;' 1 me

; ;
+2( ‘a E,--l- _ Far) Sa.rs! +( g E.t+ : Fu.s)sﬂ-"f

m, ma

. .
+( = E.‘+ ] Fa,t) Sa.rrt

meg m,

Nz | » KT
-+ E Wsar Udas Usas T+ on Haas Udat
o mey ,

Do ( K T )[2 3 Sassr 55 3 (log N, K Tuu)
: 3 ) x, a‘xr mﬂ-

+225ams 9g 2 (10gN, IS“T‘"‘)
ax’ ax; mﬂ
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" - Sﬂ-ﬂ + Sﬂ-l’rr e log Na_ K Tﬂ‘.u’._
e X; d X; m,
5 s, Sa.fs.s + Su.l's:t i log N 2 K Tuu
S X; 3 X; me
& \ 2 . 2
+( = T) [2 Wear 42 Hyar— {logNa( LE ) }
m, 3 X, d X, Mg
a uﬂﬂ-s Tuq, v ]
+ 2 2U g q5 log N,
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e X;

4+ 2Ug,; = (log K Teq )]

4‘2( €a E, +"“1_'Fai-)saur +2( o Es +

i -
mﬂ. mﬂ

)5

: » N KT K Ts, \°
1 2 2 [u%ar u;:ﬁu.s + 2a (“‘fﬁmr + uzﬁﬂ.k) * ( Oa ) ]
o '}Bn. myg | mg
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