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ABS fRACT 

The problem of steady laminar flow of visco-elastic fluids through a pipe and 
through a cylindrical annulus in the presence of suction an& injection have been 
considered in Part A and Part B of the paper respectively. The rate of suction at 
one wall has been taken to be equal to the rate of injection at the other wall in the 
case of annulus. For the pipe flow the effect of the visco-elasticity of the fluid on 
the axial velocity, axial pressure and the shearing stress have been depicted 
graphically. For the annulus, the perturbation method has been used for the axial 
velocity regarding K R as the perturbation parameter. For rapid convergence of 
the series solution, K R has taken to be equal to 0.1. It has been found that 
for Reynolds number, R=1, the axial velocity profile is not symmetrical regardless 
of the radius ratio of the two boundaries of the annulus. This is in contrast to the 
Newtonian fluids where the profile is symmetrical for R=1. It has also been found 
that the points of inflexion in the axial velocity profiles occur Dnly after a critical 
value of Reynolds number, viz., R c =1.7. The radial pressure variation depends on 
the direction of cross flow. In this respect, visco-elastic fluids have been found to 
differ from Newtonian fluids. 

IN CRODUCTION 

1. The problem of diffusion of gases through porous pipes was first 
considered by Olson', Later Berman 2' 3 ' 4  made a considerable contribution 
to the Newtonian viscous fluids by introducing a stream function. This work 
was further extended by Yuan s, Sellars°  and Donoughe 7, who obtained Ihe 
perturbation solutions under the limiting conditions of suction and injection. 

Narasimhans' 9  has studied the problem of laminar flow of viseo-inelastic 
non-Newtonian fluids in a pipe and in an annulus between two co-axial 
cylinders taking constant coefficient of cross viscosity into consideration, 
He has obtained the exact solutions of the equations assuming that the fluid 
is being withdrawn or injected through the wall in the case of pipe flow. 
In the ease of co-axial cylinders, the fluid injection rate at one wall is taken 
equal to the fluid suction rate at the other wall. 
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The purpose of the present paper is 
laminar flow of visco-elastic fluids through a 
annulus [Part 13] with suction or injection. 

to study the problem of steady 
pipe [Part A] and through an 

The constitutive equation for a Rivlin-Ericksen visco-elastic fluid is 

7%-x—p1+0 1 E-1-0 2 D 

where 
aui  6uj  

oxi  

is the rate of deformation tensor, 

• 

oat  a ai 	au,n  au. Du 	 — • — 
oXi •axi 	axe  axi  

[1 .21 

( 1 .3] 

is the acceleration gradient tensor, p the pressure, and 0 1 , stp, the kinematic 
coefficients of viscosity and viscoelasticity respectively. 

Then the equations of continuity and momentum in the steady state and 
in the absence of external forces are 

•q = 0 	 [1.4] 

ptvgen v•T 	 11.51 

where q is the velocity and p the density of the fluid. 

PART A 

REDUC ION OF THE FLOW EQUATIONS 

2. 	We shall work through *cylindrical polar co-ordinate system [r, 0, x] 
where r is measured from the axis of the cylinder, x along the axis of the 
cylinder and 0 from some convenient meridian plane. 	The 0 co-ordinate 
will not appear in our discussion due to the axial symmetry. 	We have 
further assumed that a constant normal velocity of suction or injection is 
applied at the wall. 

Defining a non-dimensional parameter 

A [r al, [0 tc. c 1] 

where a is the radius of the pipe, the equations of continuity and momentum 
reduce to : 

—6  [Au] 	6  [A v] re 0 
6 x 	a 6 A 

[2 .2] 
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where u, v are the axial and radial components of velocity, a, p are the 
kinematic coefficients of viscocity and visco-elasticity respectively. 

The boundary conditions of the problem are 

u [x, 1] = 0 	 [2. 5] 

	

v [x, = 0 	 [2.7] 

v [x, 1] n v w  = constant. 	 [2.8] 

We now introduce a stream function 4b defined by 

[2,9] 
ci 	1 	136 u [x, FAJ a2A 6 A 

[2.10] 1 Nfi 
cri • x 

This sb satisfies the equation of continuity identically. 

Following Berman2  we write the streamfunction in the form 

# [x , Aj g Ex] cStAl. 	 [2.11] 

Then the velocity components are given by 

1 
u 1:=7 2 g [x] 0 1  [A] 	 [2.12] aA  

v = 	g [x] 	[A]. 	 [2.13] 
aA 

The boundary condition [2 8] together with the inlet conditions to the pipe 
give the expression for g [4 as 

g [xi 	1 	a2  0  
[2.14] 

where 17/0  is the average axial velocity at x = o given by 

= 2.1 A u [o, Aj d A 	 [2.15] 

We now write 	 to [A] = 
IS 

 [A] 	 [ 

	

A/41] 	
2.16] 
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x 
0  [A] 

and 

	

W [A] _ 	
1 A95 ill  — Tja  t CM dt 	 [2 

0 	
11 

Then the velocity components and the stream function assume the following 
forms : 	 . 

— —x  v.) til [A] 	 [2.181 
2 	a 

v [x, Al cr ow  W [Al 	 [2.19] 

n2 —11  
and 	 ct [x, Al =I ( 7-=' o  — a v. x) A W EX1 	 [2.20] 

2 

In the above equations, w[A]  is some function of the distance parameter A, 
yet to be determined. We also note that since the suction velocity v s, is taken 
to be constant, the radial component of velocity becomes a function of A only. 

Substituting for ii, v from [2.18] and [2.19] into the equations of motion 
[2.3] and [2.41, we get 
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where the dashes denote differentiation with respect to A. 
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Eliminating p between [2.21] and [2.22] we have 

tio 	x vw  )[ 	[2 w co p w con _ 	w e] 	a2  cuff + 1 coil 	I 	I 

2 	a 	a 	A2 Ca  

VwI' 	I 	If p --3- 1 4 co 	— 3 14? ai m  — 3 W" w" — 	W' co" + 4 co co"' a 	 A 

A 	A2 
w 	± 4  w  co if 	4 	cif wf If + 1 w ri 	wf 

t"  
A.2  

1 II , 	III 	I , r 	If 
— __ty co + .._ yvy to  I 1 t  o 	 [2.23] 

A 	A 2 	/ 

If [2.231 is to be satisfied for all x, then 

( CO I"  ± --1  CO "  — i CO P  
A 	A2 w ) 

 I I 	 2 R co 	— vv 1/1" com  — 3 W f I  CO" -- W I  al 1  
a2 	 A 

co  co ttl 	w co iy 	4 co con + 4  	4 
1-  A 	A2 cu to 

W co l"  ± I  W 	— 0 [ — (W " 	W — — W 	 2 24] 
A 	A 2 	A  

where R=avja is the cross flow Reynolds number. 	 [2.25] 

The problem thus reduces to the solution of a fourth order non-linear 
ordinary differential equation. If the visco-elastic coefficient /3 vanishes, we 
find that [2.24] reduces to Berman's 4  equation for the Newtonian fluids. 

From [2.81, [2.18] and [2.19], the boundary conditions on the functions 
w[A]l W[A] are 

CO Ill a 0 P" 01 [0] W [0] = 0 W [1] = 1 	 [2.261 

If we consider the limiting form of [2.241 as R tends to zero, we have a 
simple third order equation, 

cum  + [1/A1 a)" — [1/A 21 	= 0 

the solution of which subject to [2.26] leads to a function (.0 [A] describing the 
well known Poiseuille flow in a cylindrical pipe. Thus we can study the 
deviations from the Poiseuille flow by a perturbation method where the 
cross-flow Reynolds number R is used as a perturbation parameter. The 
solution thus obtained v'ill be valid for sufficiently small values of N. 
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3. 

and 

PERTURBATION SOLUTION 

We expand the functions w[A] and w[A]  in the form ! 

co [A] = wo EA1 + R oh [A] + R2  (02[A] + • • + 	con [A] +•-• 

W [Al 1110 fid R I  EA] 4- R 2  W2  [Al + • + 	[Al + • 
X 

Wn (Al 11= 41  t n 	dt 

[3.11 

13.21 

where 

and w„, W„ are taken to be independent of R. Substituting [3.1] and [321 
in [2.24] and equating the coefficients of various powers of R to zero, we get 
the following set of equations : 
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2 
3  [0.1O 	+ (0 1; WO] 	[a4; 	+ 	+ 460 cir + col wO rl 
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The conditions to be satisfied by w n  and W are 

co„ Di= co: [0] -a 0 for n -a 0, 1, 2,• • • 	 ]3.7] 

W„ [I] = 0 for n I . 	 [3.8] 

We can easily check that the various order solutions are given by 
co o) [A] = 	[A 2 -1] 	 [3.91 
wun [A] = A  [A2_ ; [3.101 
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Using the non-dimensional parameters 

NR e = [a riola] a inlet flow Reynolds number 	[3.15] 

	

and 	 Kc file 	 [3.16] 

the expressions for the velocity components in the non-dimensional form are 
given by 

	 T 	
R )[4  [ 1 	R e2__ A 2 + A 4 I As) 

Tio 	 a NRe 	 9 	9 

+R2 
 I

83 38 A2  + 11 x4 1 x6 + 1 As 1 ;1/4/0  
1350 135 36 9 36 450 

A6 +-ia x 8)11 
5 	90 	3 	18 

[3.171 

	

v [A] 1 	 ) 

	

- = [2 — + R( 1  — — A' +
1  

— A 	
1 

5 —  
v w  9 	4 	6 	36 

+ R2 {  83  A 	A  3 + 	A  5 _1_ A7 _ _ A9_ _ 
2700 	270 	216 	72 	3t0 

sK(I- x 83 A3 + ± As a J— A 7 -e- 	A9)} 
10 	360 	6 	24 	180 

I 	A  
5400 " 

[3.18] 

From [2.21], [2.24 [3.13] and [3.14] we get the pressure distribution : 

X 

J. 6   dx p Al — pi°, Al o x [3.191 

1 eP [xl Al  d A = p [X 	p [X, 0] 
a A 

0 

[3.201 

From [3.191 and [3.20] it follows that 

6-1-)  dx (f LP- dA o x 	A )x=0 p [x, A] — p [0, 01 
	

[3.211 

where p [0, 0] is the pressure at the entrance of the pipe on the axis. 
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It is interesting to calculate the pressure drop in the axial direction. 
From [3.211 we have 

p [0, 	p , 	x 	x R 

p Uo 	 a NRe 
16— R{12 +192 K[1 — 

a N RA  

. R2-1 88 ± 32 K( 41 .
6 A2  + 10 A4— 

28 
A6)}1 [121 

( 135 	45 	 9 

This completes the solution for the laminar flow of visco-elastic fluids in a 
porous pipe. The results hold for IR I c I. Positive values of R [or vw] 
represent suction, while its negative values represent injection at the wall. 
We may also deduce the solutions for the Newtonian fluid as particular cases 
from the above solutions by taking K= 0. 

DISCUSSION OF THE RESULTS 

4. No doubt our expansion method is strictly valid when IR' <1, but 
in our numerical work we find that even when IR I = 1, the various order 
corrections decrease rapidly. Hence we have taken R 1 in the following 
discussion. 

(I) Velocity field: It can 
of velocity depends only on 
axial distance. 

be seen from [3.18] that the radial component 
the radial distance and 	is independent of the 

In the absence of cross flow, i.e., R 0, the axial velocity is given by 

14 [X 	U 	n  r 
I - 

, 
L L 	A 2.1 	 [4.1] 

U0  

which describes the well-known flow in a solid wall pipe. The profile is 
parabolic with its maximum occuring at the centre of the pipe. 	This 
maximum value is given by 

[1, Dc, cs 2 	 [4.21 
tiO J R=O 

For small suction flows [0 < R E. 1], we find from [3.17] that the centre line 
value of the volocity decreases as the distance along the axis 	increases and 
that the presence of visco-elasticity causes the axial velocity to decrease much 
more rapidly than in the case of Newtonian fluids. 	For injection at the pipe 
wall [ — 1 c R <0], 	the axial velocity increases as the distance along the 
axis increases. 

If we compare the axial 	velocity profiles with the parabolic profile of 
the Poiseuille flow for a solid wall pipe [Fig. It we find that for small suction 
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Axial velocity profile for suction (R= I) at the entrance of the pipe and far away from the entrance 
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at the pipe wall, the profiles bulge out at the centre of the pipe more than the 
Poiseuille parabola upto a certain distance along the axis after which they 
start flattening and become rod-like till all the fluid is sucked out. We may 
call this point as a separation point, since a transition occurs in the behaviour 
of the velocity profile at this point, although the centre line value of the 
velocity at this point is same as that for the Poiseuille flow. 

We may calculate the distance from the inlet of the pipe to the separation 
point by solving for [xlaj from [3.17] by putting A 0 on both sides of the 
equation and then making use of [4.2]. For example, in the case of R •=1, 

1000 and K= .008, we find that x/a is equal to 34.47. Thus upto this 
distance the velocity profiles bulge more than the parabolic profile, while 
beyond this distance the profiles flatten. 	For injection flows also, a similar 
phenomenon takes place. 

For example in the case of R= —1, NR e  = 1000 and K= .008, the separation 
takes place at xla= 19.24 	Thus for xla < 19.24, the velocity profiles remain 
more flattened than the parabolic profile, while beyond this distance, the 
centre line value of the velocity is more than the parabolic profile value. 

Further, we notice from [3.17], that since [xlaNRei is small, as we 
increase the suction in the range 0 < Rtc 1, the centre-line value of the 
velocity increases and the slope of the velocity profiles decreases at the wall 
while in the case of small injectieti the centre-line value of the velocity 
decreases, thereby increasing the slope of the profile at the pipe wall. This 
may also be noticed from Figs. I and II. in this respect the visco-elastic 
fluids are similar to the Newtonian fluids [Berman 4}. 

(ii) Pressure field: Fig. III gives graphically the pressure drop along the 
axis as well as along the pipe walls for small suction and injection flows of 
visco-elastic fluids for an arbitrary choice of NRe  a 1000 and K= .008. The 
graph also illustrates the x-dependence of pressure in a solid wall pipe as well 
as the x-dependence of pressure in a pipe for small injection and suction for 
Newtonian fluids. We notice that in the case of suction, the pressure drop 
along the axis is less, while the pressure along the pipe walls is more in the 
case of visco-elastic fluids, than for Newtonian fluids having the same 
entrance Reynolds number N R e . In the case of injection, the reverse is true. 
Thus for suction, the effect of visco-elasticity is to diminish the pressure drop 
along the axis thereby decreasing the velocity here, while for injection, it is 
to increase the axial drop of pressure thereby increasing the velocity at 
the axis. 

In case of suction, the effect of visco-elasticity is to increase the pressure drop 
at the wall thereby increasing the velccity at the pipe walls. The reverse is 
true for injection. 
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FIG. II 
Axial velocity profile for injection (R=1) at the entrance of the pipe and far away from it 
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FIG. III 

Pressure drop in the axial direction and along the wall in pipes 
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FLOW VISUALISATION 

5. To visualize the flow pattern, we have drawn in Fig. IV the stream. 
lines in a meridian plane starting from the inlet with the help of the stream 
function in the non-dimensional form : 

I [x, A} / 	x 	
) 	 [i2 _ 	R 	A2  

W  [x ' = —2-=—  a  ki-,-7*-Kce 	 9 4 a uo 

+.1 	1 _ r 	‘44 

6 	—36 ) R 2  { 83 	19 
A2  + 11  14 	1 

.4-,Nans, 	
270 	n 

216 	72  n  

a 	 i 8t 	1 	I A  Q v 	I 	83 12 _IL  1  14 	1  16 •1 s, )11 

	

--- A 	 --n °  -r- ‘211. 	 -- n -r — n — — -1-: —AS  
360 	5400 	10 360 	6 	26 	180 

(5.11 
when B=1, N Re  = 1000 and K=.008 

STRESSES IN THE FLOW FIELD 

6. The stress components are given by 

718 an  Tr 0 = 0, and Txx = —P 	 [6.1] 

2 v 	 N 6 v 	 [6.2] pa(—)-EpP(v 2 -1- V A --) 
aA 	 a A 

2ap av u ,., 	'a2  v 	(y
± 
 I (6 uyi r 1.6 3] 4 p p {-- • — — —

a v 
— — $ 

a ali
+ 	

a2  a A2
+ 

2 
a2  ,ox 	a2  a A 

or 

 
o p a u plo2u au ov } 	 [6.4] 

	

I rx = ----• ' a-  + 	+ .- • - 
a 6A a2 	0.2  .eA 6A 

The shearing stress on the wall rendered dimensionless with the help of 
u0  a pia is given by 

•■•• •■■/... • ■M■ 

Ta = 1  ( 1  X 	)[ 	 2 8 	R  ÷ R2  ( 26 + 24 K.%) 
iio  a pia 	2 	a NRe 	3 	, 135 	5 

-1-KR2 1_8 +R(14+64 	
r 

3 	15 	3 it)1 	
L6.5] 

In Fig. V, the shearing stress on the wall is plotted against xla for an 
arbitrary choice of K 0, 0.3 and NR e = 1000 for suction and injection flows. 
We notice that for a solid wall pipe, the shearing stress along the wall is 
constant, its modulus being equal to 4. The effect of visco-elasticity, both 
for suction and injection, is to decrease the shearing stress at the wall. But 
in both the cases, the shearing stress increases, as the axial distance along the 
wall increases, as seen from the graph. 



100 	 200 	 300 	 400 	 500 
71 ‘10J-0 	 —las- x/0 

Fla. IV 
Non Newtonian flow lines in the Meridian Plane for a pipe with porous walls R= 1 an I AT R e 1000 

0
0 

I.0 

0.8 

0.6 

0.4 

0.2 

611 



R. K. 131-1ATNAG AR 
142 

6.0 

5.0 

4.0 

2.0 

X10 

FIG. V 
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The skin friction on the wall of a cylinder of length 1 and radius a is 
given by 

n 	1 	, R 	 2 _26 + 24 K  
•—••• i[a — —}{ 8 + 	R R 2 ( 
2 	 3 	135 	5 

+ K R 2  { + R( 15 

	

..8 	24 64 )1 1 

	

3 	
+ 	K 	[6.61 

PART B 

FLOW IN AN ANNULUS 

7. We shall now study the steady laminar flow of visco-elastic fluid in 
the region bounded by two porous walls of two concentric tubes of radii 
a and b [< at We assume that the rate of fluid injection at one wall is 
equal to the rate of fluid suction at the other wall. This condition is satisfied 

if 	 b vb is a 	 [7.11 

where vb  and va  are the radial velocities at the walls of the smaller and larger 
tubes respectively, and then the axial velocity does not depend on x. 

If we choose a cylindrical system of coordinates with x-axis along the 
common axis of of the cylinders, the equations of continuity and momentum 
are same as [2.4, [2.3] and [2.4], where now A =ria. The range for the 
dimensionless parameter A is given by 

=[bla] tc A 1 	 [7.2] 

From [2.4] and [7.1] we have 

V [A] r. va - 0. 
A 

Vb 
7 [7.3} 

The equations [2.2] and [2.3] reduce to 

a2  6p ,SR lif ( 1 • / 	le 	 - 

	

3 . 	) it 	u' [ r 	1 	10 I.  R - I i - -- • —11 [7.43 
U  ± I a —a2 -X-2 U  - 4.8. 	

a2 A2 
0 1 ox a2  A 	 A 

	

p _ p v, , i A  _ [ 24 v 	2 	—!  and 	6 	 + — W 2  + 2 A ut  Jr]] 	[7.5] 6 x  = 7- le in a2 A 	A  

	

5 	a  2  

From [7.51 it is clear that 	ja2 p/6x old =-- 0 	 [7.6] 

Thus if we put 	 [a2/0 1 ] 	c 	 [7.71 
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the equation [7.41 reduces to 
t zi 

bi t  A] S d er) 	R cA 
dA 	dA A 

where 
	 KR -- S. 

The boundary conditions on u are 

u[A} =OatA==c and A =II. 	 [7.9] 

Taking S as the perturbation parameter and regarding it as small, we assume 
the following series expansion for the axial component of the velocity : 

u 	Sm 	 [7.10] 
m=o 

where 	 u_ 	i= u [e] 0 for all m. 

From [7.8] and [7.101 we have 

d 
[7 121 

d A 	- 

d , 	 d 	I 
dA 	—A 	–u,,,.. 1  , for m 1 [A  usj Rm.% " 

d A 	
[7.13] 

Integrating the equations [7.12] and [7.13] and using the boundary conditions 
[7.11], we have the following expressions for the various order approximations 
to u : 

[7.14] 
ri  C 	

1.1i u0= 2 	
L 

[7.15] 141 	— C4R(11 --:R2 )111 Ait - 21 –(1
1 –"crR 	)[i 

and 

C R IR – 21 I 	[
A

R f[R – 4] [1 – a R .4
1 

2  u2 – 	 — 	 R [1 – g R-21 2} 

16 	El sear 	 ofi 

+2 	eR-1 AR-2  

±ff it-sh 	fr  e  -aR-2  [7.161 
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In general, we have u,,, in the form 

i I {-111nI2-1  -F,m—" ` I I dA - 
A. 

 + .8„, A R  A R A2 A  i R [7.11 

where A m  and Bo, can be determined with the help of the boundary conditions 
. 

[7.11]. 	Retaining powers of S upto the second only we have, 
[I 	tie  Ai} 1 	{— 

 
U 
7= 2[2 

(1_ ,KR2 	
0.2k 

4 1- 0.R)[[1 	
R-2 — AR-9 . 1 _ a   

FfeR [1 - Ali 

, !c2  R3  [R –21 	1 – a 2

• 16—  [117 	{Lk - 1:1 aR-4} 2 R {1 _R-121 

1 - (T R  

+ 2 R D aim AR-2 _ [R - [1 a AR-4 

a  R-2 
or Re4  El - 	{[R 4][1 + 	-2R 	all 	 [7 .18] 

1 - a rt  

The average axial velocity in the annulus is given by 

a 

14- 	2 
 	Audit 	 [7.19] 

a 2  - 1 
1 

Using [7.18] in [7.19] we have, 

c 	2 [4 - R2] 	2 	 1 - a R  

	K R  
4 [2 + R][l 012  

R I-2 
1 1  – a  {Ra i' [1 	IT 8 

K 2  R 3  [R  2]{_ 	- 	- 	 R  D.  Gr ilr R - 
a R-4 h es n 212 

R 	(T R- 212 + 4  D 	e 0,R -41!. 	u 	L' 	u 	x  

) 	 0,R 

X IR [1 - al [1 4 	_ 4 D cr 21 [i — all 1 • 	 [7.20 

From [7.18] and [7.20] we can easily get the axial velocity component in 
terms of the average velocity. 
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The velocity field is now fully defined by [7.31 for the radial component 
and [7.11 for the axial component. 

The pressure field can be obtained after the integration of [7.5] A r anu L7.1.  
The radial pressure variation is given by 

p 	p 	A3  
[P v;i121 

1 \ + 4Kc2 [ 	 — 
+71  —1)-12K( I  

A' 	 A4 	ti!  

2 R - 1 	Gr 2  — 1  V 	I 	3 K 2 R4 f a.R-2 _ K R 2  • 
2 R —2 4 a l' — 1 I ([R — 212 

+ 	
4 \ aR  — 1 	R- 2 	— I 

K 2  R3   IR 	C R"  _I t  ri it2R-2] 	+1 47 2 -1 	1 .. KR 2  aR -2 .1 

4 	e x 	p 	 a R  — 1 R — 2 2 altei 

K 2 R4 [R 2] (a  R-2 _ 12 	2) 	K 	r 	 0,_ 11  
R3 LR  —

8 

2] [R 4] 
R-4 

[ 1 es AR] 

	

a R 	
1 4 

KR R-1.a 2_1 1 KR 
ER 21 0

R.-2 
 1 r1  

2 R-2 0 R -1( 	2 	(TR 

P0. 2 K2 /e 
— 	 [R 3][R 4] 	 [1 — Aft-4] 

8 

	

+ 
K 2  R3  [2 R 	

K R 
er 2  — 1)2  I 1 R-2 

2 	la p —C 	A2R-1 
8 	a R  — 1 (R e 2 	a R  — 1 

K 2  R4  [R — A2  2  R — 5  ( a_2_:1 )2 
A2R-6}1 [7.21] 

16  

Integrating [7.7] with respect to x we get the axial pressure variation in the 
form 

p fo, xi  p [x, A] 	na_\ 
[p?/23 	jk8ajk x 

1—  2 -.1 + + 02  [2 — JILL— 0 211.  
4 — R2  ( 	2 	 1 — a R  

KR 	R 2 r , _ ,7212 u2 4  D a rty} 
+ [2 + Rill O P P t L  

K 2  R 3  [R 	f 	D 	- + 2 (1 —;112  (R —2 
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1 —a R+2  I R  { 1 	R-12 R 	0,212 0,R-4 .4_ 4 	_ 	a (T R-•41} 
2 + R i cR 

 — 

- I 
1 _R - 4[ 1 a212  {R [1 + (IR } [1 - (7 21 —4 [1 +el [1 — aid 	[7.22] 

1 — 

g [Er , 	[say] 

Positive values of R [or va  and vil represent suction at the outer wall and 
injection at the inner wall, while the negative values of R represent sunction 
at the inner wall and injection at the outer wall of the annulus. 	It may be 
noted that Berman's solution [1958] for the Newtonian fluid can be obtained 
as a particular case from our solutions by putting Kim o. 

DISCUSSION OF THE RESULTS 

8. The radial component of velocity given by [7.3] varies inversely 
proportional to the radial distance. 

It is interesting to study the behaviour of the axial component of velocity 
given by [7.181. In the absence of cross flow, i.e., R = 0, the axial velocity 
becomes 

!L[A] 	[1 — A2 J  in a — [l — 	In A 
=-- [8.1] 

[I + 	rtz + — a] — 

as can be seen by taking the limit of [7.18] and [7.20] as 1? tends to zero. 
We note that [8.1] does not involve any term containing viscoelasticity. Thus 
it is same as in the case of Newtonian fluids. Hence for a solid wall annulus, 
u [Wu is same whether we consider the visco-elastic fluid or the Newtonian 
fluid. This profile is not symmetrical and the maximum velocity occurs closer 
to the inner wall of the annulus. When I? uns 1, in the case of non-Newtonian 
fluids, [injection at the inner wall and suction at the outer wall] the u-profile 
is non-symmetrical regardless of the radius ratio a of the annulus as may be 
easily seen from Fig. VI. This is in contrast to the symmetrical parabolic 
profile for R = I in the case of Newtonian fluids. 

In Fig. VI we have plotted the axial velocity profiles for various cross 
flows against a normalised radial distance parameter e [A — &VD — a] for a 
particular value 0.2 of a and .K= 0005. 

For a rapid convergence of the series solution we restrict S approximately 
to 0.1. Then if we take K .0005 we can give values to R upto 200 or so. 
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Retaining first two terms in [7.181, the points of inflexion of the axial 
velocity profile are given by 

i - a ct 	1 1 	KR 2  1 - a R-2r  
1  ___ 0 2 	2  4-  4  •' 	1.2 — Ri li R [R -- I] A R-2  

K R 2  
4 

[8.2] 

For a no .2, from the numerical evaluation of the roots of the above equation, 
it is found that there exists a critical value Rc = 1.7 above which a point of 
inflexion in the u-profile occurs in the required range .2 c A c 1. For negative 
R, inflexion points do not appear in the u-profile. When the fluid is injected 
at the outer wall and removed at the inner wall [that is for R negative} the 
velocity profiles become more asymmetrical as the cross flow velocity increases. 
For higher cross flow velocities, the maximum occurs nearer to the inner wall. 

In the case of fluid injection at the inner wall and removal at the outer 
wall, the velocity profiles become more asymmetrical as the cross flow 
velocities increase. From Fig. VI it is quite clear that for a particular case 
when a =.2 and K= .0005 the point where the maximum velocity occurs moves 
closer and closer to the outer wall of the aunulus, as the cross flow velocity 
increases. Again, we observe that the velocity profiles for R positive lie to 
the right of the profile corresponding to R = 0 and the profiles for R negative 
lie to the left of it, no matter how large R may be. 

(ii) Pressure field: 	The radial pressure variation given by [7.21] 
depends upon the direction of the cross flow since the values of this variation 
will be different for R positive and R negative. In this respect, the visco- 
elastic fluids are different from the Newtonian fluids. 

Fig. VII gives the ratio of the pressure drop along the axis with cross flow 
to that for a solid wall annulus as a function of the cross flow Reynolds 
number R, for constant average axial velecity. 	The curves are drawn 
for a = 0.1, 0.2, 0.3, for the visco-elastic fluid K en .005 as well for the 
Newtonian fluid [K= 0] for comparison. It is clear that the axial pressure 
drop when cross flow is present, is greater than that for solid wall annulus. 
This difference becomes more significant as a decreases. This is also the case 
with the Newtonian fluids as shown in the graph. We also notice that the 
effect of visco-elasticity is to increase the pressure drop. 
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