EFFECTS OF ENVIRONMENT ON THE SURFACE WAVE CHARACTERISTICS OF A DIELECTRIC-COATED CONDUCTOR*-PART I

By (MISS) GLORY JOHN AND S. K. CHATTERJEE

(Indian Institute of Science, Bangalore-560012)

Manuscript received on 12th September 1973

1. Abstract

The surface wave characteristics, such as guide wavelength, radial propagation constant (u_2) , etc., of a surface wave (ϵ_0) excited dielectric (ϵ_1) couted conductor as function of the dielectric constant (ϵ_2) of the environment in which the structure is immersed are studied. Results show (i) that surface wave solution exists as long as $\epsilon_2 < \epsilon_1$; (ii) existence of maximum of $u_2 v_2$. ϵ_2 curves for a particular value of ϵ_1 and shift of the maximum as ϵ_1 is varied; and (iii) longitudinal power flow in the environmental medium decreases with increasing ϵ_2 and the rate of decrease depends upon the value of ϵ_1 . It is concluded that the dielectric constant of the environmental medium has significant influence on the characteristics of a surface wave structure.

Key words: Surface wave characteristics. Dielectric coated aerials.

INTRODUCTION

.1.,

Several authors [1-19] have studied surface wave characteristics of electromagnetic surface wave structures immersed in air. But there seems to be no information in available published literature on the surface wave characteristics of electromagnetic structures surrounded by a medium other than air. In view of the importance of subsurface communication it has been considered worthwhile to study the effects of dielectric constant, loss tangent and other properties of the environmental medium on the surface wave properties of e.m. structures, beginning with the dielectric-coated conductor. The present report is concerned with the study of variation of the surface wave characteristics of a dielectric-coated conductor immersed in an infinitely extended lossless medium, as its dielectric constant is varied. The effects of a lossy medium will be reported later. Further work when ϵ_2 is a tensor is also under progress. It is intended to correlate the results

^{*} The project is supported by PL-480, Contract No. E-262-69 (N), dated 5th June, 1969,

Effects of Environment on the Surface Wave Characteristics-Part I 89

of these investigations with the propagation characteristics of surface wave structures immersed in natural environments such as jungle, snow or inside the earth.

FIG. 1. Dielectric coated conductor surrounded by a medium of dielectric constant ϵ_2

3. FIELD COMPONENTS

The field components for a conductor ($\sigma = \infty$) coated with a lossless dielectric ($\epsilon_1, \mu_0, \sigma = 0$) immersed in a medium ($\epsilon_2, \mu_0, \sigma = 0$) and excited in E_4 mode are (Fig. 1) in different media:

$$Medium \ 1: 0 \le \rho \le a$$

$$Ez_1 = AJ_0(u_0\rho) e^{j\omega t - \gamma z}$$

$$E\rho_1 = \frac{\gamma}{u_0} AJ_1(u_0\rho) e^{j\omega t - \gamma z}$$

$$H\phi_1 = j \frac{-k_0^2}{\omega \mu_0 u_0} AJ_1(u_0\rho) e^{j\omega t - \gamma z}$$

$$Medium \ 2: a \le \rho \le b$$

$$Ez_2 = [BJ_0(u_1\rho) + CY_0(u_1\rho)] e^{j\omega t - \gamma x}$$
(1)

 $E\rho_{2} = \frac{\gamma}{u_{1}} \left[BJ_{1} \left(u_{1}\rho \right) + CY_{1} \left(u_{1}\rho \right) \right] e^{j\omega t - \gamma z}$

$$H\phi_{2} = \frac{jk_{1}^{2}}{\omega\mu_{0}u_{1}} \left[BJ_{1}\left(u_{1}\rho\right) + CY_{1}\left(v_{1}\rho\right)\right] e^{j\omega t - \gamma z}$$
(2)

Medium 3: $p \ge b$

$$Ez_{3} = DH_{0}^{(1)} (ju_{2}\rho) e^{j\omega t - \gamma z}$$

$$E\rho_{3} = \frac{-j\gamma}{u_{2}} DH_{1}^{(1)} (ju_{2}\rho) e^{j\omega t - \gamma z}$$

$$H\phi_{3} = \frac{k_{2}^{2}}{\omega \mu_{4} u_{2}} \cdot DH_{1}^{(1)} (ju_{2}\rho) e^{j\omega t - \gamma z}$$
(3)

where, the radial propagation constants (u) in media 1, 2 and 3 respectively are related to the axial propagation constant γ as follows:

$$u_{0}^{2} = \gamma^{2} + k_{0}^{2}$$

$$u_{1}^{2} = \gamma^{2} + k_{1}^{2}$$

$$u_{1}^{2} = -(\gamma^{2} + k_{2}^{2})$$
(4)

÷.,,

where

$$k_0^2 = j\omega\mu_0\sigma$$
$$k_1^2 = \omega^2\mu_0\epsilon_1$$
$$k_2^2 = \omega^2\mu_0\epsilon_2$$

and the axial propagation constant is

$$\gamma = a + j\beta \simeq j\beta.$$

4. EXCITATION CONSTANTS

Using appropriate boundary conditions and field components in different media (2 and 3) the following relations between the excitation constants are obtained:

$$C = B \frac{J_0(u_1 a)}{Y_0(u_1 a)}$$
(5)

$$B = D \frac{u_1}{u_2} \cdot \frac{k_2^2}{jk_1^2} \cdot \frac{H_1^{(1)}(ju_2b)}{[J_1(u_1b)} \frac{H_1^{(1)}(ju_2b)}{Y_0(u_1a) - J_0(u_1a)} \frac{Y_0(u_1a)}{Y_1(u_1b)]}.$$
 (6)

Hence,

$$BB^* = DD^* \left[\frac{2u_1 \epsilon_2}{\pi u_2 \epsilon_1} \cdot \frac{Y_0(u_1 a) K_1(u_2 b)}{\{J_1(u_1 b) Y_0(u_1 a) - J_0(u_1 a) Y_1(u_1 b)\}} \right]^2 \cdot (6 a)$$

Effects of Environment on the Surface Wave Characteristics-Part I 91

5. CHARACTERISTIC EQUATION

The transverse impedances at $\rho = b$ being equal, *i.e.*,

$$\frac{Ez_2}{H\phi_2}\Big|_b = \frac{Ez_3}{H\phi_3}\Big|_b$$

the characteristic equation is

$$\frac{\epsilon_1 u_2}{\epsilon_2 u_1} \cdot \frac{K_0 (u_2 b)}{K_1 (u_2 b)} + \left[\frac{J_0 (u_1 b) Y_0 (u_1 a) - J_0 (u_1 a) Y_0 (u_1 b)}{J_1 (u_1 b) Y_0 (u_1 a) - J_0 (u_1 a) Y_1 (u_1 b)} \right] = 0$$
(7)

which is obtained by writing $H_0^{(1)}(ju_2b)$ and $H_1^{(1)}(ju_2b)$ in terms of $K_u(u_2b)$ and $K_1(u_2b)$ respectively.

By using the following relation

$$u_1^{\ 2} = \omega^2 \,\mu_0 \,(\epsilon_1 - \epsilon_2) - u_2^{\ 2} \tag{8}$$

which is obtained from eq. (4), and solving the characteristic equation (7) the radial propagation constants u_1 and u_2 are determined.

The guide wavelength $\lambda_g = 2\pi/\beta$ and the phase velocity $v_p = \omega/\beta$ are determined from the following relation between the axial and radial propagation constants when the media are assumed to be lossless.

$$\gamma = j\beta = j (u_2^2 + k_2^2)^{1/2}.$$
(9)

6. POWER FLOW IN MEDIA 2 AND 3

The longitudinal power flow in media 2 (Pz_2) and 3 (Pz_3) is calculated by using the relations

$$Pz_{2} = \frac{1}{2} Re \int_{\phi=0}^{s\pi} \int_{\rho=s}^{b} E\rho_{2}H\phi_{2}*\rho d\rho d\phi$$
(10)
$$Pz_{3} = \frac{1}{2} Re \int_{\phi=0}^{s\pi} \int_{\rho=b}^{\infty} E\rho_{3}H\phi_{3}*\rho d\rho d\phi$$
(11)

and using the functional relations (equations 5, 6) for the excitation constants.

$$Pz_{2} = \frac{\pi\beta\omega\epsilon_{1}}{2u_{1}^{2}} \cdot \frac{BB^{*}}{Y_{0}^{2}(u_{1}a)} [G(b) - G(a)]$$
(10 a)

where

$$G(r) = [J_1(u_1r) Y_0(u_1a) - J_0(u_1a) Y_1(u_1r)]^2 + [J_0(u_1r) Y_0(u_1a) - J_0(u_1a) Y_0(u_1r)]^2$$

$$-\frac{2}{u_{1}r} \left[J_{1} \left(u_{1}r \right) Y_{0} \left(u_{1}a \right) - J_{0} \left(u_{1}a \right) Y_{1} \left(u_{1}r \right) \right] \\ \times \left[J_{0} \left(u_{1}r \right) Y_{1} \left(u_{1}a \right) - J_{0} \left(u_{1}a \right) Y_{0} \left(u_{1}r \right) \right]$$
(10 b)

where, r = (a, b)

$$Pz_{3} = \frac{2\beta\omega\epsilon_{2}}{\pi u_{2}^{\frac{3}{2}}} DD^{*} b^{2} \left[K_{0}^{2} (u_{2}b) - K_{1}^{2} (u_{2}b) + \frac{2}{u_{2}b} K_{0}(u_{2}b) K_{1}(u_{2}b) \right].$$
(11 a)

In deriving the expressions for Pz_2 and Pz_3 , the following relations have been used appropriately.

$$J_{0}'(u_{1}\rho) = J_{0}(u_{1}\rho) - \frac{1}{u_{1}\rho}J_{1}(u_{1}\rho)$$

$$Y_{1}'(u_{1}\rho) = Y_{0}(u_{1}\rho) - \frac{1}{u_{1}\rho}Y_{1}(u_{1}\rho)$$

$$H_{1}^{(1)'}(ju_{2}\rho) = H_{0}^{(1)}(ju_{2}\rho) - \frac{1}{ju_{2}\rho}H_{1}^{(1)}(ju_{2}\rho)$$

$$H_{0}^{(1)}(ju_{2}b) = -\frac{2}{\pi}jK_{0}(u_{2}b)$$

$$H_{1}^{(1)}(ju_{2}b) = -\frac{2}{\pi}K_{1}(u_{2}b).$$

The total power flow in the longitudinal direction (z) is

$$P_{\mathbf{T}} = Pz_2 + Pz_3.$$

Hence, the percentage of powerflow in media 2 and 3 are respectively,

$$P_{2}^{o} = \frac{P_{z_{2}}}{P_{T}} \times 100$$

$$P_{3}^{o} = \frac{P_{z_{3}}}{P_{T}} \times 100.$$
(12)

7. CONSTANT PERCENTAGE POWER CONTOUR

The radius ρ_p of the constant percentage power (p) contour is determined from the relation

$$p = \left[1 - \frac{F(\rho_p)}{F(\rho_b)}\right] \tag{13}$$

Effects of Environment on the Surface Wave Characteristics-Part 1 93

where

$$F(\rho_{p}) = \rho_{p}^{2} \left[K_{0}^{2} (u_{2}\rho_{p}) - K_{1}^{2} (u_{2}\rho_{p}) + \frac{2}{u_{1}\rho_{p}} K_{0} (u_{2}\rho_{p}) K_{1} (u_{2}\rho_{p}) \right]$$

$$F(\rho_{b}) = \rho_{b}^{2} \left[K_{0}^{2} (u_{2}b) - K_{1}^{2} (u_{2}b) + \frac{2}{u_{1}b} K_{0} (u_{2}b) K_{1} (u_{2}b) \right]. \quad (13 a)$$

 U_2 - RADIAL PROPAGATION CONSTANT (PER METRE) IN THE III MEDIUM E_1, E_2 - DIELECTRIC CONSTANTS OF II & III MEDIA RESPECTIVELY Q - INNER CONDUCTOR RADIUS = 0.003 M D - COATING THICKNESS

FIG. 2. Variation of U1 with e1

8. NUMERICAL EVALUATION

8.1. Effect of ϵ_2 on the Radial Propagation Constant u_2

The radial propagation constant u_2 is determined from the solution of the characteristic equation and its variation with a, b, ϵ_1 and ϵ_2 is shown graphically in Figs. 2 and 2a.

8.2. Effect of ϵ_2 on the Guide Wavelength λ_g

The variation of λ_g with ϵ_2 is determined from equation (9) and the relation λ_g between and β and is shown in Fig. 3.

 $U_2 = RADIAL PROPAGATION CONSTANT (PER METRE) IN THE III MEDIUM$ $<math>E_1, E_2 = DIELECTRIC CONSTANTS OF II & III MEDIA RESPECTIVELY$ <math>a = inner conductor radius b = coating thickness = 0.00005 mFIG. 2 a. Variation of a, with e₈

Effects of Environment on the Surface Wave Characteristics-Part I 95

3 designed in a second seco

Ag - GUIDE WAVELENGTH (IN METRES)
E2 - DIELECTRIC CONSTANT OF 111 MEDIUM

FIG. 3. Vo VS E2

8.3. Effect of ϵ_2 on Constant Percentage Power Contour

The variation of the constant percentage power contour with ϵ_2 is determined from eq. (13) and is shown in Fig. 4.

8.4. Effect of ϵ_2 on P_3 %

The percentage of powerflow in medium 3 (P_3 %) with respect to the total powerflow P_T is calculated as *a* function of ϵ_2 for different values of ϵ_1 and *a* by using eq. (12) and is shown in Fig. 5.

8.5. Radial Field Spread

The values of the u_2 for different a, ϵ_1 and ϵ_2 obtained from the solution of characteristic equation enable the determination of radial field spread of components E_z and E_p . Figure 6 shows the field decay in the radial direction for $\epsilon_1 = 6.0$ and $\epsilon_2 = 3.0$ for different values of a.

I. I. Sc.-4

. *

FIG. 4

Fig. 5

9. CONCLUSIONS

The analysis leads to the following conclusions regarding the effect of the dielectric constant of the environmental medium on the surface wave characteristics of a dielectric-coated conductor excited in E_0 -mode.

(i) Surface wave solutions exist as long as $\epsilon_2 < \epsilon_1$.

FIG. 6

(ii) The radial propagation constant u_2 first increases, attains a maximum value and then decreases to a low value with increasing ϵ_2 for a particular value of ϵ_1 . The magnitude of maximum u_2 increases and shifts with increase of ϵ_1 .

Effects of Environment on the Surface Wave Characteristics—Part I 99

U2 - RADIAL PROPAGATION CONSTANT (IN METRES) IN THE III MEDIUM E1,62 - DIELECTRIC CONSTANTS OF II & III MEDIA RESPECTIVELY A - INNER CONDUCTOR RADIUS = 0.003 m b - COATING THICKNESS E - NORMALISED ELECTRIC FIELDS - EP & Ez r - RADIAL DISTANCE (IN METRES) FROM THE STRUCTURE E2 = 1 GORRESPONDS TO HARMS - GOUGAU LINE FIG. 7

E1 ----

Aq + GUIDE WAVELENGTH IN METRES.

E1, E2 - DIELECTRIC CONSTANTS OF IL & III MEDIA RESPECTIVELY.

Q - INNER CONDUCTOR RADIUS = 0.001 m

b - COATING THICKNESS = 0.00005 M.

Fro. 8. As ve en

(iii) The magnitude of u_2 decreases with increasing values of a, but it increases with increasing values of b, for any particular value of ϵ_1 and ϵ_2 (Fig. 9).

(iv) The radial field decay differs significantly from Harms-Goubau line $(\epsilon_1 = 1)$ when $\epsilon_1 > 1$.

(v) The surface wave field becomes more strongly bound than the Harms-Goubau line ($\epsilon_2 = 1$) when ϵ_3 is in the range ($1 < \epsilon_3 < \epsilon_1 = 1$) and becomes more loosely bound when ϵ_0 is in the range $(1 > \epsilon_0 > \epsilon_1 - 1)$.

FIG. 9

This is evident from Figs. 2, 2*a*, 5 and 7. The attachment of the surface wave field to the structure is independent of ϵ_1 for all ϵ_2 within the range specified (Fig. 8).

(vi) Radii for different constant percentage power contour first decreases, then remains fairly constant and finally increases with increasing ϵ_2 . This corresponds to the surface wave field being more and more strongly bound with increasing ϵ_2 , then remaining practically independent of ϵ_2 within a certain range and finally becoming more and more loosely bound with further increase of ϵ_3 . This is consistent with the observations made in (ii) and (iii).

(vii) Comparison of the characteristics of the surface wave line when $\epsilon_3 > 1$ but remains less than ϵ_1 with that of Harms-Goubau line ($\epsilon_2 = 1$) (Figs. 7 and 8) shows that the former can be said to guide more strongly bound surface wave than the latter.

It may therefore be said that by a proper selection of the combination of a, ϵ_1 and ϵ_2 , the surface wave energy can be mostly concentrated in medium 2 and hence permitting long distance communication by surface wave, if the medium (2) is of very low loss.

Further work on the effect of lossy environment is under progress and the results will be reported later.

REFERENCES

[1]	Goubau, G.	••	Surface waves and their application to transmission lines. Journal of Applied Physics, 1950, 21, 1119–1128.
[2]	Barlow, H. H. and Brown, J.		Radio Surface Waves, Chapters 1 and 2, Clarendon Press, 1962.
[3]	Wait, J. R.	••	Electromagnetic Jurface waves, Advances in Radio Research, Academic Press, 1964, 4, 157-217.
[4]		••	Excitation of surface waves on conducting stratified, dielectric clad and corrugated surfaces. Journal of Research of the National Bureau of Standards, 1957, 59, 365-377.

- [5]
- Chatterjee, S. K. and 0 Madhavan, P.
- Contractor, S. N. and [7] Chatterjee, S. K.
- [8] Zachariah, K. P. and Chatterjee, S. K.
- [9] Girija, H. M. and Chatterjee, S. K.
- [10] Chatterjee, S. K. and Chatterjee, R.
- [11]

- Guiding of electromagnetic waves by uniformly rough surfaces. I.R.E. Transactions on Antennas and Propagation, Special Supplement, 1959, AP-7, S154-S168.
 - Propagation of microwaves on a single wire-Part I. Journal of the Indian Institute of Science, 1955, 37, 200-223.
 - Propagation of microwaves on a single wire-Part II. Journal of the Indian Institute of Science, 1957, 39, 52-67.
 - Study of the Q factor of a surface wave resonator. Radio. and Electronic Engineer, 1968, 36, 111-131.
 - Investigations on corrugated surface wave line. Journal of the Indian Institute of Science, 1969, 51, 38-45.
 - Propagation of microwaves along a solid conductor embedded in three coaxial dielectrics-Part I. Journal of the Indian Institute of Science, 1956, 38, 157-171.
- Microwave resonator. Journal of the Indian Institute of Science, 1968, 50, 345-363.

Effects of Environment on the Surface Wave Characteristics-Part I 103

Study of the surface wave and radiation characteristics of Girija, H. M. and [12] cylindrical metallic, corrugated structures. Journal of the Chatterjee, S. K. Indian Institute of Science, 1972, 54, 1-25. Theoretical study of the far field of a corrugated circular [13] metal rod excited in the Eo mode. Indian Journal of Pure and Applied Physics, 1972, 10, 794-802. .. Surface wave characteristics of a cylindrical metallic corru-[14] gated structure excited in the Eo mode. Journal of the Indian Institute of Science, 1971, 53, 269-326. Theory of open microwave resonator with an axial corrugated [15] Prabhavathi, A. S. and metal rod. Journal of the Indian Institute of Science, 1971, Chatterjee, S. K. 53, 333-354. Surface wave decay coefficient of circular cylindrical corru-Glory John and [16] gated metal rod. Proceedings of the IEEE-IERE (India). Chatterjee, S. K. 1972, 10, 68-78. Surface wave and radiation characteristics of uniformly [17] Shankara, K. N. and corrugated dielectric rod excited in Eo-mode. Proceedings Chatterjee, S. K. of the Indian National Science Academy, 1973, 39, 1-38. .. Corrugated and uniform dielectric rod aerial excited in E_n-[18] mode. Journal of the Indian Institute of Science, 1972, 54, 146-180. . . . Propagation of microwaves along a solid conductor embedded [19] Chatterjee, S. K. and in three coaxial dielectrics-Part II. Journal of the Indian Chatterjee, R. Institute of Science, 1957, 39, 71-82.