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ABSTRACT

Weissenberg in 1946, first demonstrated an interesting phenomenon in the
hydrodynamic behaviour of certain highly viscous liquids. [n the experimental
set-up, the liquid is sheared ina gap between two rotating cylinders both of which
move at different but with steady rotational speeds, the liquid is drawn inwards
against the action of centrifugal force and upwards against the force of gravity, the
whole arrangement forming a sort of ‘‘ Centripetal pump *’. Weissenberg attributes
this effect to the elasticity of the liquid. In the present investigation, the flows of
general Reiner-Rivlin fluids and Rivlin-Ericksen fluids with constant coeffieients
between two coaxial rotating cylinders are studied. Explicit expressions for the
velocity distribution, stress components, pressure distribution, the equation to the
free surface at the inner and outer cylinders have been obtained for various kinds
of non-Newtonian fluids. The effect of visco-elasticity and crcss-viscocity are
represented graphically. From the trend of the theoretical investigation, we con-
clude that either cross-viscocity alone or visco-elasticity alone or both will modify
the shape of the free surface in the annulus prescribed by centrifugal force and the
force of gravity.

One interesting feature to be noticed in the flow of non-Newtonian fluids through
tubes, is the tendency of the fiuid stream to swell at the exit section of the pips,
a phenomenon called Merrington effect after its discoverer. In the present investiga-
tion, the Merrington effect has been discussed in the case of general Reiner-Rivlin
fluids and Rivlin-Ericksen fluids with constant coefficients. A method is proposed
to determine the variable coefficients of viscosity and .cross-viscosity by measuring
the excess pressure along the length of the pipe for vartous flow rates per sec. per
unit cross-sectional area of the tube.

In Part A of the present paper, we study the flow of (i) Newtonian fluid

with the constitutive equation

T = -p[+¢’|E,

[0.1]

where T is the stress tensor, E is the rate of deformation tensor and @, is the

coefficient of viscosity, (ii) Power-law fluid defined by

T=—pl+B,(1g)* VPE,

[0.2]

where B,, s are constants and s < 1 corresponds to pseudo-plasticity, while s > |

corresponds to dilatancy, (iii) General Reiner-Rivlin' fiuid defined by

Tew -—pl+®, E+O E?,

[0.3]
51
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where @, and ®,, the coefficients of viscosity and cross-viscosity respectively
are the functions of the invariants of E, (iv) Reiner-Rwlm_ gmd defined by
(0.3), where @, and @, are constants, (v) Rivlin-Ericksen fiuid® with constant

cocfficients defined by .
T = —_pf+¢|E+fD2D+(P;;E, [04]

where D is the aceleration gradient tensor defined by

d g du, ou
D;"ﬂ—q{'i‘—“{‘ -+ —*. =
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o u; A N;

Qim—- " U, ;
e Tax,

¢,, d,. P;, the coefficients of viscosity, visco-elasticilty and cross-viscosity
are constants, between two co-axial cylinders in the following cases :

(a) when the inner and outer cylinders are rotating with constant angular
velocities £, and £, in the same sense,

(ﬁ) when the inner cylinder is at rest and the outer cylinder is rotating
with constant angular velocity £,, and

(v) when the outer cylinder is at rest and the inner cylinder is rotating
with constant angular velocity Q,.

The present investigation has been undertaken to study the cause of the
Weissenberg effect i.e. the tendency of the fluid in the annulus to flow inwards
against the action of centrifugal force and upwards against the force of gravity.
This was necessary as there is a certain amount of uncertainty about the
cause of the effect. Weissenberg’ himself attributed it to elasticity of the
fluid, whereas the investigations of Reiner®, Rivlin’® and Serrin® suggested
that cross-viscosity is capable of explaining the phenomenon.

In Part B, we study the flow of the above liquids through a circular
pipe under constant pressure gradient. This investigation has been taken up
to study the cause of the Merrington effect i.e. a tendency of the fluid stream
to swell at the exit section of the pipe. Merrington’ attributed the
phenomenon to elasticity of the fluid, while the investigations on the Reiner-
Rivlin fluid by Reiner® and others®®® showed that the effect can arise due to
the cross-viscosity present in the fluid.

PART A

1. Flow of a general Reiner-Rivlin fluid between two co-axial rotating
cylinders: Consider the steady flow of a gencral Reiner-Rivlin fluid with
variable co-efficients of viscosity @, and cross-viscosity ¢, between two infinite
coaxial cylinders of radii a and b (b > a), when the inner cylinder is rotating
with constant angular velocity 2, and the outer cylinder with 2, about the
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axis of the cylinders. We shall assume that the upper free surface of the
fluid is exposed to a constant atmospheric pressure py, and each point of the
fluid moves in a plane perpendicular to the common axis of the cylinders and

in a circular orbit about the axis.
If © is the angular velocity of the fluid distant R from the axis, then

the no slip condition gives

2 =, when R=a,)| [1.1]
Q2 =15, when R =b. | '

Taking the cylindrical polar coordinates (R, 8, Z), Z-axis of which coin-
cides with the axis of the cylinders, the velocity components U, ¥V, W in the

directions of R, 8, Z are of the form
U=0, V=RQ(R), W=0. [1.2]

The constitutive equation for this class of fluids is given by [0.3]. For
definiteness, we take the following expressions for @; and @; in terms of the
second invariant R® Q'2:

D, = Lo (R* Q')
. [1.3]

i h
@3 =2 E Yi (Rz Q”)l y
i=0 !

where Bg, A, ¥ (:'- 0, 1, ) are constants,

We find it convenient to work through non-dimensional quantities by
introducing the following substitutions ;

Re=hr, Z=hz, P=p,p, Q—b_w(r), [1.4]

where r,z, p and w are dimensionless quantities, A=b—a, Q=0+ 0.
Further we introduce

m—-—'g-2 and I-Q [1.5]
| a

for the sake of mathematical simplicity.

Thus, the momentum equations of the flow are reduced to

1 @ 3 2 2 2
rw’ L S [mPe 45 (P +5 (R0 )+ 0], [L6]

-A dr  or
d 3 {2 1\
ar
I
0a—22,p [1.8]

'A a2z
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where -
POV LI
Po h §2
g being the force of gravity in the axial direction,
e, i
Y0 Yidd Y282
3 Rt LI Rl y 2= = 8 .
L p I | p I p I [ 9]

The angular velocity w from [I.?] satisfying the boundary conditions
[1.1] is given by

where

1 -m " mi® — 1
d-m and d = : .11
l+m ("= 1D)({I-1)" (I +m)(/"-1) -1l

e —

Thus, the solution of the equations [1.6] to [1.8] is written in the form

@ 1 [(l_m) ()Tlih)ﬂ r'“+m.l"— 1] [1.12]

“(+m)(*=1)

and
2 2(1~n) 2 2 2em »
c<r acr 2cdr . ; 5;
= A " aq + — Bz l e 2i 2 k ’
¥ [an(l—n) 2 n(2—n) il ;=ls 1 (@) ] i
for n=1, ns2*. [1.13]

The stress components for the stale of motion considered are given by

2 2(1—m) 2 2 2-m
Typ=Tyy = Bz — 2! +d_r+_2c_¢ir N - 1.14
o [2:7’(1 -n) 2 a@2-w| " 114
Ta=¢""r% T,.m Ty =0, [1.15]
o 2 2(1=n) 2.2 2—n
T,.=Bz— 2 5. (c'r"z’”-—[cr +dr 2cdr —k 1.16

where ¢ and d are given by [1.11].

* We shall consider the cases when =1 and n=2 in the n=xt section.
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The flow is taking place between two rotating cylinders with the upper
surface of the fluid exposed to the atmosphere. The equation to the free

surface 1s
T.. = constant = — pgy°

In view of this condition, the equation to the free surface is written in the

form |
- 1 o d2r2 2¢cdr*™" : —2
Z o —— + i S cr a ll?
B[2n2(1-—n) n(2—n) -1 (77 [1.17]
where |
z S0 1. Koy [1.18]
Z + Ko°* .
pgh

2. Special cases :

Case when n=1 (A =3). 1In this case, the pressure distribution and the
stress-components are given by the following expressions :

2

p=A [t inr + - d;r +2c;dyr+ X s;-4 (¢t r~?) — Bz] +k, [2.1]
i=1
i d2r2 .
Ty = T4y = Bz — cf!nr+ L ok Tl d,r} — ko, [2..?.]
Trﬂ o C% r-—Z’ Tﬂz - Trz L 05 [23]

2 2
dq’-+ 2 ¢, d, r] — ko, [2.4]

T.,=Bz~— Z s,_,(c,r )—- [c, Inr+

i=1

and the equation to the free surface is

b 1 d%rz :\ —2\{ -
Z =m —— c,fnr—}- +2C|d|r+ —~t Sia 1((.." ) ’ [23]
B 2 i=]
where
TR ... IS, NN PE VR SN ... ool S [2.6]
lem (1=1)? T em) U =1) -

Case when n=2 (A =0). The particular case when A=0 and s 0
represents the state of motion of a Reiner-Rivlin fluid with constant coefficient
of viscosity By and variable coethcient of cross-viscosity @;.

We obtain the expressions for the pressure and stress components as

p = A[d2 +202d21nr—$—2— - Br4+ X S;_1(4C§r_‘)‘}+kg, [2.7]
<r (=1
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d§ r’ 62
T, = Tgq = Bz - = +2¢sdyInr— 5'7#; — ka, [2_3]

Trﬂ = (2 r-l’ Tﬁ: = Tr: - 0: [29]

2 = .
T., =Bz — [{éﬂ +2crdyinr— {2—2] — X s (@Y —ke [2.10]

The equation to the frec surface is

2 2 ‘
c - ;[‘“2’ +2c2d21nr—2-£2~§ + X s,--.(4c§r“‘)'], [2.14]

r f=]
where

1—m I mi* — |
= . and d; = . 2.12
2 L+m (P=1)(I-1) * (m+1)(2=1) 24

By putting 5;=0 (i =0, 1,--) in the above expressions, we obtain the
stress components and pressure distribution corresponding to a Newtonian
fluid with Py as the coefficient of viscosity,

3. Motion of a Rivlin-Ericksen fluid with constant co-efficients between
two rotating cylinders : The constitutive equation describing the behaviour of
a visco-elastic fluid 1in Rivlin-Ericksen theory with quadratic dependence is
given by [0.4].

For the state of motion described by [1.2], the governing equations of
motion in terms of non-dimensional quantities [1.4] and [1.5] are reduced to

2 1 ap rz
P e S 7 Sa—"(2 )=-K(6ro +4r e o), [3.1]

o..Lr(m)Jrzw], [3.2]

+ b,
A 3z [3‘3]
where
B ¥
K= ?‘ and S'= _hz . [34]

B and y are kinematic coefficients of visco-elasticity and cross-viscosity
respectively.
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Thus the solution of the equations [3.]]——-[3.3] satisfying the boundary
conditions [1.1] are

om0 () el -

g 2 2 6 4Sc3 |
p=A [432—}-— +2¢c;d; Jnr—z—c% — Bz + f‘cz +—;;—-—2] + ko, [3.6]
r

where ¢, and d, are given by [2.12].

. We notice that the angular velocity distribution is unaffected by
viscosity, cross-viscosity and visco-elasticity.

We obtain the expressions for the stress components. for this class of
fluids as

d2r? 2 2 K &2
7,, = Bz — [_2.2r_ +2¢dyinr—~ :2-%] + r4c2 — ko, [3.7]
d3rt b
ng = Bz — l:-""}i-— +2cydd Inr— 5:22-] —'-ko, [33]
Tg=car™ %, T, =Ty =0, [3.9]
dir’ 3 6 Ke; 4S¢3
T;I-BZ—[ 2 +2€gd21ﬂf—-2722]— raz K -—ko. [310]

We find that T,, = 7,4 for a visco-inelastic fluid ; further, 7,, and T are
modified by the coeflicient of visco-elasticity, while the effect of cross-viscosity
1s exhibited only in T...

The equation to the free surface is

- 1 [d%ﬁ

+2(:2d21nr-———2+ 4 a

Z ==
B 2 2r r r

g 6K 45"3]. [3.11]

4. Discussion of the shape of the free surface in the annulus. In the
preceding sections, we have shown how the stress components, pressure and
the equation to the free surface are modified by variable coefficients of
viscosity and cross-viscosity, and constant coeflicients of viscosity, cross-
viscosity and the visco-elasticity. We shall now study the shape of the free
surface in the annulus for the fluids (i) to (v) under the cases (a), (B)
and (y).

As we have not fixed the initial height of the liquid in the annulus
before the rotation, we cannot make a definite statement about the rise and
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£a11 of the free surface of the liquid along the cylinders. We determine the
initial height of the liquid zo by equating the volume of the liquid occupied

in the annulus before and after rotation
bih

2 2
ie. 'n'p(b a):‘u--[Zﬂ przdr, [4.]]

W
alh

where z is given by the equation to the free surface after rotation. It is clear
that zo is different in various cases we have considered.

(i) Newtonian Fluids. 1n this case, the equation to the free surfuce is

- 1| a3, c3 |
= e +2Cdryinr— — |- 4.7
Bl 2 SRR ZrZ} [ ]

We find that the slope of the free surface in the case (8) varies from zero
at the inner cylinder to a positive value at the outer cylinder, while in the case
() it varies from a positive value at the inner cylinder to zero at the outer

cylinder.

In the numerical work we have taken

B=01,m=10, I =5. [4.3]

Curves (a) in Figure I, represent the shape of the free surface for the
cases (o) and (B), while Figure 11 furnishes the shape of the free surface in the
case (y). Taking the initial height of the liquid z4 = [zo + (po/pgh) + ko) into
consideration, we find that the liquid tends to climb along the outer cylinder
and fall along the ianer cylinder in all the cases (a), (8) and (y). Further,
the climbing of the liquid along the outer cylinder is more pronounced in the
case (B) than in (a) or (¥). This type of behaviour is due to the centrifugal
force produced by the rotation of the fluid. Hence, we conclude that
Newtonian fluids do not show the Weissenberg effect as is well-known.

(ii) Power-Law Fluids. 1In the numerical work we have taken n =1 for
dilatant fluids (n < 2), and n = 4 for pseudo-plastic fluids (n > 2).

We can easily check that the slopes of the free surface at the inner and
outer cylinders for a power-law fluid are the same as the slopes of the free
surface at the inner and outer cylinders respactively for a Newtonian fluid,
irrespective of the value of n that we consider.

Curves (b) and (c) in the Figure J, furnish the shape of the fres surface
in the annulus for dilatant and pseudo-plastic fluids. We find that both
pseudo-plastic and dilatant fluids tend to fall slightly along the inner cylinder
and tend to climb along the outer cylinder as in the case of Newtonian fluids.

Thus, the power-law fluids, though belong to the class of non-Newtonian
fluids, do not exhibit the Weissenberg effect,
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(iii) General Reiner-Rivlin Fluids. The equation to the free surface in the
annulus is given by [1.17] for n = 1,2, [2.5] for n=1, [2.11] for n=2.

Figures 11l and 1V show the shape of free surface represented by [2.5] for
the cases (a) and (B) respectively, taking @3 = yo+ y, (/ [g). 1t is clear from
these Figures that the fluid tends to climb along the inner cylinder and also
tends to climb very slightly along the outer cylinder in the cases («) and (B).
The Figure V depicts the shape of the free surface in the case (). We notice
that the fluid tends to climb along the inner cylinder and tends to fall along
the outer cylinder, unlike the previous cases, Further, 1t 1s interesting to find
that the climbing effect along the inner cylinder is more pronounced in the
case (y) than the case () or (8). Thus Reiner-Rivlin fluid in the annulus is
drawn towards the inner cylinder against the centrifugal force showing the
Weissenberg effect,

_ —
Z
b
| ol
|
0 2f-
|
| 1 . ‘
., 0 027 d
r
| .02 1
|
{ | !
F l -4l I | P
R 075 | 25
I Ko
"
Fig. 11

Shape of the free surfrce in the annulus for a Newtonian fluid (case v)
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(iv) Reiner-Riviin fluids with constant coefficients of viscosity and cross-
viseosity. The stress components and the pressure distribution for this class

of fluids are obtained from [3.7] — [3.10] and [3.6] by putting K = 0.

The equation to the surface is
2

- l d%rz C% Cs
Z - — - +2c,dyInr— —< +485—=|- 4.4
B[ p) 2 %2 2?2 + r4 [ ]

~ We find that the cquation to the free surface for a Newtonian fluid [4.2]
and for a Reiner-Rivlin fluid with constant coefficients [4.4] cannot be deduced
as particular cases of the general Reiner-Rivlin fluids [1.17], but on the other
hand, equation [4.2] of a Newtonian fluid can be obtained as a particular
case [4.4] by putting § =0 1t it.

r e e e X X X

=~ - NEWTONIAN
== NON =~ NEWTONIAN

i 120~

| b
(.

\ ”

R i 60

J__;___;’-
~
.

- 3754

O 961

0-777

Q 444

. -3-0
%= 01,5= 07 O-25 075 I 25
e
n
FiG. 111

Shape of the free surface in the annulus for the case of a genaral Reiner—Rivlin fluid (case a)
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1t is interesting to find that
—J - - 48 c3 (f ~T)
Z=\< -zﬁ)nun-Ncw = (3 _zﬁ)Ncw = = B ' re 12 ’ [45]
e ——— T ——————r —— S

e

Sﬂ=0.2' S': 0'

S

Sﬂ'= Ol, 5l =03

| —

15

ol

NEWTONIAN
NON = NEWTONIAN

4 4-647

— O 742

O- 127

-0:-082

125

Fig. 1V

-

Shape of the free surface in the annulus for the case of a general Reiner—Rivlin fluid (cased)
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so that - )
(2);, = 4s(-1) gl ~e (positive), [4.6]
Bl
_. $ (1 _ 2\ A2 |
(2)out = 4s(-1) gl £) e (negative). [4.7]
Bl :
z
' v |
15
1 \
| 12 '
9
L
om g
|

sn:' OI.SI=03

FiG. V

Shape of the free surface in the annulus for a general Reiner—Rivlin fluid
(case )
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If S can take ncgative values, equation [4.5] shows that Rziner-Rivlin
fluid will always tend to fall along the inner cylinder showing the negative
Weissenberg effect.  Thus, in accordance with experiments we must take § tq

be positive.

e S — -
z
He
T e
w F l | | F
I
h ! I l2+ !
|
1 |
‘ |
| T
L J
l %
\ of
I ‘ |
i =04 L 4:259
S=0-1 | - 3.90
T 3708
ﬂ .
|
I S=0-000s | ol !
| i
|
I
: l -3 ' ! .
0-25 075 [-25
”
: T = — - _ i
FiG. VI

Shape of the free surface in the annulus for the case of a Reiner-Rivlin fluid with constant
coefficients (case a) S¢=0.0006
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Figures VI and VII depict the shape of the free surface exposed to the

—

atmosphere for the cases (a) and (B). We notice that the fluid tends to

2
| A
24,
| l
l 20 |-
| f | \
| l 16 4-

N
————i

A\ | hiben
sl | 4.821
- 4.648
S=00002
I T
e
_- - — —
Fig. VII

Shape of the free surface in the annulus for the : - x —
: case of a Reiner—Rivlin fl
coefficients (case £) S¢=0.0003 W TREL s o
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climb along the inner cylinder and also it climbs very slightly along the outer
cylinder. A critical value of S in the case (a) is found, namely S, 0.0006,
such that the shape of the free surface resembles that of the Newtonian fiyjq

| ZT 18—
‘!
' I
F
[ | IST
'f
F i
rt 12
|
|
|
b =
f \
— Q667 '
S=204
6H
—_ 0 327
S:=02
3
L: | 0 146
Sz01 ]

Fi1c. VIII

Shape of the free surface in the annulus for a Reiner—Rivlin fluid with
constant coeflicients (case 5) S,=0.005
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the inner cylinder and it also climbs very slightly along the outer cylinder,

typical curve representing the shape oflhﬁ: free surf:face for K = 8§ = 0.1 isdrawp in
Figure IX to take account of cross-viscosity and visco-elasticity simultane@uslm
The critical value of K in the cases (a) and(g) are 0.0005 and 0.0002 respectively,

— B e —

s

~

Z
1 24— :

|
) |

124

5-428
4:-908
i
| 4647
| |
K=0 0001 '
oL ; | ,
025 O:75 1-25
—
— _ B .
Fic. X

Shape of the free surface in the annulus for a Rivlin-Ericksen fluid (case g) K,=0.0002
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Figure X1 gives the shape of the free surface in the annulus for the case (y).
We observe that the fluid tends to rise along the inner cylinder and tends to fall
along the outer cylinder unlike the previous cases (a) and (8). The critical value
of K inthe case (y) is0.002. As in the case of Reiner-Rivlin fluids, here also
we find that the Weissenberg effect is more pronounced in the case (y) than
in (a) or (8). Thus, we conclude that cross-viscosity and visco-elasticity.
produce similar effects on the shape of the free surface in the annulus.

e — = = —
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| O 492

o
=

K=023 O 233
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— / I I Ol

Kz O-1

Fic. XI

Shape of the [ree surface in the annulus for a Rivlin—Ericksen fluid
e (case v) K.=0.002
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Concluding remarks. Fgures 111 to XI show the rising of the fluid along
the inner cylinder representing the Weissenberg efiect in non-Newtonian f!uids.
Comparing the Figures VIl and X corresponding to the Weissenberg experiment
for visco-inelastic and visco-elastic fluids respectively, it is seen that the climb-
ing effect along the inner cylinder is more pronounced in Figure X than in
Figure VII. Further, we find that the rising of the fluid along the cylinders
entirely depends on the value of the non-Newtonian parameter that we choose.
Thus, we conclude that either cross-viscosity alone or visco-elasticity alone or
both will modify the shape of the free surface in tha annulus prescribed by
centrifugal force and force of gravity. However, the analysis based on the
general Reiner-Rivlin fluids is more relevant in explaining the Weissenberg

effect than the other cases.
PART B

5. Steady flow of a general Reiner-Rivlin fluid through a pipe of circular
cross-section. Consider a steady flow of a general Reiner-Rivlin fluid through
a straight pipe of circular cross-section of diameter 2a under the influence of
a constant pressure gradient acting in the direction of the axis. We shall use
the cylindrical polar coordinates (r, 8, z), where z-axis is taken along the axis
of the pipe which is placed in a vertical position and r is measured from the
axis of the pipe. Assuming the axial symmetry we shall take 3/360 =0. Since
the motion is purely axial, we have

| U, =0, up=0, wu,=u (r, z). [5.1]
In view of the equation of continuity we find that « is a function of r only.

The constitutive equation for a general Reiner-Riviin fluid is given by
[0.3], where &, and &, are functians of the second invariant ', the prime
denoting the differentiation with respect to r.

The Momentum equations are :

Do = D8 fortcne? (D;3ru'), [5.2]
dr r or
1 3

pg= -—Q+ (@, ru). [5.3]
3z r Or

The boundary condition for the velocity profile is
u(r)=0 when r=a. [5.4]

As 1n the Part A, here also we shall take the following expressions for the
coefficients of viscosity @, and cross-viscosity @, :

Pr=Pou’), P= Z 5 ("), [5.5]

{=0
where By, y; (i =0, 1, +++) are constants.
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The solution of [5.2] and [5.3] satisfying the boundary condition [5,4]
is given by

{] - — (A/Z H’I) (a’" — f'm): [5.6]

AT (ye (m=1) 491 (dm=3) 22D L] gy,
16 (m —1) [5.7]

¢ \m- 1 2A+2
A=l — . n ,
ﬁo 2A+1
¢ corresponds to the given constant pressure gradient along the axis, and N is
the constant of integration determined later.

p-(r'--pg):+

where

i

It is readily seen from [5.6] and [5.7] that cross-viscosity does not affect
the velocity profile whereas pressure is modified by the presence of cross-

viscosity. By putting m=2 in [5.6], we obtain thz velocity profile for Reiner-

Rivlin fluid with constant coefficients as given by Serrin®.

In each cross-section the velocity attains its maximum value

u,= —Aa"[2m on the axis, while the average velocity is u = — A a"[4m.

The total mass flux M is

M= —[[purdrdf

a

., M=--2-n'pJ.urdr=ﬂpfla .
2{(m+2)

m+2

[5.8]

0

Figure XII represents the axial velocity profile for various values of m. It
is clear from the figure that the velocity profile is parabolic for m =2 as in
the case of Newtonian fluid, as m increases the profile gets flattened and as m
decreases it gets steepened at the middle of the tube. When the cross-viscosity
is zero, equation [5.6] represents velocity profile for the power-law fluids in

which m <2 corresponds to dilatant fluids, while m > 2 corresponds to
pseudo-plastic fluids.

. The parabolic distribution of the axial velocity is attained at some
distance from the entry. The distribution of the velocity in this * inlet
length ™ depends on the conditions at the entry. This inlet length has been

deternﬂned by Bhatnagar and Rao'® for a general Reiner-Rivlin fluid and
Bogue'' for pseudo-plastic fluids,
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The stress components for the state of motion considered are :

2 -
Trr — T::'“ (Pg _C) Z = 16 (::1 l) rum-” [yﬂ -+ ¥1 Az r?(m-l} -+ '"] -— N: [5.9]

Az 2(m-1) 2 2(m~1)
== M e 2" 2 ""1 + A 4m—3f‘ +-.']_Nh
Too = (pg ¢)z 16(m — ])f [2y0(2m 1) + y,4%( ) [5.10]

Tip = Tyz=0, Tz=mtor. [5.11]

We notice that the normal stresses on the pipe vary linearly along the
length of the pipe.

6. Discussion of the Ressults. 1In contradistinction with Newtonian
fluids, we find that the pressure distribution across a section of the pipe is
not uniform for a non-Newtonian fluid.

To investigate the effect of cross-viscosity in detail, we suppose the fluid
to issue from the pipe into the atmosphere at pressure p;, the latter exerting a
force equal to = a® po on the output cross-section.

We use

ﬂazp{,a_J-zﬁr T.. dr [6.1]

0

at the exit section (z = 0) to determine the constant N in [5.7]. Thus, we have

2

T =T A
rr = = F} —c z+ —
(pg ) 16{(m — 1) ><

a2(m-l) , a4(m-l)
% 2y°{ - rz(m-l)] +y, A { _ _r4(m-l)} +] - po * [6.2]
m

Let P be the normal force per unit area which the fluid exerts on the pipe
walls, then we have

P= — (T, )wan- [6.3]

In view of the condition (6.3), we get

}:'—-¢r:»"‘=¢.-z-+(-f]—ﬁ)2 (m +2)? ["—°+ 4 —(m+2)2(£-)2+*--], 6.4]

§gm 8(2m-—1)

where
p*=po—pgz [6.5]

and I' = M/(na® p) = Ad™[(m + 2) = Average volume of the flow per sec. per
unit cross-sectional area of the pipe.
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The excess pressure at the exit section of the pipe is

F¥la, a5 (m+2)2(1" -
iy =i DY = . Tk
P—po=(m+2) ( a) [Sm+ 8§ 2m—-1\a [6.6]

This indicates that there is an excess pressure at the exit section of the
pipe provided yo, y; -+ are positive. This may provide in a way a theoretica]
explanation of the Merrington effect, namely the tendency of a fluid stream 1o
swell at the exit section of the tube viscometer. This also supports the view
point of Reiner that the Merrington effiect arises from th2 cross-viscosity even
when it is taken as constant. Further, equation [6.6] implies that the swelling
at the exit section becomes more prominent when the flux is high and pipe
radius small. This fact has been actually observed by Merrington [loc. cit.].

Let us write the wall pressure in the form

(P p) (_%)2= [(m+2)2 A gy g2 "pg(i)z] )

I
e B {E) o Jten

For a given mean flow rate I', we measure P at a number of stations
along the tube wall. The piot of (P~ py) (a/I")* against z is a straight
line, The slope of this line gives

2 2
(ni‘*"z) az(l"ﬂﬂ ﬁgﬂ—ZM'."z _Pa(i) .

c(m—])? =

while the intercept 3 on the (p — p,) (a/I")* — axis gives the value of

e (e) v

We thus see that the slope of the plot depends on R, constant pressure

gradient ¢, radius a and the power A of the second invariant in the expression
of ¢'l-

If we now determine the slope tan @ of the plot for the same fluid with
the same pressure gradient but with different tube radii a, and a,, we get

2 2
tam 91_(’" +2) g2i-m Bgll~2m+2_Pg(al) ’

c(m-l)' =

J 6.1

: ('"+2)2 21-m) pm?-2m+2 a; \?
Idl‘lezﬁ-c{m_l), az o ﬁg' m —-pg —-}% .
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so that

tanfl; +pg (auflf)f _ (ﬂ)zu*m)' [6.10]
tan 6, + pg(ﬂz/P)z az

Equation [6.10] determines m. Substituting this value of m in any one

of the equations [6.9] we get the value of £, _
If now, for a number of values of I, we determine the intercepts 6, we

obtain the following type of equations ;

(m + 2)? (m+2)* [T )2
e LG pe L TARY e » 6.11
8m v 8(2m-1)\ a & 16414

These equations in principle determine yo, y; *+- . If on the other hand,
we truncate the expression for @; to take only finite number of terms, we can
determine the finite number of coefficients yq, y; - v, by the method of least

squares.
These ideas have been put forward entirely in the nature of suggestions.

The authors have no facilities for experimentation and hence could not verify
the applicability of these ideas.

7. Merrington Effect in Rivlin-Ericksen Fluids with Constant Coefficients.

In this case, we find that the axial velocity distribution
u={cldd,) (r*-a? [7.1]
is same 4s in the Newtonian fluids giving the parabolic profile.

The stress components and the pressure distribution are

T, =(pg-— c) Z—po+ (02/841’)%) [(3 a° - 2 rz) D, + {(az/?.) -rz)}‘I’;], [7.2]

Tho = (PS —¢)z-po+ (02/16‘pf) [6 D, (a® - r’) + (a* = 3r%) @], [73]
T:z = (p g C) Z—pPo T (szlﬁdﬁ) ((Dg, + 6@3) (Gz -2 rz), | [7.4]
Tg =Tp.=0, T.=kecr, : [7.5]

and
P—po=(c—pg)z+(3°[80}) (2P, + @3) r* = (P[16D7) (Dy + 6B,) a>.  [7.6]

If P is the normal force per unit area which the fluid exerts on the pipe -
walls, we have

P= - (Trr)r:a " [77]

which gives
P—p*=[cz+(c?a*/16®}) (P, - 2P.)]. [7.8]
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This equation can be written in the form.

P—p* = (I'la)? [(®:~20,) + (4, 2[T) ] [7.9]
Therefore the excess pressure at the exit section of the tube is
P—po=(T[a)? (D3 -20,). [7.10}

When the fluid emerges from the tube the result will be a swelling of the
emergent column of the fluid provided (P, — 20,) is positive. In other words,
cross-viscosity alone will show the Merrington effect when @, is positive,
while visco-elasticity alone will show the Merrington effect when @, is negative.
Thus we find that cross-viscosity and visco-elasticity exhibit opposite effects
when they are considered separately. A fluid for which @;=2 @, will not
show any swelling at the exit section of the pipe.
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