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ARSTRACT

The problem of steady laminar flow of visco-elastic fluids through a pipe and
through a cylindrical annulus in the presence of suction and; injection have been
considered in Part A and Part B of the paper respectively. The rate of suction at
one wall has been taken to be equal to the rate of injection at the other wall in the
case of annulus. For the pipe flow the effect of the visco-elasticity of the fluid on
the axial velocity, axial pressure and the shearing stress have been depicted
graphically. For the annalus, the perturbation method has been used for the axial
velocity regarding K R as the perturbation parameter. For rapid convergence of
the series solution, X R has taken to be equal to 0.1. It has bszen found that
for Reynolds number, R=1, the axial velocity profile is not symmetrical regardless
of the radius ratio of the two boundaries of the annulus. This is in contrast to the
Newtonian fluids where the profile i1s symmetrical for R=1. 1t has also been found
that the points of inflexion in the ax‘al velocity profiles occur only after a critical
value of Reynolds number, viz., R,=1.7. The raiial pressure variation depends on
the direction of cross flow. In this respect, visco-elastic fluids have been found to
differ from Newtonian fluids.

INTRODUCTION

1. The problem of diffusion of gases through porous pipes was first
considered by Olson’, Later Berman®®* made a considerable contribution
to the Newtonian viscous fluids by introducing a stream function. This work
was further extended by Yuan’®, Sellars® and Donoughe’, who obtained Ihe
perturbation solutions under the limiting conditions of suction and injection.

Narasimhan®? has studied the problem of laminar flow of visco-inelastic
non-Newtonian fluids in a pipe and in an annulus between two co-axial
cylinders taking constant coeflicient of cross viscosity into consideration,
He has obtained the exact solutions of the equations assuming that the fluid
is being withdrawn or injected through the wall in the case of pipe flow.
In the case of co-axial cylinders, the fluid injection rate at one wall is taken
equal to the fluid suction rate at the other wall.
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The purpose of the present paper is to study the problem of steady

laminar flow of visco-elastic fluids through a pipe [Part A] and through an
nnulus [Part B] with suction or injection.

The constitutive equation for a Rivlin-Ericksen visco-clastic fluid is

= =PI+ p1E+ ¢ D [1.1]

, L L
where if +
. Bx; AX;

[1.2]

is the rate of deformation tensor,

ax; OX; o0X; OX;

[1.3]

is the acceleration gradient tensor, p the pressure, and ¢;, ¢, the kinematic
coefficients of viscosity and viscoelasticity respectively.

Then the equations of continuity and momentum in the steady state and
in the absence of external forces are

V:.q=0 [1.4]
pqVq=V-T [1.5]
where q is the velocity and p the density of the fluid.

PART A

REDUC{ION OF THE FLOow EQUATIONS

2. We shall work through cylindrical polar co-ordinate system [r, 0, x]
where r is measured from the axis of the cylinder, x along the axis of the
cylinder and 9 from some convenient meridian plane. The 6 co-ordinate
will not appear in our discussion due to the axial symmetry. We have
further assumed that a constant normal velocity of suction or injection is
applied at the wall.

Defining a non-dimensional parameter

A=|[rla], [o<sA<li] [2.1]

where a is the radius of the pipe, the equations of continuity and momentum
reduce to:

3 1 9d
PS—— A [ ] =0 2‘2
ax["]+a aA[M] [2.2]
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where u, v are the axial and radial components of velo?ity, o, B are the
kinematic coefficients of viscocity and visco-elasticity respectively.

The boundary conditions of the problem are

ulx,1]=0 [2.5]
[pufaA]x o0 = 0 [2.6]

v[x,0]=0 [2.7]

v [x, 1] = v, = constant. [2.8]

We now introduce a stream function i defined by

[ 1 -.a—tﬁ
u[x, A] e [2,9]
— lﬁla'ﬁ
vfx,A] = g [2.10]

This ¢ satisfies the equation of continuity identically.

Following Berman® we write the streamfunction in the form

J [x, Al = g [x] ¢ [A]. [2.11]
Then the velocity components are given by
l '
ue— gl o' I [2.12]
0= ~—g'[x] ¢ I\l [2.13]
aa

The boundary condition [2 8] together with the inlet conditions to the pipe
give the expression for g [x] as

R [‘3__”0..”“, x] [2.14]

where u, is the average axial velocity at x = o given by

1
e =2J Aufo,A]ldA [2.15]

0

We now write w [A} = -;%I['}]-]]-- [2.16]
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A

and W [A] = ;;[?1]] = ; Jt m[f] dt [2.”]

Then the velocity components and the stream function assume the following

forms :
ulx, 2] = (7 - Um) [A] [2.18]
o [x, ] = v, WAl [2.19]

and ¢ [x, Al = (-—— ~av, ) AW ] [2.20]

In the above equations, w{A] is some function of the distance parameter ),
yet to be determined. We also note that since the suction velocity v, is taken
to be constant, the radial component of velocity becomes a function of A only.

Substituting for #, v from [2.18] and [2.19] into the equations of motion
[2.3] and [2.4], we get

= b
_ L) =(u° _ 2 um) l:_.?-"i[mz— Ww'] —%(m" +."'_u._)
p ox 2 a a a A

. !
+Bv (4ww + 4w’ +—;—ww'-W¢um-—mr W"-—-—E*XH/—
a®

_ 2" W - _)]T FVr.u")] [2.21]

1 ¢ '
—— Lo ww -, [W'+—%[A W - w]]

p A a
02 ' 4 2
—B-a—;“ [10 ww's2w I/V"”'+—-)‘—l'Vlrz +ﬁWW"

P , 9)

-=WW +tdwew - W ~«We" - W?
A A3
4 (uy x + , u 2
o e d

where the dashes denote differentiation with respect to A.
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Eliminating p between [2.21] and [2.22] we have

(ﬂ_ium)[h Row - Wa'- W’W']*-iz(mi”ﬁ—]—w"—-l-fwr)

2 a k a A A
-—ﬁ—zi"{éi w!‘ (l,.l"— 3 Wl' w”.f_ 3 WH wn_i W; m”+4ww;”
v, 4 w4 1 1
_le +__wwf__ f_ ! WHI L w_ !
A AZ W w @ ( ~+ A W Azl’V)
1 lV rei 1 - !y
B ik +?Wm ‘=0 f2.23]

If [2.23] is to be satisfied for all x, then

R[war—W(U"-W,(Ur]+(w”’+—l):-m”_—l" r)

a2

——I:IE-R{"-"(UI wu_3 Wr mnr_3 Wrr wrr__z_”/r UJ”
a A
+dww - W(.Ufp+‘4—ww”—-§z'wmr

! 1! 1 ! ]- f ] f! 1 fl']

where R = av,/a is the cross flow Reynolds number. [2.25]

The problem thus reduces to the solution of a fourth order non-linear
ordinary differential equation. If the visco-elastic coeflicient 8 vanishes, we
find that [2.24] reduces to Berman’s* equation for the Newtonian fluids.

From [2.8], [2.18] and [2.19], the boundary conditions on the functions
wlAl. w[A] are

wl[l]=0=&"[0], w[0]=0, W[i]=1 [2.26]

If we consider the limiting form of [2.24] as R tends to zero, we have a
simple third order equation,

o' +{1/A] " -[1I/A] ' =0

the solution of which subject to [2.26] leads to a function w [A] describing the
well known Poiseuille flow in a cylindrical pipe. Thus we can study the
deviations from the Poiseuille flow by a perturbation method where the
cross-flow Reynolds number R is used as a perturbation parameter. The
solution thus obtained will be valid for sufficiently small values of R.
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PERTURBATION SOLUTION

3. We expand the functions w[A] and W[A] in the form !

oM =woAl+ R D]+ Rw D]+ + R, DY+ 3

and WAl =WolAl+ RW N+ RW, ]+ + R* W, D]+ [33]
A

where Wa 2] --IX-[ tw, 1] dt [3.3]

and w,, W, are taken to be independent of R. Substituting [3.1] and [3.2]
in [2.24] and equating the coefficients of various powers of R to zero, we get
the following set of equations:

Zeroth order approximation

B el =g ol B [34]

A

First order approximation

rer l rr 1 f
w, +——'(ﬂ| Sy S

A Az

rr ! r r
= Wowo + B'gwo— 2we wy

+-§-{4 o =3 Wi e —3 WP 5'-——5— Wil 4 Sem

_ 4 e 4 ! rre 1 1 1 f\
Wowo -r—}t—wowo—hzwawu*wo(wa _)t_wﬁ—?Wﬂ)
1 fre l L -~

- -—A—Wu wp _A_z- Wc wp } = 0 [15]

Second order approximation

ey l L ] 1 !
@ +—w; ~-—

(43 5]
A A?
tr 4
- Wow, + W, wro 3 W',m:, = 5 mrl W:,

B re ’ I
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and so on.

The conditions to be satisfied by w, and W, are

wp[1]=w,[0]=0forn=0,1,2,-- 13.7]
woll]=1, W.[1]=0forn=>1. [3.8]
We can easily check that the various order solutions are given by
0PNl = -4 -1] [3.9]
w o [A] = —a A% -2]; [3.10]
P ]= —4 3% - 1]+R(%—A2+A“——§—-AG) [3.11]
1 ]
WO = —A 2]+ R(—a- a3 s L), 312
Pl= - AR =24 R A- N4 =N - 3 12]
mu)[,\]a—4[)\2-—1]+R(-—g——}\2+}\4——g—-36)
\ 9 9
83 38 11 i 1 1
RI—— e — A=A =20 = A — )0
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and so on.
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Using the non-dimensional parameters

Np, = [a #/a] = inlet flow Reynolds number [3.15]

[3.16]

the expressions for the velocity components in the non-dimensional form gare
given by

ulx, _(1 _X_ R )[4[|_A2]+R(-§--Az+a‘-—%aﬁ)

ﬂu 2 a NRE

and K=p/ a’

— A% — AP — )0
1350 135 36 9 36 450

. ] 83 2 4 ] 6 I 3}
- —— -— A +—=2
+8k(5 = + A T ) ] 13.17]

:.’L*]_.,a[z_amR(-‘_A_imiﬁ-—‘-a’)
v 9 "4

b

32{83 U338y 1 1

Al
2700 270 216 72 3¢0 5400

Rl{ 83 )t AS ]l As—-—l':’t?-l-—l—hg— ]
1 1 1 1
rek[La-32 x. AS-———-A’+-—-——A°} 3.18
( 10" " 360" T 6 2 8 [3.13]
From [2.21], [2.22], [3.13] and [3.14] we get the pressure distribution :

jxa plx.A]

s dx =p[x, A] - p [0, A] [3.19]

J’ apg’; M i mp [ Al =p [x, 0] [3.20]

From [2.19] and [3.20] it follows that

x A
Ap ¢p
J;ax (Jaa h)ho plx, Al -p o, 0] [3.21]
0

where p [0, 0] is the pressure at the entrance of the pipe on the axis.
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It is interesting to calculate the pressure drop in the axial direction.
From [3.21] we have

ploal-pled]_ = (1 A, ) [IG—R{12+192K[I - A%
Re

a NR(,

1
T P g

88
- R’{—Eg+ 32K(—:-;-—6 A2+ 10 A4--2-9§A6)}] [3.22]

This completes the solution for the laminar flow of visco-elastic fluids in a
porous pipe. The rtesults hold for |R|<1. Positive values of R [or v,]
represent suction, while its negative values represent injection at the wall.
We may also deduce the solutions for the Newtonian flluid as particular cases
from the above solutions by taking K = 0.

DISCUSSION OF THE RESULTS

4. No doubt our expansion method is strictly valid when |R| <1, but
in our numerical work we find that even when ]R|= 1, the various order
corrections decrease rapidly. Hence we have taken R=1 in the following
discussion.

(i) Velocity field: 1t can be scen from [3.18] that the radial component
of velocity depends only on the radial distance and is independent of the
axial distance.

In the absence of cross flow, i.e., R =0, the axial velocity is given by

ulx, Al _u Al 2[1 =AY [4.1]

which describes the well-known flow in a solid wall pipe. The profile is
parabolic with its maximum occuring at the centre of the pipe. This
maximum value is given by

[“ Lx "]] i 2 [4.2]

Ug

For small suction flows [0 < R < 1], we find from [3.17] that the centre line
value of the volocity decreases as the distance along the axis increases and
that the presence of visco-elasticity causes the axial velocity to decrease much
more rapidly than in the case of Newtonian fluids. For injection at the pipe
wall [ - 1< R < 0], the axial velocity increases as the distance along the
axis increases.

If we compare the axial velocity profiles with the parabolic profile of
the Poiseuille flow for a solid wall pipe [Fig. I}, we find that for small suction
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Axial velocity profile for suction (R=1) at the entrance of the pipe and far away from the entrance
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at the pipe wall, the profiles bulge out at the centre of the p'ipe more tl'lan the
Poiseuille parabola upto a certain distance along the axis after which they
start flattening and become rod-like till all the fluid is sucked out. We fnay
call this point as a separation point, since a transition occurs in the behaviour
of the velocity profile at this point, although the centre line value of the
velocity at this point 1s same as that for the Poiseuille flow.

We may calculate the distance from the inlet of the pipe to the separation
point by solving for [x/a] from [3.17] by putting A =0 on both sides of the
equation and then making use of [4.2]. For example, in the case of R=1,
Ng. = 1000 and K'=.008, we find that x/a is equal to 34.47. Thus upto this
distance the velocity profiles bulge more than the parabolic profile, while
beyond this distance the profiles flatten. For injection flows also, a similar

phenomenon takes place.

For example in the case of R= — 1, Ng,=1000 and K=.008, the separation
takes place at xfa=19.24 Thus for x/a < 19.24, the velocity profiles remain
more flattened than the parabolic profile, while beyond this distance, the
centre line value of the velocity is more than the parabolic profile value.

Further, we notice from [3.17], that since [x/aNg.] is small, as we
increase the suction in the range 0 <« R< 1, the centre-line value of the
velocity increases and the slope of the velocity profiles decreases at the wall
while in the case of small Injectien’ the centre-line value of the velocity
decreases, thereby increasing the slope of the profile at the pipe wall. This
may also be noticed from Figs. I and [I. 1n this respect the visco-elastic
fluids are similar to the Newtonian fluids [Berman®].

(ii) Pressure field: Fig. 111 gives graphically the pressure drop along the
axis as well as along the pipe walls for small suction and injection flows of
visco-elastic fluids for an arbitrary choice of Ny, = 1000 and K=.008. The
graph also illustrates the x-dependence of pressure in a solid wall pipe as well
as the x-dependence of pressure in a pipe for small injection and suction for
Newtonian fluids. We notice that in the case of suction, the pressure drop
along the axis is less, while the pressure along the pipe walls is more in the
case of visco-elastic fluids, than for Newtonian fluids having the same
entrance Reynolds number Ng.. In the case of injection, the reversc is true,
Thus for suction, the effect of visco-elasticity is to diminish the pressurs drop
along the axis thereby decreasing thz velocity here, while for injection, it is
to increase the axial drop of pressure thereby increasing the velocity at
the axis,

In case of suction, the effect of visco-elasticity is to increase the pressure drop
at the wall thereby increasing the velccity at the pipe walls. The reverse is
true for injection.
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FrLow VISUALISATION

5 To visualize the flow pattern, we have drawn in Fig. IV the stream.-
lines in a meridian plane starting from the inlet with the help of the streap
function in the non-dimensional form :

?’[x,A]='f—‘[""_"]=<-1———x—. £ )/\2 [[2—A2]+R(_;-__1_;\2

a® 2 a Ng. 4

83 19 1 I
RISVENR Y +R2{—-———-—-—— A pe_ Ly
o Sl & ) 5700 270 © T 206" | 72

.. 1 I 83 » 1. 1 . 1
IR SRR SEDS TS ¢ . C L L LI +——A3}
* 360" T~ 5400 (10 360 6 26 180
[5.1]

when R=1, Ng.=1000 and X =.003

STRESSES IN THE FrLow FiELD

6. The stress components are given by

Teg=Tg=0, and Tyy= —p [6.1]
Tgp = —ppa(i—i’)+pﬁ(uz+v?l :—;) [6.2.
e R G b L
et S S 5 R 2

The shearing stress on the wall rendersd dimensionless with the help of
ug« pla is given by

L]

_:_I_-'”]h:l .=(_1_.. ~ . R [_8+£.R+Rz(£§,_+ﬁ]{
uga pfa \ 2 a Ng, 3 135 5

+ K R? {-2- + R( S K)}] [6.5]

15 3

In Fig. V, the shearing stress on the wall is plotted against x/a for an
arbitrary choice of K=0, 0.3 and Ng, = 1000 for suction and injection flows.
We notice that for a solid wall pipe, the shearing stress along the wall 1s
constant, its modulus being equal to 4. The effect of visco-elasticity, both
for suction and injection, is to decrease the shearing stress at the wall. But
in both the cases, the shearing stress increases, as the axial distance along the
wall increases, as seen from the graph.
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The skin friction on the wall of a cylinder of length ! and radius a is

given by
1 R 2 26 24
Da—-l[a—i ”—8+-—R+R’(—- il
2 N e 3 135 3
8 14 64
+KR’{—+R = --K} 6.6
3 (15+3 ) [6-6]
PART B

FLOW IN AN ANNULUS

7.  We shall now study the steady laminar flow of visco-elastic fluid in
the region bounded by two porous walls of two concentric tubes of radii
aand b [<a]. We assume that the rate of fluid injection at one wall is
equal to the rate of fluid suction at the other wall. This condition is satisfied

if buv,=auv, [7.1]

where v, and o, are the radial velocitizs at the walls of the smaller and larger
tubes respectively, and then the axial velocity does not depend on x.

If we choose a cylindrical system of cootdinates with x-axis along the
common axis of of the cylinders, the equations of continuity and momentum
are same as [2.2[, [2.3] and [2.4], where now A=rfa. The range for the
dimensionless parameter A is given by

o=[bla A=l [7.2]
From [2.3] and [7.1] we have
u[)t]--u;\g—-a'—-lif’- [7.3]

\

az._a_p,ﬂuru( ;_e._&)urr_i[[R_,]_ 8 R] [7.4]

¢ dx a*A a N A @ A
and 3P _ P ¥a +epy | — 24 v; P (W2 4224 u”]] [7.5]
A X a2 )X a*A
From [7.5] it is clear that [32 p/ax3A] =0 [7.6]

Thus if we put [02/95,] [dpfox] = ¢ [7.7]
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the equation [7.4] reduces to

11! d ’ d Hr ?
_— Al —S —u R=cA
Su + o5 [ d)t( X ) [14]

The boundary conditions on u are
u[A]=0atx=0¢ and A=1. [-’,'9]

Taking S as the perturbation parameter and regarding it as small, we assume
the following series expansion for the axial component of the velocity :

" = z_:o S™ U, [7.10]
where v [1] =v, [¢] =0 for all m.
From [7.8] and [7.10] we have
d ! 4
-‘a [A uﬂ] —Ruy=cA [712]
- [Aul] - R, = L) E:f';'- —-u! form=1 [7.13]
dA dx\ A mobe

Integrating the equations [7.12] and [7.13] and using the boundary conditions
[7.11], we have the following expressions for the various order approximations

1o u:

IL""""2[2(-‘-}1'][_[im"‘:]*;_ :::; [I_AR]] [7.14]
O
and

v _CR Eg-Z]'[llfc%:F AR {[R_4] [ — k1] _ 2R 51__:?-2]2}

+2 R[N - e® 2 A2 _[R_4] [l — a®] AR

+e" [~ 7 {[R -4][1 +07] - ZR(] — "Rﬂ-z)az } ] [7.16]

l —¢
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In general, we have u,, in the form

1 (u, - U _ A
m=ARJ‘_{-,mﬂ_l__m lld;\___fz' R
u T - + B A [7.17]

where 4, and B, can be determined with the help of the boundary conditions
[7.11]. Retaining powers of § upto the second only we have,

u_ | [_[1-A2]+["‘"2] [I-AR]]

© 22-K] [1 - "]
(i)
_K'F Eg . 8 ‘[il ~ E;P[AR{[R M [~ o™ ] 22 E'_"::_Z]z]

+2R[I =] AR2 —[R-4] [l = R} AR

+o® 41 - o] {[R—4] [l +0*] ~2R : ""'R:az}] [7.18]

| -,

The average axial velocity in the annulus i1s given by

o

U = 22 J)\u d) [7.19]
g” -1
1
Using [7.18] in [7.19] we have,
u 1 [2+ R] + ¢*[2-R] 1—02]
o N S, s S R =
¢ 2[4 - RY] 2 l-a
KR { 2 212 _R-2 RT2
- e ARl =6 e =4l -0
R K- [t -o"T3
K’ R3 [R —2] R R R-2 1 | —o"™? R-4 212
—~ L, ] e S | - - e Ro®*[l - o7]
8 [l — aFJ? R—E[ o[l -0 ] 7+ R [I_O,R]{
R~-4 - N2
+R[l—t:ra'z]‘jl-l—«ﬁl[l--ﬂrp‘][l-—i:r':’{""‘]}+~;-(:lr I[ZIRE_] X
« {R[1 =0 [l 4+ 0% =4[l + 071 _gk]}]. [7.20]

From [7.18] and [7.20] we can easily get the axial velocity component in
terms of the average velocity.
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The velocity field is now fully defined by [7.3} for the radial COMponep
and [7.18] for the axial component.

The pressure field can be obtained after the integration of [7.5] and [7_7]
The radial pressure variation is given by )

pIx.a] - p [x Al
[p v2/2]

-(5em1)-x (e 1)+ e -

L2R-1 Rfa --l 2{ L3K R“( —l)’_)lt’}i’2 a®
2R-2 4 R—2P "~ 4 o —1 R-2 o®_j

_KzRa[R—"f]_f’ —l}[l—hm . . _R+1_t:rz-]{ 1 _KRz_ER‘Z_[
4 R —1 R-2 e®—1R=-2 2 %
K*R[R=2] (e" 21\ K*R[R-2][R-4] a®"*-1); .o
¢ =) — T -
4 o — 1 3 o —lj
KR* R-1 ¢*—1{ KR? ot 2—1)
- [ ==—1R=2
2 R-2 o*-1| 2 [ ],_,R_lf
2
- R'IR - 3[R - 41— 11 [1 = AR=4]
K1R3[2R-3] (02—1 2 ¢ 1  oR"2_ |
-+ - . —— ! . 1 — R—4
8 ol —1 {R__z UR—]}[ A ]
K2R4[R 2]2 2R-5 or - G
— I

Integrating [7.7] with respect to x we get the axial pressure variation in the
form

o (696

_[_2 {[2+R]+02[2 R] R[l—oz]}

4 — Rz 2 1' ::—O'R_-

[2+RﬁIR “]*{R [1-0T "2 -4t - 6"}

= 35 ]22]IR i =il -]
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._5’3,1'}"11—-0::2{1? [1=c*F+R[1-0Po®*+ 41 - o] [1 - **]}
1 g-4fl - UZIZ{R [1+or][1 =02 =4[l + 62 |
e L R L R (R [( ]}] [7.22]

=g|o, R], [93)’]

Positive values of R [or v, and ub] represent suction at the outer wall and
injection at the inner wall, while the negative values of R represent sunction
at the inner wall and injection at the outer wall of the annulus. It may be
noted that Berman’s solution [1958] for the Newtonian fluid can be obtained
as a particular case from our solutions by putting K = o.

DISCUSSION OF THE RESULTS

. The radial component of velocity given by [7.3] varies inversely
proportional to the radial distance.

It is interesting to study the behaviour of the axial component of velocity
given by [7.18]. In the absence of cross flow, i.e., R =0, the axial velocity
becomes

2 2

o — —

—
- y

u [l+e]me +]l -6°

as can be seen by taking the limit of [7.18] and [7.20] as R tends to zero.
We note that [8.1] does not involve any term containing viscoelasticity. Thus
it 1s same as in the case of Newtonian fluids. Hence for a solid wall annulus,
u[A]/u is same whether we consider the visco-elastic fluid or the Newtonian
fluid. This profile 1s not symmetrical and the maximum velocity occurs closer
to the inner wall of the annulus. When R = 1, in the case of non-Newtonian
fluids, [injection at the inner wall and suction at the outer wall] the u-profile
Is non-symmetrical regardless of the radius ratio o of the annulus as may be
easily seen from Fig. VI. This is in contrast to the symmetrical parabolic
profile for R =1 in the case of Newtonian fluids.

In Fig. VI we have plotted the axial velocity profiles for various cross
flows against a normalised radial distance parameter ¢ = X - al/[1 - a] for a
particular value 0.2 of ¢ and K = 0005.

For a rapid convergence of the series solution we restrict Sapproximately
to 0.1. Then if we take K =.0005 we can give values to R upto 200 or so.
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Retaining first two terms in [7.18], the points of inflexion of the axial
velocity profile are given by

1-o® {1 KR 1-0%"
2 4 1-ot

To- 1) R[R- 1120

] —a?

K R*?

[R-2F[R~3]A**=0 [8.2] |

For ¢ = .2, from the numerical evaluation of the roots of the above equation,
it is found that there exists a critical value Rc = 1.7 above which a point of
inflexion in the w-profile occurs in the required range .2 < X < 1. For negative
R, inflexion points do not appcar in the u-profile. When the fluid is injected
at the outer wall and removed at the inner wall [that is for R negative] the
velocity profiles become more asymmetrical as the cross flow velocity increases.
For higher cross flow velocities, the maximum occurs nearer tv the inner wall.

In the case of fluid injection at the inner wall and removal at the outer
wall, the velocity profiles become more asymmetrical as the cross flow
velocities increase. From Fig. VI it is quite clear that for a particular case
when ¢ =.2 and K= .0005 the point where the maximum velocity occurs moves
closer and closer to the outer wall of the aunulus, as the cross flow velocity
increases. Again, we observe that the velocity profiles for R positive lie to
the right of the profile corresponding to R =0 and the profiles for R negative
lie to the left of it, no matter how large R may be.

(ii) Pressure field: The radial pressure variation given by [7.21]
depends upon the direction of the cross flow since the values of this variation
will be different for R positive and R negative. In this respect, the visco-
elastic fluids are different from the Newtonian fluids.

Fig. VII gives the ratio of the pressure drop along the axis with cross flow
to that for a solid wall annulus as a function of the cross flow Reynolds
number R, for constant average axial velecity. The curves are drawn
for ¢ =0.1, 0.2, 0.3, for the visco-elastic fluid K=.005 as well for the
Newtonian fluid [K ==0] for comparison. It is clear that the axial pressure
drop when cross flow is present, is greater than that for solid wall annulus.
This difference becomes more significant as o decreases. This is also the case
with the Newtonian fiuids as shown in the graph. We also notice that the
effect of visco-elasticity is to increase the pressure drop.
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