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ABSTRACT

It has been pointed out by Landau, Spitzer et al and others that when the
charged particles of multicomponent assembly interact according to comparatively
long range Coulomb forces, small random deflections of the particles are very
effective in the evolution of the distribution function. Such small random devia-
tions are incorporated into the kinetic equation-by using Fokker-Planck formalism.
As has been done earlier in paper 1 (Devanathan, Uberoi and Bhatnagar,
3. Indian Inst. Sci., 47, 106, 1965), the distribution functions are expanded in terms
ofthe Generalized Hermite Polynomials and following Grad, consistent set of
transport equations deduced. It is found that the Fokker-Planck term enhances
the relaxation times of all the physical variables and thereby decreases the electrical
conductivity. Apart from the anisotropy due to the magnetic field among the
stresses, F-P terms introduce an additional bulk viscosity term. Further they
introduce intense anisotropy *among heat-flux tensors. Modified expressions for
viscosity, heat conductivity and the electrical conductivity bave bezn deduced.

1. INTRODUCTION

In a recent paper Devanathan, Uberoi and Bhatnagar', referred to as

I in sequel, have studied the transport processes in a plasma based on the
procedure developed by Grad®. The basic kinetic equations describing
the assembly are the modified Maxwell-Boltzmann equations. The necessary
modification is the replacing of the complicated collision integrals by simple,
physically significant, tractable collision models. This was first developed by
Bhatnagar, Gross and Krook® for a single component assembly and
¢xtended to multicomponent assemblies of charged particles by Bhatnagar®,
Bhatnagar and Devanathan®. These collision models have been extensively
studied and found to take account of binary encounters completely and as
elfectively as the Maxwell-Boltzmann collision integral. However, these types
of binary collisions are well defined only when the duration of collision
between two particles is much smaller than the time of free flight of particles
b;twccn successive encounters. But whenever the plasma is of sufficiently
high density and is hot as in the case of stellar interiors or fusion reactors
only weak multiple collisions take place apart from occasional strong binary
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collisions. Moreover, in plasmas, the charged particles interact according 1o
Coulomb law which is comparatively long ranged. Hence, even at moderate
temperatures many charged particles undergo simultaneous weak interactions.
Thus, for plasmas, one must take account of these interactions, ag in
Brownian motion. The corresponding change in the distribution function hag
been mdependently discovered in various contexts, by many investigators,
cspec:allv Fokker®, Planck’, Einstein®, Smouloucheskii’, Chandrasekhar'® apd
Landau'’. An elegent expression for this was obtained from the Boltzmann
equation ilsclf by Allis'? and Bhatnagar?’, 1In principle, the collisions are
separated into weak collisions and strong collisions whenever the impact
parameter is greater than or less than a suitable critical value b,.. The effect
of all mrnultamous weak collisions 1s to produce a random fluctuation A.g in
the velocity £ of any particle. Then, the Bolizmann tquation is expanded in
averages and correlations of the random variable AE, The critical impact
parameter b, for varlous types of encounters has been discussed in detail by
Spitzer and Harm' and Cohen, Spitzer and McRoutly”®. The resulting
equation is the celebrated Fokker-Planck equation:
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Here we have used the notations of /. The symbol < > g stands for the average
of the deflection in a-type particle due to all encounters with B8-type particles.
For the subsequent working we start with [1.1] as the basic kinetic equation,

Langevin' has pomled out that the averages <« A EE::-ﬁ and the
correlations < A E,.,_ AZ, > g should be evaluated in terms of the moments
of distribution functions themselves and should not be taken as constants.
Hence we have evaluated these exact expressions from the actual dynamics of
collision following Jeans'’, after removing a small error in Jeans treatment.
The details of it are given in Appendix L.

Following the procedure of Grad. in section 2 we establish the consistent
set of transport equations and in section 3 we evaluate all the transport
coefficients like diffusion coefficient, electrical conductivity, viscosity and heat
conductivity coefficients, by interpreting the appropriate transport equations.

2. DERIVATION OF TRANSPORT EQUATIONS

In order to derive the transport equations governed by the kinetic
equation, we introduce, following I, the non-dimensional velocity v, and
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the non-dimensional distribution Function g, given by

m 1/2
V, - (KTE ) £ [2.1]
1 KT:“: 3/2
and £a _Na( mg ) fa.r [2.2]

where N, is the number density and 7,,, the temperature of the a-th
component and X is the Boltzmann constant. The non-dimensional distribu-
rion functions satisfy the kinetic equations,
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In writiting the above equation, we have denoted by v;, and T, the non-
dimensional cross velocities and temperatures denoting the average velocity
and temperature of scattered a-type of particles due to their encounter with
0-type particles. Further, we have as usual, terminated the Fokker-Planck
expressions at the second term, taking into account the effects of only
diffusion and dispersion terms as for most of the investigations these two
terms are sufficient. The detailed expressions for the averages < A &>,
and < A €, A §,;>5 are given in the Appendix 1. Following I, we expand
the non-dimensional distribution function g, in the form

ga (Ve 1, ) = (va) = a (r, ) H™ (v,), [2.6]

n==

Where o (v, ) is the non-dimensional Maxwell’s distribution function. By the
orthogonality property of the generalized Hermite Polynomials H™ (v.), we have

ag'(r,t) = (1/X™) [H" (v2) gad v, [2.7]
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where X" = f w (Vq) [H & ("u)]z dvg

=m ! nln!, [2.8]

where ny, ny, n; are the number of suffixes of direction 1, 2 and 3 contained
in the set (n), with ny+ny+n3=n. From the kinetic equations [2.3], the
equations governing the coefficients a” can be obtained by multip’iyin
throughout by H'(v,) and integrating. In Cartesian tensor producgt

notation, we have
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the primes denoting the non-dimensional velocities after collision.

We note the following points about the set of moment equations (2.9).
The operator D™ introduces coupling between the convective derivatives of
2*71 with lower order moments. Further, the Fokker-Planck terms through
j-m:m preserve the non-linear collisional coupling in its complete generality.
Hence, to obtain a complete set of transport equations, a suitable cut-off is
necessary. Following 7, and Grad?, we terminate the expansion at z 3.
This adequately takes into account the effects of mean velocity, stresses and
the heat flux. Again, on the same lines of Grad, we restrict the collisional
terms to / + m = 3, thereby neglecting the intense interactions arising out of
heat flux and stresses. It has been found justifiable to do so for most of the
physical situations encountered, including shock phenomena®, {7] With the
help of the above assumptions, we get a consistent system of equations.
Since a™ are nothing but linear combinations of the physical moments,
converting back we obtain the following transport equations :
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2 2 P

The lengthy expressions Azapmrs Bsars and Cgg,., are glven in the Appendix II.
The constants Kj, and Lz, arise from the diffusion and dispersion parts of

the Fokker-Planck terms and are given by .
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where b, and b, are the upper and lower cut-offs for the impact parameter
during weak interactions between a and & type particles. [refcr 7].

The following important points should be noted regarding the abova
transport equations: The momentum equatiors are not affected by the
dispersion part of the Fokker-Planck terms, but are directly coupled to the
stresses as well as the heat flux vectors. The stress equations are not coupled
directly with heat-flux tensors. The heat-flux tensors are coupled directly
with all the lower order moments. ‘Consequently, even in the absence of
magnetic field, we expect intense anisotropy in the medium,.

3. STATIONARY NON-EQUILIBRIUM PROCESSES

In this section, we shall consider some simple stationary non-equilibrium
processes to obtain explicit expressions for electrical conductivity, viscosity,
heat conductivity and diffusitivity of the assembly, following the procedure
of I.

In order to find the expression for zlectrical conductivity and diffusivity
terms, we consider Lorentz problem. Expressing the higher order moments in
terms of the equivalent lower order moments, the momentum equation
reduces to
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The right hand side of the above equation can be rewritten as

b2 { Ns (6?&“ =+ Efkaa Caa) (Haar - uanr)}
mg Tia

3 3

-~ N
Ez""ﬁ D,, (uﬁﬁr - “aar): [3'2]
p Mg



88 C. DEVANATHAN, M. R. RAGHAVACHAR AND RAM BABuU
32
where Djg = ﬁa; = _3"'7(aa Csa »

from which we conclude that the contribution of the Fokker-Planck term to
the momentum equation for this simple case is to increase the number of
collisions per unit volume per unit mass as expected. Consequently, for the
Lorentz problem, the current density expressions remain unaltered and are
given by [5.1] = [5.3] of 7 excepting that

gff‘-‘-‘— is replaced by Gf&“ :kaa Coa »
O 3a

e Ko = T (5 ) \/ & 3.3

Hence, the electrical conductivity ¢ and the generalized diffusivities ¢, and
cg are given by
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and Dy =N, Dy + NgDg.,. [3.8]

From [3.4] we conclude that due to the diffusive effects of Fokker-Planck
term, the electrical conductivity decreases, this is natural since the effect is to
increase the number of collisions.

Concentrating on the gradient dependence of the stresses and rewriting
the equations [2.16] and [2.17], we obtain,
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For simplicity of argument, e have chosen the z-axis along the direction of
the magnetic field. As in /, we replace the heat-flux tensors by their

equivalent moments and solving [3.9] and [3.10] we obtain
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. 2K
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with similar expressions for P,,,.

The following important points have to be noticed regarding the viscosity
matrices : The Fokker-Planck terms introduce very high anisotropy even in
the absence of magnetic field and the magnitudes of the viscosity coefficients
in the principal directions are decreased. This is natural since the Fokker-
Planck terms increase the collisions, as we have already pointed out. Further
the diagonal terms of the stress tensor depend also on the dilatation term
(ea11 + €a2: + €433) apart from other couplings. From this we conclude that
one of the functions of Fokker-Planck terms is to increase the bulk viscosity
of the plasma apart from introducing the anisotropy. Along the direction of
the magnetic field, the main viscosity term is given by

K Tua (| __2Me ) [3.34]
Mg Te e +2 M,

Thus, the viscosity is decreased by a fuctor of

(1-=255)

by the Fokker-Planck terms. As in /, the stresses in the plane contaiqing the
magnetic field are coupled by the magnetic field and the viscosity is given by
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-The effect of the magnetic field and the Fokker-Planck terms are self—?vidcnt.
The viscosity co-efficients corresponding to P,y and Pgy and Py, are given by
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and
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The anisotropy is evident even in the absence of the magnetic field.
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Proceeding in a similar fashion, for the heat flux vector, we obtain,
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As in the case of stresses, both the magnetic field and the Fokker-Planck
terms introduce anisotropy, even though the intense coupling is mainly due to
netic field. The coefficient of heat conductivity along the magnetic field is

mag
5
_5_1’4; Tam[l _ Ta__(](u e 2‘]::.)_"‘ ‘Iu. Ku___] [3’46]
Mg Ta (Tn + Ko} 74 +K¢+J¢_)
while transverse to the magnetic field, it is
51{2 Taq Tg (Ju.+K¢ +J¢)+Wi
; g | » (3.47]
myTe (70 + Ko +J,)" + 0

Two points are worthy of note : (i) The magnitudes of these coefficients are
reduced mainly by the Fokker-Planck terms and the magnetic field. (ii) The
ratio of the coefficients of heat conductivity and viscosity along the magnetic
field is no longer a constant, as in the pure collisional case. This suggests
that pure ideal gas approximation and adiabatic approximations may not be
strictly valid for the high density, high temperature plasmas, or gases under
long-range forces of interaction.

APPENDIX I

Following Jeans'’, we shall derive the change in the molecular velocity
Eu of the particle m; due to its interaction with a particle m; due to is
Interaction with a pamcle ms moving with velocity 55.

Consider relative motion of mj; with respect to m, situated at O. Let
the plane of interaction make an angle ¢ with the fixed plane XOG and let 0
be the angle through which the relative velocity gﬁu=£6“£¢ turns after
interaction. Let X, Y, Z, G, G’ be the points where the coordinate axes and
the relative velocities before and afier collision intersect the unit sphere with
ceéntre at the origin. Denoting by prime the velocities after collision, from
conservation of momentum, we have

- -+ e -+,
My Ea + M3 Eﬁ“ma E:l.'l'mﬂg.ﬁ- [[-1]

Also, from the spherical triange XGG',
cos XG' = cos XG cos GG’ + sin XG sin GG' cos ZXGG',

or

§ax— Eax=(£a, ~ £ux) 0526 + (g + 82as)"? sin2 6 cos c. [1.2]
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Eliminating £5. between [I.1] and [1.2], we get
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Similarly, from the spherical triangle YGG', we have
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where w, is the angle between the planes XOG and YOG. From the spherical
triangle XYG, we have
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Eliminating £5, and w, from [L1], [1.4] and [1.5] we get

A gu.y . f:-;y o gﬂ-}'

- [(l+c0523)(§oy-fu)

My +Ms

" sin2 8 ~
(g%n o g%u.x)uz

{ — B5ax 83ay COS € + 85a &bay sin 5}}: [1-6]

Similarly,
A gar" g:‘u_ &u.z

o il [(l +¢c0s28) (£5,— £a:)

mey +Mm;y

- sin 2 6
(gin e g%a.x)”z

{gﬂa.x €50z COS € + £5a &5ay SIN E} ] o [17]

* Jeans has taken minus sign instead of +ve sign in the last factor, This alters the expressions
for a{ny and agn‘ .
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APPENDIX II
Asarrr = (16Kﬁu/3scgﬂ-) [{ - 14 (]3 C‘i + locg) Ci UHyar -t 42 C; uﬁﬁr} c%n‘.

—(107c% +182c% ¢5 + 70¢3) (Sarrr— 32 tiga,) — 5 ¢ (S5, — 3¢ usa,)
+ (139 ¢4 +224 6% ¢ + 70¢3) (Pa,y — €2) ss,

~(27¢2 + 42 cZe3) (Ps,r =3l ttgar+ = o b 3 ¢q (Saur — €3 Ugar)

+ (11 cx + 14*'-': c3) (Su.ﬁr — €3 Ugqr) = 3¢, (Pan — ‘-'a.) Ussr

+ (11cd +14¢5 c5) (P = €3) tca, + (2202 + 28¢5 c5) Paiv g,

+6.¢3 Poiptiaait ] + (32 Loa/35 oo )14 5 {(5 €3 + 18 €2) ttaa, — 13 ¢Z us,}
~23¢2(Ssrr ~ 3 €3 uss,) + (Ol ¢g + 114¢2) (Sarrr — 3 ¢4 gar)

+(91 ¢} +160¢2) (Py,, — €3) taqr — (182 ¢ + 251 ¢2) (P, — €2) ugs,

+ ?{(7 Cg + 18 ci) (Sa.fir = C: “a.u.r) — 11 CE (Sanr = c§ “aar)

+(7¢3 +18¢2) (Pyiy— ¢3) tigar — 11 ¢4 (Poyi ~ c2) usar

+22¢2 Pyyp thoai— (1465 +36¢3) Posttay } ]

Bﬁa.rr: = (16 Kﬁn /105 cga)[ld' C: czﬁa. {3 Ci (Hﬁﬁs = un.u.S) - 10 cgu uaus}
— 30 (Spops = Spuss) — 182 ¢3 2 Sasss + 9 ¢4 €3 (vzas + Usss)
+33cha i s+ (19¢2 + 28 ¢2¢3) (Prss — €2) usss

"'(5 C: + 11 CE C%) (Pa_u = Cg) Usas T }4:{3 C: (Sﬁl'is = Cg uﬁﬁs)

+ (ll Cﬂ + 14 C, Ca) (Sn'.l'f-'l - C: Ha_n,) + 6 Bir C: (Sau'i: s Cg Hﬁﬁs)
+(288¢c2 +504c2¢3 +2108%) 81, (Saiis — €2 taas)
P 3C:(Pa_ﬁ — C:) Uzzs — (i | C: + 14 ‘-‘: Cg) (Pﬁﬁs - CE) Haas

+{(70c3 +196 cZes +120¢2) 8, (Puy— c2)uss,s
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—(22¢a +28¢5¢3) 84y (Poii— €3) toas + (22 ¢4 +28 ¢ €3) Pays s,
+ 6¢2 Prigtigar + (24002 +392¢2¢} +140¢3) 8, Py, uss;

—(44.¢g +56¢; ¢5) 81 Pyis tgai} ]
+ (32 L3af105 ¢5.) [14 5o {(18 €2 + 5 ¢3) ugas — 13 2 ugys}
+(7¢5 +18¢2) (Sasss — 3 €5 Ugas) — 11 €5 (Spess — 3 €5 uz5s)
+ (7 c§ + 40 c:) (Pau = c§) Ugas — (14 c§ +47¢3) (Poss - Ci) Usas
+(7¢3 4 18¢3) (Psys = €3) ttaas = 11 €3 (Pyss — €3) uzas
+ ? {(7c3 +18¢7) (Saits — €3 Uaas) — V1 €5 (Sous — €3 usss)
+ (252 c3 +228¢5) 8i; (Saus — €a Uaas) — 36 ¢4 81 (S — €5 43.)
+22¢2 Pyistigni — (14 c% +36¢2) Pats tgas
+(84 c5 + 120 ¢7) 8;, (Psss — €3) Ugas
— (168 ¢c3 +204c2)8;, (Pyys— c2) usss +(240 ¢S + 168 ¢3) 8i, Pyis tigas

— (336 Cg ~§- 408 Ci) Sfr P:u': “68!'}]

Caarss = — (32 K3a/105 ¢ ) — 3¢ Sprer + (105 ¢§ + 252 ¢2 ¢} + 144 ¢2) S, vee
+(11eg +14¢2¢3) (Poastigar + P33 Ugaz + Pyiz2Ugas)
—(60cs + 98¢z ch +35¢3) (Paastss, + Posi Usss + Parztizas)]
+ (64 L5./35¢5.) [(42 ¢} +48¢2) S,05e — 62 Sy0ss
+ (14¢c5 +20¢2) (Ps23 ttgay + Pyt tigas + P52 Uggs)

— (28¢5 + 34 c2) (Poysuss1 + Pasitinsy + Parz uzss))-
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