
THERMALLY INDUCED VIBRATIONS OF 
A RIGHT-ANGLED ISOTROPIC ISOSCELES 

TRIANGULAR PLATE ON ELASTIC FOUNDATION 

B. M. KARMAKAR 

(Deportmen! of Physics, GOl'ernment Engineering Co/lege, Jalpaigllri, West Bengal, India) 

Received on August 5, 1975 

ABSTRACT 

The solution to the thermal shock-induced vibration, of a right-angled isotropic 
isosceles triangular plate on elastic foundation, is obtained in a closed form. Nodal 
lines are also located. Incidentally this confirms the :ruth of the assumed boundary 
condifions. 

In this paper vibrations of an isotropic right-angled isosceles triangular plate, 
due to a thermal shock, have been investigated. The solution presented is a rigorous 
one, since it is not based on assumptions of the type underlying strength of materials 
analyses. 

The plate is considered free of external tractions. The problem is solved In 
terms of a double trigonometric series. The complete solution is derived from the 
sum of two deflections-quasi-static and dynamic. The dynamic solution is qbtained 
by the method of Laplace transform. 

The results obtained are exhibited in graphs which are found to be qualitatively 
similar to those of standard works. 

Location of nodal lines confirm the validity of the assumed boundary conditians. 

Keywords: Boundary value problems; Closed form solution; Foundation; Isotropic; 
Induced; Nodes; Plates; Shock; Thermal; Trigonometric series; Traingular; Tones; Vibration. 

INTRODUCTION 

Thermally induced vibrations are of interest in aircraft and machine 
designs, in chemical and nuclear engineering and even in astronautical 
engineering. 

The general theory of the transverse vibrations of a circul:!f plate was 
obtained by Kirchoff [1] who gave a full numerical discussion of the results. 
The problem has also been discussed very extensively by Lord Rayleigh [2]. 
In the problems of non-stationary quasi-static stresses in plates, the tempe-
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rature field varies very slowly with time. But in case of sudden heating 
or for temperature fields varying hannonically with time, the elastic plates 
undergo some vibrations. Nowacki [3] and Boley and Weiner [4] inde- 
pendently investigated vibrations of rectangular isotropic plates due to 
thermal shocks. Both set of workers have exihibited results graphically 
which are qualitatively similar in nature. 

In this paper the author has investigated thermally ind~~ced vibration 
of an isoscales right-angled triangular plate placed on elastic foundation. 
Problems on thermal vibrations on elastic Coundations of any plate-shape 
are not found in earlier works. So the present author has chosen the 
problem of a triangular plate on an elastic foundation. A traingular plate 
is more irregular in shape than a rectangular or a circular plate. The 
form of the deflection w, as also a closed form solution are new features in 
the present authors' work. 

Let ABC be the plate (Fig. 1-Inset) bounded by the space defined by 

The z-axis is through the thickness of the plate, and perpendicular to both 
the x and y axes. The face z = t h/2 is exposed to a step heat input Q, 
constant along the plate surface; the other facc z = - h/2 together with 
all edges are insulated. 

For plates of uniform thickness, we start with the following heat 
conduction equation [3], governing the deflection w, viz., 

where 

v = Poisson's ratio; 

at = temperature co-efficient of the plate material; 

T = absolute temperature of the plate; 

K c = $, KK, = foundation modulus; 
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Eh3 
N = -------i- N - flexural rigidity ; 12 ( 1  - v ) 

E = Young's modulus of the plate material; 

p = density of the plate material; 

h = thickness of the plate; 

w = deflection of the plate; 

g = Laplacian operator. 

The boundary conditions for solving equation (2) do not involve deri- 
vative with respect to time, and they simply play the role of parameters 
only. 

The temperature distribution is assumed to be of the following form, 
viz., 

The co-efficients rmn ( t )  are given by 

16m 
Tmn ( t )  = - 

vZ p1 (n2 - m2) 

7 (x, y ; t )  clearly satisfies the following boundary conditions : 

T ( X ,  y ;  t ) = O  at x = a ,  y = O  and x = y .  (6) 

The deflection is found as the sum of two deflections, viz., 

w = W s  4- Wd (7) 

where 

w, = quasi-static deflection 

wd = dynamic deflection. 



First we proceed to find the quasi-static deflection where we disregard 
the inertia effect and assume that the temperature varies very slowly with 
time; and re-write equation (2) modified as 

Let us assume the solution to the static deflection in the form 

This represenrs the amplitude of a stationary wave. ws evidently satisfies 
the simply supported boundary conditions along the edges of the plate. 
The co-efficients A,, are given by 

where 

so that the quasi-static deflection becomes 

T ( t )  is given by [3] 

where A = co-efficient of heat conduction ; @ = kl-2 
he ' 

A,,, assumes a constant magnitude in a very short time, since it is 
approximately invariant with time. 

The solution which takes inertia into account, for the case of sudden 
heating, will be referred to as a " dynamic " solution. The equation now 
to be solved is 
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where we assume the solution to the deflection in the form 

m 
wd = Z' Bmn ( t )  . G .  

ma?, 1, ... n=z. 3. ... 

The solution of equation (14) is 

where 

where 
w,, = angular frequency of vibration of the plate; 

4 = g, a dimensionless parameter; 

k = thermal diffusivity: 

TO find B,, ( t) ,  we apply Laplace transform method [3] and obtain 

For maximum value of B,, ( t ) ,  we shall have (neglecting higher powers 
of tX 



and then 

6P2 - 3P4 + 3 [Bmn (t)lmax = - -- 
2P = 

For this value of f, given by equation (22), we have, 

[.L = 3(1--!.2 
2 (24) 

Further, j3 -t w as om, + 0, so that 

aod hence [41 

W'rnv-+ W d _ m a ,  = 2. 
ws mu 

(26) 

We now proceed to find the nodal lines [2] and assume the general 
solution in the form 

W = W s + W d  
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The lowest tone is found by p u t h g  I?? = 2 and n = 1 in equation (27) so 
that 

Dn + (- D2J = 0 (29) 

and we obtain the edges of the triangle for the nodal lines as follows. With 
the condition given by equation (29), 

which vanishes giving the locations of the nodal lines at the edges, 

x = n ,  y = O  and x = y .  (3 1) 

For the lowest tone the number of ii~terior nodal lines parallel to the 
x-axis is nil, and that parallel lo the y-axis is one. 

Dynamic systems are often subjected to the abrupt application of exci- 
tation. The term " shock " generally denotes a rapid application of 
excitation, having a short duration, lo a system. 

Our analysis rests on the following assumptions [4J: the temperature 
can be determined independently of the deflection of the plate, that the 
deflections are small, and that ihe material behaves elastically at all times. 
The first of these assunlptions requires the omission of mechanical coupling 
term in the heat conduction equation. The second implies that the dis- 
placements are sufficiently small as also the displacement gradients, so 
that their products may be neglected. The third assumption imples that 
neither the temperature changes nor the stresses are too large. 

Equations (17) and (18) reveal that the frequency of the vibrating 
plate is higher when the plate is placed on an elastic foundation than when 
not. 

The ratio of the greatest deflection at the centroid of the plate to the 
greatest quasi-static deflection for the fundmental mode is plotted in Fig. 1 
for various values of the parameter B,. The second abscissa scale (Labelled 
h) gives the plate-thickness alongside each value of B,. Such a diagram 
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may be used to estimate the error comllitied by adopting the stctic solu- 
tion alone [4]. 

Fto. 1. Ratio of maximum dynamic to maximum quasi-sfdtic deflection (Inset :-Geomeiry 
of the aluminium plate). 

FIG. 2. Deflection history of the heated plate (The curve for B, = cc not to scale). 
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Non-dimensional plot of deflection against time for B, = 1, shown in 
Fig. 2, indicates that the dynamic solution oscillates about the quasi- 
static one. The importance of the inertia effects increases as B, becomes 
smaller. In effect, they prevent deflection for B, = 0. On the other hand, 
as B, - oo, the inertia forces disappear and the qusi-static solution alone- 
remains [41. 

The nodal-lines investigation establishes the validity of the assumed 
boundary conditions. Similar inference may also be drawn from the investi- 
gations of the subsequent overtones. 

The author wishes to thank Dr. B. Banerjee, Department of Mathe- 
matics, for his guidance in the preparation of this paper. 
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