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ABSTRACT

The solution to the thermal shock-induced vibration, of a right-angled isotropic
isosceles triangular plate on elastic foundation, is obtained in a closed form. Nodal
Lines are also located. Incidentally this confirms the ‘ruth of the assumed boundary
condjtions. -

In this paper vibrations of an isotropic right-angled isosceles triangular plate,
due to a thermal shock, have been investigated. The solution presented is a rigorous
one, since it is not based on assumptions of the type underlying strength of materials
analyses.

The plate is considered free of external fractions. The problem is solved in
terms of a double trigonometric series. The complete solution is derived from the
sum of two deflections—quasi-static and dynamic. The dynamic solution is obtained
by the method of Laplace transform.

The results obtained are exhibited in graphs which are found to be qualitatively
similar to those of standard works.

Location of nodal lines confirm the validity of the assumed boundally conditions.
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INTRODUCTION

Thermally induced vibrations are of interest in aireraft and machine
designs, in chemical and nuclear engineering and even in astronautical
engineering. . 5

The general theory of the transverse vibrations of a circular plate was
obtained by Kirchoff [1] who gave a full numerical discussion of the results.
The problem has also been discussed very extensively by Lord Rayleigh [2],
In the problems of non-stationary quasi-static stresses in plates, the tempe-
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rature field varies very slowly with time. But in case of sudden heating
or for temperature fields varying harmonically with time, the elastic plates
undergo some vibrations. Nowacki [3] and Boley and Weiner [4] inde-
pendently investigated vibrations of rectangular isotropic plates due to
thermal shocks. Both set of workers have exihibited results graphically
which are qualitatively similar in nature.

In this paper the author has investigated thermally induced vibration
of an isoscales right-angled triangular plate placed on elastic foundation.
Problems on thermal vibrations on elastic foundations of any plate-shape
are not found in earlier works. So the present author has chosen the
problem of a triangular plate on an elastic foundation. A traingular plate
is more irregular in shape than a rectangular or a circular plate. The
form of the deflection w, as also a closed form solution are new features in
the present authors’ work.

ANALYSIS
Let ABC be the plate (Fig. 1-Inset) bounded by the space defined by
x=a y=0 and x=p. )
The z-axis is through the thickness of the plate, and perpendicular to both
the x and y axes. The face z = + A/2 is exposed to a step heat input Q,

constant along the plate surface; the other face z = — A/2 together with
all edges are insulated.

For plates of uniform thickness, we start with the following heat
conduction equation [3], governing the deflection w, viz.,

VEWEL s (1 + Ve V2r(xny; O ow (x5 1)
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where

y == Poisson’s ratio;

i

ot = temperature co-efficient of the plate material;

7 = absolute temperature of the plate;

¢ = %‘, K, = foundation modulus;
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= = N == flexural rigidity;

Young’s modulus of the plate material;
density of the plate material;
thickness of the plate;

deflection of the plate;

Laplacian operator.

The boundary conditions for solving equation (2) do not involve deri-
vative with respect to time, and they simply play the role of parameters

only.

The temperature distribution is assumed to be of the following form,

viz.,
oo L==)
Xy t) =X 2 tmn ()G 3)
M2y dyne Nl By oaan
where
G = sin 77 sin 7Y - sin 27X gin 272, @
a a a a

The co-efficients wmy (f) are given by

16m

mn () = FREE— T &)

7(x, y; t) clearly satisfies the following boundary conditions:

T(%y; )=0 at x=g, y=0 and x=p. ©

The deflection is found as the sum of two deflections, viz.,

W= ws + wg G

where

ws == quasi-static deflection

wq = dynamic deflection.
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First we proceed to find the quasi-static deflection where we disregard
the inertia effect and assume that the temperature varies very slowly with
time; and re-write equation (2) modified as

Trwg 4+ (L + Va, T2r(x, p; 1)+ cwsg = 0. 8)

Let us assume the solution to the static deflection in the form
ws = % E Amn - G - ®
. P PR

This represents the amplitude of a stationary wave. w; evidently satisfies
the simply supported boundary conditions along the edges of the plate,
The co-efficients 4, are given by

Amn = Cap - 7 (1) 10)
where

16 ma® (1 + v) ag (n? + m?)

Con = it = o) Al + P+ b e] a1

so that the quasi-static deflection becomes

Ws =”Z; nﬂZ,'a Cru () G (12)

7 (t) is given by [3]
(=% [1 - % %4 e‘j””] 13)

2
where A == co-efficient of heat conduction; 8 == I_Zf’z.

Amn assumes a constant magnitude in a very short time, since it is
approximately invariant with time.

The solution which takes inertia into account, for the case of sudden
heating, will be referred to as a * dynamic ” solution. The equation now
to be solved is

Thwa + ewg + %’ Con (N + %’ Wg =0 (14)
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where we assume the solution to the deflection in the form

wa= 3% 5 Bun(t)-G. s

m=2, 4, .. =1 B,

The solution of equation (14) is

Byn (8) + s Bran (£) = — Clo 7 (1) (16)
where
1 N o0 O
omn = Zi%\/ oh Z | Z [ (12 + ¥+ et ] (an
W=2, L . g, g,
e
B2 [{77‘1 Z Z: (n2+m2) +a46}] Z;, (18)
ez, 4,
where
wmp = angular frequency of vibration of the plate;
¢ = %, a dimensionless parameter;
k = thermal cliffusivity:
Bi=y \/k (
To find Bpy (7), we apply Laplace transform method [3] and obtain

12 .
Bon () = C2, 2% [P—wﬂm $in wmnt

o6z Y0 1
+ . Z: JEBE - Wl

§=1, 8, o

X (cos wmnt + % /3 st wmat — e4* f”)] (19)

For maximum value of By (£), we shall have (neglecting higher powers
of 1),

96 B 12/3 3 L
¢ PO B k) mt (B - o) (20)
96 B2 wi, 96 j* g

(A eyt ( B‘+wm,.)
= 1, (say),
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Thus
[Bmn ()]s
. .0 30 —BYrizpn , 968° 1—jfn
=G 33 ~72"“A[ E Ry Z {]4/34+ Why
=1,3, .
9662 i 1 9Bty
- Jj* /34 A Wl e
=1, 3y wex
3 1
« L prra) e
=11 Bauer
As
271
wmn-—>0, r1=% E'—ﬁ) (22)
and then
682 — 3p+ -3
Brnn (e = 2053 @3
For this value of #, given by equation (22), we have,
e = 25 E2 @9
Further, p —> oo as wmn — 0, So that
Wimax | [Wmax | _
=] =[] - @9
Lt Wmn~>0 Lt B> 00

and hence [4]
Ws mae T Wd max _
R 2. (26)
We now proceed to find the nodal lines [2] and assume the general
solution in the form
W= Wg -+ wg
oo o0 o
= f:-" Y G-Dnpa ()]

M=2, 4y ae AF2. 8, 4
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where
Dipn = Amn “+ Bmn (28}‘

The lowest tone is found by putting 7 =2 and # =1 in equation (27) so
that
Dy + (— D) =0 (29

and we obtain the edges of the triangle for the nodal lines as follows. With
the condition given by equation (29),

Csin ™ sin™ (eos ™ — cos ™
w oo (2) - sin ~ sin— (ccs = — cos a) (30

which vanishes giving the locations of the nodal lines at the edges,
X = a, y=0 and x=y. 31

For the lowest tone the number of interior nodal lines parallel to the
x-axis is nil, and that parallel to the y-axis is ome.

Discussion

Dynamic systems are often subjected to the abrupt application of exci-
tation. The term “shock” generally denotes a rapid application of
excitation, having a short duration, to a sysiem.

Our analysis rests on the following assumptions [4]: the temperature
can be determined independently of the deflection of the plate, that the
deflections are small, and that the material behaves elastically at all times.
The first of these assumptions requires the omission of mechanical coupling
terms in the heat conduction equation. The second implies that the dis-
placements are sufficiently small as also the displacement gradients, so
that their products may be neglected. The third assumption imples that
neither the temperature changes nor the stresses are too large.

Equations (17) and (18) reveal that the frequency of the vibrating
plate is higher when the plate is placed on an elastic foundation than when
not,

The ratio of the greatest deflection at the cemtroid of the plate to the
greatest quasi-static deflection for the fundmental mode is plotted in Fig. 1
for various values of the parameter B,. The second abscissa scale (Labelled
k) gives the plate-thickness alongside each value of B,. Such a diagram

LI.Sc.—2
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may be used to cstimate the error committed by adopting the static solu-

tion alone [4].
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Fic. 1. Ratio of maximum dynamic to maximum quasi-static deflection (Inset :~Geometry
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FiG. 2. Deflection history of the heated plate  (The curve for B, = conot to scale).
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Non-dimensional plot of deflection against time for B; = 1, shown in
Fig. 2, indicates that the dynamic solution oscillates about the quasi-
static one. The importance of the inertia effects increases as B, becomes
smaller. In effect, they prevent deflection for B, = 0. On the other hand,
as B, — oo, the inertia forces disappear and the qusi-static solution alone-
remains [4].

The nodal-lines investigation establishes the validity of the assumed
boundary conditions. Similar inference may also be drawn from the investi-
gations of the subsequent overtones.
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