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ABSTRACT 

Weissenberg in 1946, first demonstrated an interesting phenomenon in the 
hydrodynamic behaviour of certain highly viscous liquids. In the experimental 
set-up, the liquid is sheared in a gap between two rotating cylinders both of which 
move at different but with steady rotational speeds, the liquid is drawn inwards 
against the action of centrifugal force and upwards against the force of gravity, the 
whole arrangement forming a sort of " Centripetal pump ". Weissenberg attributes 
this effect to the elasticity of the liquid. In the present investigation, the flows of 
general Reiner-Rivlin fluids and Rivlin-Ericksen fluids with constant coeffieients 
between two coaxial rotating cylinders are studied. Explicit expressions for the 
velocity distribution, stress components, pressure distribution, the equation to the 
free surface at the inner and outer cylinders have been obtained for various kinds 
of non-Newtonian fluids. The effect of visco-elasticity and cross-viscocity are 
represented graphically. From the trend of the theoretical investigation, we con- 
clude that either cross-viscocity alone or viseo-elasticity alone or both will modify 
the shape of the free surface in the annulus prescribed by centrifugal force and the 
force of gravity. 

One interesting feature to be noticed in the flow of non-Newtonian fluids through 
tubes, is the tendency of the fiuid stream to swell at the exit section of the pipe, 
a phenomenon called Merrington effect after its discoverer. In the present investiga- 
tion, the Merrington effect has been discussed in the case of general Reiner-Rivlin 
fluids and Rivlin-Ericksen fluids with constant coefficients. A method is proposed 
to determine the variable coefficients of viscosity and ,cross-viscosity by measuring 
the excess pressure along the length of the pipe for various flow rates per sec. per 
unit cross-sectional area of the tube. 

In Part A of the present paper, we study the flow of (i) Newtonian fluid 
with the constitutive equation 

T=1 ---pI+0 1 E, 	 [0.11 

where T is the stress tensor, E is the rate of deformation tensor and 0 1  is the 
coefficient of viscosity, (ii) Power-law fluid defined by 

T= p 	130 01 Eys -10 	 [0.2] 

where floe s are constants and s <1 corresponds to pseudo-plasticity, while s > 1 
corresponds to dilatancy, (iii) General Reiner-Rivlin l  fluid 	defined by 

Tots —p/+0 1 E+03 E2, 	 [0.3] 
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where 0 1  and 03, the coefficients of viscosity and cross-viscosity respectively 
are the functions of the invariants of E, (iv) Reiner-Rivlin fluid defined by 

(0.3), where 0 1  and 03 are constants, (v) Rivlin-Ericksen fiuid 2  with constant 

coefficients defined by 
—pI+ 01 E + 02D + E2, 	 [0.41 

where I) is the aceleration gradient tensor defined by 
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0 1 , 02 , 03, the coefficients of viscosity, visco-elasticity and cross-viscosity 
are constants, between two co-axial cylinders in the following cases : 

(a) when the inner and outer cylinders are rotating with constant angular 
velocities S2 1  and 122 in the same sense, 

(fi) when the inner cylinder is at rest and the outer cylinder is rotating 
with constant angulir velocity S2 2, and 

(v) when the outer cylinder is at rest and the inner cylinder is rotating 
with constant angular velocity D I . 

The present investigation has been undertaken to study the cause of the 
Weissenberg effect i.e. the tendency of the fluid in the annulus to flow inwards 
against the action of centrifugal force and upwards against the force of gravity. 
This was necessary as there is a certain amount of uncertainty about the 
cause of the effect. Weissenberg 3  himself attributed it to elasticity of the 
fluid, whereas the investigations of Reiner'', Rivlin s  and Serrin6  suggested 
that cross-viscosity is capable of explaining the phenomenon. 

In Part B, we study the flow of the above liquids through a circular 
pipe under constant pressure gradient. This investigation has been taken up 
to study the cause of the Merrington effect i.e. a tendency of the fluid stream 
to swell at the exit section of the pipe. 	Merrington 7  attributed the 
phenomenon to elasticity of the fluid, while the investigations on the Reiner- 
Rivlin fluid by Reiner 4  and others6' 8'9  showed that the effect can arise due to 
the cross-viscosity present in the fluid. 

PART A 

1. Flow of a general Reiner-Rivlin fluid between two co-axial rotating 
cylinders: Consider the steady flow of a general Reiner-Rivlin fluid with 
variable co-efficients of viscosity 0 1  and cross-viscosity 0 3  between two infinite 
coaxial cylinders of radii a and b 	> a), when the inner cylinder is rotating 
with constant angular velocity S2 1  and the outer cylinder with S22  about the 
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axis of the cylinders. We shall assume that the upper free surface of the 
fluid is exposed to a constant atmospheric pressure p0, and each point of the 
fluid moves in a plane perpendicular to the common axis of the cylinders and 
in a circular orbit about the axis. 

If 12 is the angular velocity of the fluid distant R from the axis, then 
the no slip condition gives 

S2 S2 1 	when R = a,1 	 [i.1] 
12 /22 	when R b.) 

Taking the cylindrical polar coordinates (R, 0, Z), Z-axis of which coin- 
cides with the axis of the cylinders, the velocity components U, V, W in the 
directions of 	0, Z are of the form 

U= 0, Va R 12 (R), Wn O. 	 [1.1 

The constitutive equation for this class of fluids is given 
definiteness, we take the following expressions for Ot t  and 03 
second invariant R 9  £12 :  

°I a  ffr0 (R2  S2 12)x, 

°3 	Vi (R2  a 2) i  
1=0 

by [0.3]. 	For 
in terms of the 

[1.3] 

where 130, A, ' i (i-0, 1, •••) are constants. 

We find it convenient to work through non-dimensional quantities by 
introducing the following substitutions : 

R hr, Z hz, P Po P, IQ as 15, 	(r), 	 [1.4] 

where r, z, p and ca are dimensionless quantities, habs a, 15. £2 1  122- 
Further we introduce 

(22 — and /a - 	 [1.5] 
11 1 	a 

for the sake of mathematical simplicity. 

Thus, the momentum equations of the flow are reduced to 

2 	1 ?p 	or • 	-—  iams.. SO r2  (0 12  + SI (r2  (A.1 	 [1,61 ny s2  (r2 
to 

2)3 + 4, 1 5  
A ar or 

T3 	f 2 1  7 \ VI 
[1.7] 0 ou 	ir co f  kr co 	j, 

Zr 

, 
on-1 • —

6p 
 + 8, 	 [1.8] 

A ?( z 
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where 
h2 

A a is 	 
Po 

flct---- -2-- 
h 

g being the force of gravity in the axial direction, 

„ 	70 Yi. 
ao 	h-2 9 31 	p h 2 	8 2 a  

p 	

v2 /24 

p h2  

The angular velocity ca from [1.7] satisfying the 
[IA is given by 

C 	2i 	I 
r 	0, 

fl 

where 
2 

n 	 
9  2 + I  

	

c =n
1 - m

• 	
min  - 1 

[1.11] 
1 +m 	00- 1)" 

and d - 
(1 + rn)(1" - 1) 

Thus, the solution of the equations [1.61 to [1.8] is written in the form 
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n' 	
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and 
d2 r2 2cdr2' a• 

	

2 2(1 n) 	
1\21 	b. C r 

Bz + ‘` 	r 21 	/ 	̀I 0 ° 
p =_- A [

2n
— 	

2 
— 	 

(1 -n) 	n (2 - n)  

for n#1, n02*. 	 [1.13]  

The stress components for the state of motion considered are given by 

Bz - —
C2  12(I 	d2  r2  2 c d r2  -n) 	

— ko, 	[1.14] 

	

Tyr  = Too 	
2n2  - n) -1-  2  + n (2  

7;8 = evn r -2 , 	710 = 0, 	 [ • 1 51 

co 	 cy (1 —n) 	d2 r2 2 c d r2en  Tire  Bz 	51 _ 3  (c2  r-211 	 - 1E0, [1 • 16] 
212  (1 n) 	2 	n (2 - n) 

where c and d are given by [1.11]. 

* We shall consider the cases when n= 1 and nan2 in the next section. 
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The flow is taking place between two rotating cylinders with the upper 
surface of the fluid exposed to the atmosphere. The equation to the free 
surface is 

Tn = constant = — Po 

In view of this condition, the equation to the free surface is written in the 
form 	 . 

. 	I c2 120 - it) 	d2 r2 2cdr2-n [ 	 . 

	

z—  .._ 	2  	+ — ÷ in 	 ± .::: Si ww 1  •  (C2  fr 279 i 	[ 1 . 1 1 
B 2n (1 — tO 	2 	n (2 — n) 	i--,1 	

1 

where 	 I 
i=z+—PS-1-ko• 

p gh 

2. Special cases : 

Case when n =1 (A on -D. In this case, the pressure distribution and the 
stress-components are given by the following expressions : 

2 r2 
p A [c 21  ln r +

d 	
+ 2 ci  r +s (c? rw 2Y Bz] + k o, 	[2.1] 

	

2 	 1=1 

[ 	
2 

d 2 r2 . 

Trr  = Te e  al Bz — c? lnr + 	' • + 2 el di r — ko 	 [2.21 •  

Tr()  = 4 r -2, Toz  a Trz  c 0, 	 [2.3] 

2 2 
T„••• B z 	si _ i  (c? r- 2) i 	in r +

d r
- + 2 ci 	r 	ko , 	[2.4] 

and the equation to the free surface is 

d 2 r2  

	

Z 41-[c2, ln r + - 	+ 2 ci 	r + 	s 1  _ (c? 	 [2.5] 
2 • gaol 

where 

1 — m 	I 	 ml — 1 

	

e t = --- •  	• 	 [2.61 
1 + m (1— 02 

and di c 
 + m) 	1) 

Case when n = 2 (A 3= 0). The particular case when A ca 0 and si  0 
represents the state of motion of a Reiner-Rivlin fluid with constant coefficient 
of viscosity Pb  and variable coefficient of cross-viscosity 03. 

We obtain the expressions for the pressure and stress components as 

r22  2 
p A — 

2 
+ 2 c2  d2  In r 

C 
—B: + 	si  _ 1  (4 r - 4Y + 	[2.7] 
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d 2  r2 	
e2 

T„ a T80 sw Biz – [ 
2  

--2--- + 2 c2  d2  ln r – -`j– . k 7 r2 	ci, 	 [2.8] 

	

Tr8 mr  C2 r -2, Tor.= Trz • 09 	 [2.91 
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The equation to the free surface is 
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B 	2 	 2r2 	rani 

where 

1 – rn 	12 	
pn p a  / 

and d2 – 	' 	. 	[2.11 c20 1  + m  * ( 12 . 0 0 . 02 	 On f 0 (12  – I) 

By putting si  --r-. 0 (1 –0, 1,•••) in the above expressions, we obtain the 
stress components and pressure distribution corresponding to a Newtonian 
fluid with ro  as the coefficient of viscosity. 

3. Motion of a Rivlin-Ericksen fluid with constant co-efficient: between 
two rotating cylinders : The constitutive equation describing the behaviour of 
a visco-elastic fluid in Rivlin-Ericksen theory with quadratic dependence is 
given by [0.4]. 

For the state of motion described by [1.4 the governing equations of 
motion in terms of non-dimensional quantities [1.4] and [1.5] are reduced to 

r to2  a -1  • —Pee  – S —a (r2  ton) – K (6 r to" + 4 1.2  co' con)t 	[3.1] 
A 6 r 6 r 

on 
 [

-i (r to') + 2 a I , 
Lop 

[3. 21 

where 

O r; --• - 1- 15, 
A 6 z [3.3] 

K=. 13- and S.  Y  • 112 	s h2 [3.4] 

13 and y are kinematic coefficients of visco-elasticity and cross-viscosity 
respectively. 
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Thus the solution of the equations [3.1]-[3.3] satisfying the boundary 

conditions [1.1] are 

1 	 [(1 - rn) (  1   )2  res2  + M1 2  — 11 v 
w Ele ( 1 + M) 02  — 1 1 ) 	I  

d2  r2  {„2 G2 	6K? 4Sc2  
p=A 	

1 
-2--+2c2d21nr---Bz+ 	2  + -----3  

2 	 2,2 	r4 	r4  
+ ko , 

,3.5] 

(3.61 

where c2  and d2  are given by [2.12]. 

• We notice that the angular velocity distribution is unaffected by 
viscosity, cross-viscosity and visco-elasticity. 

We obtain the expressions for the stress components. for this class of 
fluids as 

	

[d
2  r2 	 c2 1 2 K c2  

T„ la BZ a' --- + 2 c2  d2  ln r - --2- + 	2  k0 1 	[3.71 
2 	 2r2 	r4  

	

d2 r2 	 c2 

Me --=. Bz - [--2- + 2 c2  d2  ln r - -2-1- kol 	 [3.8] 
2 	 2r2  

Tiro = C2 r -2 , Trz a Ter = 01 	 [3.91 

d r2  
Tzz Bz   2  e d In r - 

cii 6 IC 	4 S c22  
r4 	r4 - - -2 2 	„ 	 0. 	- 101 k [3 

2 	 2r2  

We find that T„=- Too  for a visco-inelastic fluid, further, T„ and T n. are 
modified by the coefficient of visco-elasticity, while the effect of cross-viscosity 
is exhibited only in T. 

The equation to the free surface is 

- 1 [d3r2 	 4 6 K c-22  4S 
z   + 2 c2  d2  ln r 	 r4-j• 	[3.11] 

B 	2 	 2r
2+ 

r4 

4. Discussion of the shape of the free surface in the annulus. In the 
preceding sections, we have shown how the stress components, pressure and 
the equation to the free surface are modified by variable coefficients of 
viscosity and cross-viscosity, and constant coefficients of viscosity, cross- 
viscosity and the visco-elasticity. 
surface in the annulus for the 
and (y). 

As we have no 
before the rotation, 

_ 
We shall now study the shape of the free 

fluids 	(i) to (v) 	under 	the 	cases (a), (19) 

t 	fixed 	the 	initial 	height 	of the 	liquid in the 	annulus 
we cannot make a definite statement about the rise and 
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fall of the free surface of the liquid along the 
initial height of the liquid zo  by equating the 
in the annulus before and after rotation 

cylinders. We determine the 
volume of the liquid occupied 

blh 
b2  a2  

i.e., 	 p 
	
-)zon if 2 Tr p r z dr ,  

alh 

where z is given by the equation to the free surface after rotation. It is clear 

that zo  is different in various cases we have considered. 

(i) Newtonian Fluids. in this case, the equation to the free surfuce is 

— [4 r2  
Z 	 + 2 c2  d2  !n r— 	- 	 [4.2] 

B 	2 	 2r2  

We find that the slope of the free surface in the case (p) varies from zero 
at the inner cylinder to a positive value at the outer cylinder, while in the case 
(y) it varies from a positive value at the inner cylinder to zero at the outer 
cylinder. 

In the numerical work we have taken 

B =0.1 , 	10 , / 
	

(4. 3] 

Curves (a) in Figure I, represent the shape of the free surface for the 
cases (a) and (p), while Figure II furnishes the shape of the free surface in the 
case (y). Taking the initial height of the liquid 10= Ez o  (Rif pgh) + k ol into 
consideration, we find that the liquid tends to climb along the outer cylinder 
and fall along the inner cylinder in all the cases (a), (fi)  and (y). Further, 
the climbing of the liquid along the outer cylinder is more pronounced in the 
case (3) than in (a) or (y). This type of behaviour is due to the centrifugal 
force produced by the rotation of the fluid. Hence, we conclude that 
Newtonian fluids do not show the Weissenberg effect as is well-known. 

00 Power-Law Fluids. In the numerical work we have taken n I for 
dilatant fluids (n c 2), and n —4 for pseudo-plastic fluids (n > 2). 

We can easily check that the slopes of the free surface at the inner and 
outer cylinders for a power-law fluid are the same as the slopes of the free 
surface at the inner and outer cylinders respactively for a Newtonian fluid, 
irrespective pf the value of n that we consider. 

Curves (b) and (c) in the Figure 1, furnish the shape of the free surface 
In the annulus for dilatant and pseudo-plastic fluids. We find that both 
pseudo-plastic and dilatant fluids tend to fall slightly along the inner cylinder 
and tend to climb along the outer cylinder as in the case of Newtonian fluids. 
Thus, the power-law fluids, though belong to the class of non-Newtonian 
fluids, do not exhibit the Weissenberg effect. 
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- 

0 2 5 075  

r? 

Shape of the free surface in the annulus for the case of (a) Newtonian fluid, (b) Dilatant fluid, 
(c) Pseudo-plastic fluid 

The numbers on the right side denote fe  for the corresponding curvos 
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(iii) General Reiner-Rirlin Fluids. The equation to the free surface in the 

annulus is given by [l. 17J for n 	1, 2, [2.5] for n =1, [2.111 for n=2. 

Figures III and IV show the shape of free surface represented by [2.51 for 

the cases (a) and GO respectively, taking 03 e yo  + y i  (i IF).  It is clear from 
these Figures that the fluid tends to climb along the inner cylinder and also 
tends to climb very slightly along the outer cylinder in the cases (a) and (g). 
The Figure V depicts the shape of the free surface in the case 64 We notice 
that the fluid tends to climb along the inner cylinder and tends to fall along 
the outer cylinder, unlike the previous cases. 	Further, it is interesting to find 
that the climbing effect along the inner cylinder is more pronounced in the 
case 6/) than the case (a) or (g). Thus Reincr-Rivlin fluid in the annulus is 
drawn towards the inner cylinder against the centrifugal force showing the 
Weissenberg effect. 

Shape of the free surfrce in the annulus for a Newtonian fluid (case 7) 
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(iv) Reiner-Rivlin fluids with constant coefficients of viscosity and cross- 
.aroneiti, 	The ctrecc conmonents and the nressure 	distribution 	for 	this 	class 
Pitn•behnier• 	 a•— kin Inns 

of fluids are obtained from [3.1 —[3.10] and [3.6] by putting K O. 

The equation to the surface is 
2 2 2 

C2 
2: 

I d2 r + 2 c2  d2  in r 	+ 4 S 	• 	 {4.41 
BL 2 	 2r 2 	r  

We find that the equation to the free surface for a Newtonian fluid [4.2] 
and for a Reiner-Rivlin fluid with constant coefficients [4.4] cannot be deduced 
as particular cases of the general Reiner-Rivlin fluids [1.17], but on the other 
hand, equation [4.2] of a Newtonian fluid can be obtained as a particular 
case [4,4] by putting Se 0 it it. 

IWO 4=0 OW. 	 NEWTONIAN 

NON - NEWTONIAN 

• 

FIG. III  
Shape of the free surface in the annulus for the case of a genaral Reiner—Rivlin fluid (case a) 
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It is interesting to find that 
45 d{ 1  2 1 	(1 [ 	--  

z (z ZOLon-New 	 Z-0)New B 	r4 	12  [4.53 

— — NEWTONIAN 

	  NON — NEWTONIAN 

I 5 

12 

9 

X 
• 

Sb  4-647 
6 • 

• • 
41̀  

■ 

V 3 

\"\\\ 

0 742 
0 

0 127 

01 	
—0082 

50 =0 2, S I = 0 5 	\ 

So t 01 )  S tb.0 3 

— 3L- 
0.25 075 

tt. 

1.25 

FIG. IV 
Shape of the free surface in the annulus for the case of a general Reiner—Rivlin fluii (casefi) 
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so that 
— 	4 S 0—  Cd 	1 ) 4  ( 12  — 1)  c3  (positive), . - 	B12 

(

- 	 4 S (1 —1 ) 4  ( 1  —  12 ) cl  (negative). z)out  = B /4  

FIG. V 
Shape of the free surface in the annulus for a general Reiner—Rivlin fluid 

(case Di 

[4.6] 

(4.7] 



70 	 (Miss) S. L. RATTINA AND P. L. BHATNAGAR 

II S can take negative values, equation [4.5] shows that Reiner-Rivli n  
fluid will always tend to fall along the inner cylinder showing the negative 
Weissen berg effect. Thus, in accordance with experiments we must take S to 
be positive. 

rw............„41  

i 
t 	IS 

I 

I 	121 	

n_2 

n 1 

I 
i 
i I4' 

 
9 

I 
t 

I I 
'6 

I 
4• 259 

I Ly 	3.911 Sz0-1 	 
I 3 ihoy 	 
	--- 3.795 

I 

S =0 - 0005 	1 	0 

I 
- 

I 
i 	1 	

- 3 	1 	 1 
0.25 	0.75 	1-25 

n 

FIG. VI  

Shape of the free surface in the annulus for the case of a Reiner-Rivlin fluid with constant 
coefficients (case a) Scc0.0006 
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Figures VI and VII depict the shape of the free surface exposed to the 
atmosphere for the cases 	(a) and (p). 	We 	notice that the fluid 	tends 	to 

• 1 
24r- 

1 

I 	16- 

I 	12- 

	S 
5 342 

	 4 821 	 S = 0.1 

	  4.648 

S = 0 . 0002 
1 	0[ 	• k 	 1 

0 25 	0•75 	 1-25 

FIG.  VII 
Shape of the free surface in the annulus for the case of a Reiner—Rivlin fluid with constant 

coefficients (case fl) Scr--0.0003 
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climb along the inner cylinder and also it climbs very slightly along the outer  
cylinder. A critical value of S in the case (a) is found, namely Se ca 0.0006, 
such that the shape of the free surface resembles that of the Newtonian fl u id 

Fto. VIII 
Shape of the free surface in the annulus for a Reiner—Rivlin fluid with 

constant coefficients (case -y) Se-y=0.005 
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the inner cylinder and it also climbs very slightly along the outer cylinder. A 
typical curve representing the shape of the free surface for K S 0.1 is drawn i n  
Figure IX to take account of cross-viscosity and visco-elasticity simultaneously. 
The critical value of K in the cases (a) and(g) are 0.0005 and 0.0002 respectively. 

FIG. X 

Shape of the free surface in the annulus for a Rivlin-Ericksen fluid (case g) ic=t0.0002 
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Figure XI gives the shape of the free surface in the annulus for the case (y). 
We observe that the fluid tends to rise along the inner cylinder and tends to fall 
along the outer cylinder unlike the previous cases (a) and ($). The critical value 
of K in the case (y) is 0.002. As in the case of Reiner-Rivlin fluids, here also 
we find that the Weissenberg effect is more pronounced in the case (y) than 
in (a) or (i3). Thus, we conclude that cross-viscosity and visco-elasticity.  . 
produce similar effects on the shape of the free surface in the annulus. 
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Shape of the free surface in the annulus for a Rivlin—Ericksen fluid 
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Concluding remarks. Fgures III to XI show the rising of the fluid along 
the inner cylinder representing the Weissenberg effect in non-Newtonian fluids. 
Comparing the Figures VII and X corresponding to the Weissenberg experiment 
for visco-inelastic and visco-elastic fluids respectively, it is seen that the climb- 
ing effect along the inner cylinder is more pronounced in Figure X than in 
Figure VII. Further, we find that the rising of the fluid along the cylinders 
entirely depends on the value of the non-Newtonian parameter that we choose. 
Thus, we conclude that either cross-viscosity alone or visco-elasticity alone or 
both will modify the shape of the free surface in tha annulus prescribed by 
centrifugal force and force of gravity. However, the analysis based on the 
general Reiner-Rivlin fluids is more relevant in explaining the Weissenberg 
effect than the other cases. 

A 

PART B 

5. Steady flow of a general Reiner-Rivlitz fluid through a pipe of circular 
cross-section. Consider a steady flow of a general Reiner-Rivlin fluid through 
a straight pipe of circular cross-section of diameter 2a under the influence of 
a constant pressure gradient acting in the direction of the axis. We shall use 
the cylindrical polar coordinates (r, 0, z), where z-axis is taken along the axis 
of the pipe which is placed in a vertical position and r is measured from the 
axis of the pipe. Assuming the axial symmetry we shall take 6/O9_=_ 0. Since 
the motion is purely axial, we have 

Ur  =0, Uo = 0, Uz  szo U (r , z) . 

In view of the equation of continuity we find that u is a function of r only. 

The constitutive equation for a general 
[0.3], where 0 1  and 03 are functians of the 
denoting the differentiation with respect to r. 

Reiner-Rivlin fluid is given by 
second invariant u", the prime 

The Momentum equations are : 

o co, --1—)  + I • ± (03  r u"), 

	

o r 	r 6 r 

	

p 	l 	'6 

P  g  °M  wmw 
rz -1- 7 •----6 r  ((P I r 111) ,  

[5.2] 

[5.3] 
I 

The boundary condition for the velocity profile is 

u (r) = 0 when r 1=1  a. 	 [5.4] 

As in the Part A, here also we shall take the following expressions for the 
coefficients of viscosity 0 1  and cross-viscosity 03: 

co 

Olt' 190 (ti t 2 ) X  ) 	03 mis l' yi  (unY , 	 [5.51 
i=0 

where go, yi (i na 01  1, • • .) are constants. 
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The solution of [5.2] and [5.3] satisfying the boundary condition [5 .4] 

is given by 

u — (A/2 m) (am  —en), 	 [5.1 

A 2 r2(rn - 1) 

(r P g) 	--- 	[2 y° (2m 
16 (m.-. 	 — 1) + yi (4m —3) A 2  r2(nr- 0 +''} +N, 

(51 

where 
2 A + 2 

m = 
2 + 1 

c corresponds to the given constant pressure gradient along the axis, and N is 
the constant of integration determined later. 

It is readily seen from [5.61 and [5.71 that cross-viscosity does not affect 
the velocity profile whereas pressure is modified by the presence of cross- 
viscosity. By putting m 2 in [5.6], we obtain the velocity profile for Reiner- 
Rivlin fluid with constant coefficients as given by Serrin 6. 

In each cross-section the velocity attains its maximum value 

u„,= A am/2m  on the axis, while the average velocity is V mir — A am/4 m . 

The total mass flux M is 

= f f p ur dr d 0 

a 

i.e., M= _ 2tcJ ur dr = IT P 
A ant+2 	

[5.8] 
2  (": + 2) •  

Figure XII represents the axial velocity profile for various values of m. It 
is clear from the figure that the velocity profile is parabolic for m = 2 as in 
the case of Newtonian fluid, as m increases the profile gets flattened and as in 
decreases it gets steepened at the middle of the tube. When the cross-viscosity 
is zero, equation [5.6] represents velocity profile for the power-law fluids in 
which m <2 correspond.s to dilatant fluids, while m> 2 corresponds to 
pseudo-plastic fluids. 

The parabolic distribution of the axial velocity is attained at some 
distance from the entry. The distribution of the velocity in this "inlet 
length" depends on the conditions at the entry. This inlet length has been 
determined by Bhatnagar and Rao l° for a general Reiner-Rivlin fluid and 
Bogue" for pseudo-plastic fluids. 
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The stress components for the state of motion considered are : 

— 
A 2  

Ter  arli Tv:  ea (pg — C) Z — 	----■ r2(n1-1)  Eva + Y1 
16 (m — 1) 	

A 2 r2(m-1) + • •-] — N, 	[5.9] 

To  a  ( pg  . c)z — 16(m A2— 	[2)42M — 0 4- ni12(4m — 3),-2(m- " + •••i — l■r>. 
[5.101 

TA -• TA. =5  01 Tr .  Z I=  4- cr. 	 [5.111 

We notice that the normal stresses on the pipe vary linearly along the 
length of the pipe. 

6. 	Discussion 	of the 	Ressults. 	In 	contradistinction 	with 
fluids. we find that the 	pressure distribution across a section of 

Newtonian 
the pipe is 

not uniform for a non-Newtonian fluid. 
To investigate the effect of cross-viscosity in detail, 

to issue from the pipe into the atmosphere at pressure P o, 
force equal to IT a2 p0  on the output cross-section. 

we suppose the fluid 
the latter exerting a 

We use 
a 

ir 

 

a2 p0  — .11  2 lir T„ dr 	 [6.11 

at the exit section (z = 0) to determine the constant N in [54 Thus, we have 

T,r  T„-= p g — z + 	x 
16(m — 1) • 

{a2(#1-1)  
X [z. yo  	/2(171  -11 	yi A 2 {(2 4(1" -1)  4(m- 1 )1 I

9 • 	
o • [6.2] 

2 m 	
r 	 P  

Let P be the normal force per unit area which the fluid exerts on the pipe 
walls, then we have 

Pt 
— Trrkall • 

In view of the condition (6.3), we get 

P P*  = cz 

 

[6 . 3] 

r 2 ) ( m  + 2)2 [Y0 + 	,'l
( 	2  ( \ 2 

.6  a 	2)  a )  
where 

p*rap o —pgz 

6.4] 

[6 . 51 

and /7 = A 1 I (erra 2  p) es A a" 11(m + 2) is Average volume of the flow per sec. per 
unit cross-sectional area of the pipe. 
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The excess pressure at the exit section of the pipe is 

(

L 
a 
 i! 
	(r )2 

8171 	8 	2,in — 	a 	4-  ••• 	[6.61 

This indicates that there is art excess pressure at the exit section of the 
pipe provided 'o Yi ••• are positive. This may provide in a way a theoretical 
explanation of the Merrington effect, namely the tepdency of a fluid stream to 
swell at the exit section of the tube viscometer. This also supports the view 
point of Reiner that the Merrington effect arises from the cross-viscosity even 
when it is taken as constant. Further, equation [6.6] implies that the swelling 
at the exit section becomes more prominent when the flux is high and pipe 
radius small. This fact has been actually observed by Merrington [loc. cit.]. 

Let us write the wall pressure in the form 

(P—Po) 
a V 

k r 1= [ ( in + 2)2  A i  po a2(1  fin 
P 41)

2 

z n j  

4-  [pm  (m + 2)2 +  y (m +  2)4 ( 1-7 

8(2m —l) 	+ • • •1•[6.7] 

I', we measure P at a number of stations 
of (P — po ) (an)2  against z is a 	straight 

For a given mean flow rate 
along 	the 	tube 	wall. 	The plot 
line. 	The slope of this line gives 

_)2 (in +2)2 
02( 1 	rtpn2 - 2m s 2 

( a 
P 	

pg
O  

con-1)2 

while the intercept 8 on the (p po) (al FY axis gives the value of 

8  al(m+ 2)2 II Yi (m + 2)4  ( r 

8m 8 (2m — 1) .  \a/ ± • 	
[6.8} 

We thus see that the slope of the plot depends on po, constant pressure 
gradient c, radius a and the power A of the second invariant in the expression 
of Op 

If we now determine the slope tan 8 of the plot for the same fluid with 
the same pressure gradient but with different tube radii a l  and 02, we get 

tan e i  
p 	, (m + 2)2

a 	
pn) Ana - 2m + 2 	 ai 

	

l 	po • 

n 	611 + 2)2  2(1- m) Aitt 2  •••• 2m +2 	 a2 2  
• Po 

	

tan U2 re W a2 	 P g 
1 

[6.9] 
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so that 
lime '  +  p g (a i lf) 2  (al )2(1  eni) .  

tan 02 p g (a21.112—  a2 	
[6.10] 

Equation [6.10 determines m. Substituting this value of m in any one 
of the equations [6.9] we get the value of a. 

IF now, for a number of values of l', we determine the intercepts 3, we 
obtain the following type of equations : 

21— 	yo + 
+ 2) 2 	(m+2) 4  

" 	
r, \ 2  

— I) 	
+ a• • • 	[6.111 

These equations in principle determine yo, yi ••• . If on the other hand, 
we truncate the expression for 03 to take only finite number of terms, we can 
determine the finite number of coefficients y o, Vi ••• y k  by the method of least 
squares. 

These ideas have been put forward entirely in the nature of suggestions. 
The authors have no facilities for experimentation and hence could not verify 
the applicability of these ideas. 

7. Merrington Effect in Rivlin-Ericksen Fluids with Constant Coefficients. 

In this case, we find that the axial velocity distribution 

U (C/4 0 1) (r2  a2) 	 17.11 

is same as in the Newtonian fluids giving the parabolic profile. 

The stress components and the pressure distribution are 

Tn. •= ( p g — c) z — Po + (c 2  1 80?) [(3 a 2  — 2 r2) 02 ± 1(a2/2) — r2)} 

Too  z--- (P g — c) z — Po + (c 2  1 1 60;) [6 02 (a2  - r2) + (a2  - 3r2 ) 4p31, 

T„ co ( p g 
- c) 2 	Po + (c2/160?) (03  + 6 02) (a2  — 2 r2), 

031, [7.2] 

[7.3] 

[7.41 

Tr o 	Toe, log 0 , Trz 	C r 	 [73] 

and 

P - Po --- (c - pg) z (3c2/807) (202 + 03) r2  (c2  1160D (03 + 602) a2. 	[7.6] 

If P is the normal force per unit area which the fluid exerts on the pipe 
walls, we have 

P .= (Trr) r=a 	 [7 . 71 

which gives 

[7.8] 

S 
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This equation can he written in the form. 

P — p* a (Fla)2  [(1)3  — 2 02) + (4 01z1r)i.  
Therefore the excess pressure at the exit section of the tube is 

P — Po n 0 - 11 (1) 2  (03 — 202). 	 [7.10] 

When the fluid emerges from the tube the result will be a swelling of the 
emergent column of the fluid provided (0 3 — 202) is positive, in other words, 
cross-viscosity alone will show the Nlerrington effect when 0 3  is positive, 
while visco-elasticity alone will show the Merrington effect when 0 2  is negative. 
Thus we find that cross-viscosity and visco-elasticity exhibit opposite effects 
when they are considered separately. A fluid for which 0 3  in 2 02 will not 
show any swelling at the exit section of the pipe. 
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