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Deflection of air elliptic plate i t  iiii clamped edges under stationary temperature 
distriblrrioii and siibjecred lo a miform Ioad has been obtained in terins of Mathiell 
fio~ctiorls of the first kind of order zero. 
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The problems of determination of thermal stresses and deflections in 
plates have got wide practical applications in air-craft and machine struc- 
tures. Forray and Newmann [I] have obtained the thermal stresses in 
circular plate with different edge conditions for a particular temperature 
distribution. Forray and Zaid [2] have introduced stress functions 
and obtained the stresses. Quasi-static thermal deflection in a solid circular 
plate in the axisynmetric case has been investigated by Sarkar, S. K. [3]. 

In this paper the deflection of z heated elliptic plate with clamped 
edges under stationary temperature distribution and subjected t o  uniform 
load has been obtained in terms of Mathieu functions of the first kind of 
order zero and wirh usual limiting process the corresponding rtsult for a 
circular plate has been deduced. 

w = Deflection in the normal direction of the plate ; 
v = Poisson's ratio ; 

at = co-efficient of thermal expansion ; 

El1 D = --------- 12 (I - v7 = flexual rigidity; 

E = Young's modulus ; 
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2d = lnterfocal distance of the elh2trc plate; 
p - Intensity of load per unlt area; 

~ ~ ( 0 1 ,  A,'0' = Fourier co-elhclents in Lhe expanslon of C, (7,  - q) 

= two-dimensional Laplacian operator in ellipitic 
co-ordinates, 

(c, 7 )  = elliptic co-ordinates ; 

C,,, C,, C,, C,, K = constants. 

Governing equation.-An elliptic plate of thicikness h is taken with the 
centre of the plate in the middle surface as origin and z-axis downwards. 

The equilibrium equation for the deflection of a heated plate is siven 

by 

Analysis.-If tliere is no source of hcat inside the plate the lemperatuue 
distribution given by 

T' (x, y, z) = To (x, y )  + zT (x  y), (a 
satisties the following difl'erenlial equations (Nouacki 151 p. 439) 

in uhich 8, and 2, denote ten:~eratures at the lowr  and upper n;edia of 
the plate respeciively. 

if 8, - 0, - constant, the general solulion of ecluatlon (4) m elliptic co- 
ordinates defined by x + iy = d cosh (5 $- i7) is given by 

in which thc summation of terms is the complinientary function and A1/A, 
is the particular integral, Ce,, (c, - q)  and Ce,, (7, - q) being the modi- 



fied Mathieu function and ordinary Mathieu function of the first kind of 
order 2m, and 

h' d' 
y = -- (6'1 

4 

While solving a problem of bending of a plate with elliptic hole, instead of 
taking Mathieu functions of all orders, taking a single Mathieu function 
of the second order, Naghdi [6] has shown that the results are satisfactory 
for larger elliptic hole. In this present problem also, similar approximation 
is made by taking Mathieu functions of order zero. Therefore (5) reduces 

~f T = K on 8 = fe then (9) results into 

Mulriplylng the equation (10) by Ce, (7, - q) and integrating with respect 
to 9 from 0 to 2z and using orthogonality relation and normalisation (Macla- 
chlan [4] one gets 

Using T((, q )  given by (9). equation (1) can be written as 

The complementary of equation (12) is given by 

w = C, + C, (cosh 2E -t cos 2q). 
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Now the particular integral of 

o a u = -E( xa + ya) - (1 + v )  at c&e0 (6 - q)Ceo (7, - q) 4 0  

(14) 

is necessarily the particular solution of (12). Clearly the 
particular integral is given by 

Therefore the general solution of equation (12) is given by 

UI = Cl + C, (cosh 21: + cos 2 q )  + $& cosh4 I: cos4 7 

+ sinh2 Z sin* 7) - Co Ce, (6, - q) Ce, (7, - p). 

(16) 

If the outer boundary of the plate f = go be clamped, then 

Multiplying the two equations obtained by introducing the above boun- 
dary conditions into (16) by Ce, (7, - q) and integrating with respect to 
7 from 0 to 27r and using orthogonality relation and normalisation, one gets 



Thus the deflection w ( f .  q )  is completely determined 

Limitiizg cuse.-Jn the limiting case when d-+0, < + co, the ellipse 
degerrerates to a c;rcle or radius a (say). In that case 

where 

Po' = c% (0. - y) Ce u ( 7112, - q)/A,(") 

Therefore equation (16) reduces to 

which gives the corresponding thermal deflection for a clamped circular 
plate. 
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Numerical calcu1atioi1.-Using the data 5 = 1, q = w / 2 ,  E ,  = 3, d = 1, 
h = 1, p = 10, J?? = 2 X 1012, at = 1.2 X lo-", v = 0 .3 ,  E = 0.05, one 
sets from equation (16) 

8, - 8, = 200 (in absolute degrees) 

K = 600 (in absolute degrees) 

low - = 0.018 (approx.). 
d 
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