TRANSPORT PROCESSES
 IN A MULTICOMPONENT ASSEMBLY II: FOKKER-PLANCK FORMALISM

By C. Devanathan, M. R. Raghavachar and Ram Babu
(Department of Applied Mathematics, Indian Institute of Science, Bangalore)

(Received on March 4, 1966)

Abstract

It has been pointed out by Landau, Spitzer et al and others that when the charged particles of multicomponent assembly interact according to comparatively long range Coulomb forces, small random deflections of the particles are very effective in the evolution of the distribution function. Such small random deviations are incorporated into the kinetic equation-by using Fokker-Planck formalism. As has been done earlier in paper 1 (Devanathan, Uberoi and Bhatnagar, J. Indian Inst. Sci., 47, 106, 1965), the distribution functions are expanded in terms of the Generalized Hermite Polynomials and following Grad, consistent set of transport equations deduced. It is found that the Fokker-Planck term enhances the relaxation times of all the physical variables and thereby decreases the electrical conductivity. Apart from the anisotropy due to the magnetic field among the stresses, F-P terms introduce an additional bulk viscosity term. Further they introduce intense anisotropy "among heat-flux tensors. Modified expressions for viscosity, heat conductivity and the electrical conductivity have been deduced.

1. Introduction

In a recent paper Devanathan, Uberoi and Bhatnagar ${ }^{1}$, referred to as I in sequel, have studied the transport processes in a plasma based on the procedure developed by Grad${ }^{2}$. The basic kinetic equations describing the assembly are the modified Maxwell-Boltzmann equations. The necessary modification is the replacing of the complicated collision integrals by simple, physically significant, tractable collision models. This was first developed by Bhatnayar, Gross and Krook 3 for a single component assembly and extended to multicomponent assemblies of charged particles by Bhatnagar ${ }^{4}$, Bhatnagar and Devanathan ${ }^{5}$. These collision models have been extensively studied and found to take account of binary encounters completely and as effectively as the Maxwell-Boltzmann collision integral. However, these types of binary collisions are well defined only when the duration of collision between two particles is much smaller than the time of free flight of particles between successive encounters. But whenever the plasma is of sufficiently high density and is hot as in the case of stellar interiors or fusion reactors only weak multiple collisions take place apart from occasional strong binary
collisions. Moreover, in plasmas, the charged particles interact according to Coulomb law which is comparatively long ranged. Hence, even at moderate temperatures many charged particles undergo sinultaneous weak interactions. Thus, for plasmas, one must take account of these interactions, as in Brownian motion. The corresponding change in the distribution function has been independently discovered in various contexts, by many investigators, especially Fokker ${ }^{6}$, Planck ${ }^{7}$, Einstein ${ }^{8}$, Smouloucheskii ${ }^{9}$, Chandrasekhar ${ }^{10}$ and Landau ${ }^{11}$. An elegent expression for this was obtained from the Boltzmann equation itself by Allis ${ }^{12}$ and Bhatnagar ${ }^{13}$. In principle, the collisions are separated into weak collisions and strong collisions whenever the impact parameter is greater than or less than a suitable critical value b_{c}. The effect of all simultanious weak collisions is to produce a random fluctuation $\Delta \vec{\xi}$ in the velocity $\vec{\varepsilon}$ of any particle. Then, the Bolizmann equation is expanded in averages and correlations of the random variable $\Delta \vec{\xi}$. The critical impact parameter b_{c} for various types of encounters has been discussed in detail by Spitzer and Härm ${ }^{14}$ and Cohen, Spitzer and McRoutly ${ }^{15}$. The resulting equation is the celebrated Fokker-Planck equation:

$$
\begin{align*}
\frac{\partial f_{a}}{\partial t} & +\xi_{a i} \frac{\partial f_{a}}{\partial x_{i}}+\frac{F_{a i}}{m_{a}} \frac{\partial f_{a}}{\partial \xi_{a i}} \\
- & \sum_{\beta=1}^{N}\left\{\frac{N_{\beta}}{\sigma_{\beta a}}\left(N_{a} \Phi_{\beta a}-f_{a}\right)-\frac{\partial}{\partial \xi_{a i}}\left(f_{a}<\Delta \xi_{a i}>_{\beta}\right)\right. \\
& \left.+\frac{1}{2} \cdot \frac{\partial^{2}}{\partial \xi_{a i} \partial \xi_{a j}}\left(f_{a}<\Delta \xi_{a i} \Delta \xi_{a j}>_{\beta}\right)-\cdots\right\} \tag{1.1}
\end{align*}
$$

Here we have used the notations of I. The symbol $<>_{\beta}$ stands for the average of the deflection in α-type particle due to all encounters with β-type particles. For the subsequent working we start with [1.1] as the basic kinetic equation.

Langevin ${ }^{16}$ has pointed out that the averages $<\Delta \vec{\xi}_{a}>_{\beta}$ and the correlations $<\Delta \vec{\xi}_{\alpha} \Delta \vec{\xi}_{\alpha}>_{\beta}$ should be evaluated in terms of the moments of distribution functions themselves and should not be taken as constants. Hence we have evaluated these exact expressions from the actual dynamics of collision following Jeans ${ }^{17}$, after removing a small error in Jeans treatment. The details of it are given in Appendix I.

Following the procedure of Grad. in section 2 we establish the consistent set of transport equations and in section 3 we evaluate all the transport coetficients like diffusion coefficient, electrical conductivity, viscosity and heat conductivity coefficients, by interpreting the appropriate transport equations.

2. Derivation of Transport Equations

In order to derive the transport equations governed by the kinetic equation, we introduce, following I, the non-dimensional velocity v_{a} and
the non-dimensional distribution function g_{α} given by
and

$$
\begin{align*}
& \mathbf{v}_{\alpha}=\left(\frac{m_{\alpha}}{K T_{a \alpha}}\right)^{1 / 2} \vec{\xi}_{\alpha} \tag{2.1}\\
& g_{\alpha}=\frac{1}{N_{\alpha}}\left(\frac{K T_{a \alpha}}{m_{\alpha}}\right)^{3 / 2} f_{\alpha} \tag{2.2}
\end{align*}
$$

where N_{a} is the number density and $T_{a a}$, the temperature of the α-th component and K is the Boltzmann constant. The non-dimensional distribution functions satisfy the kinetic equations,

$$
\begin{align*}
& \frac{\partial g_{a}}{\partial t}+c_{a} v_{a i} \frac{\partial g_{a}}{\partial x_{i}}+\frac{1}{c_{\alpha} m_{a}}\left(F_{a i}+e_{\alpha} E_{i}\right) \\
& +\frac{e_{\alpha}}{c m_{\alpha}} \epsilon_{i j k} v_{\alpha j} H_{k} \frac{\partial g_{\alpha}}{\partial v_{\alpha i}}+g_{a}\left\{\left(\frac{\partial}{\partial t}+c_{a} v_{\alpha i} \frac{\partial}{\partial x_{i}}\right)\left(\log \frac{N_{\alpha}}{c_{\alpha}^{3}}\right)\right\} \\
& =\sum_{\delta}\left[\frac{N_{\delta}}{\sigma_{\delta \alpha}}\left(\Psi_{\delta \alpha}-g_{a}\right)-\frac{1}{c_{\alpha}} \cdot \frac{\partial}{\partial v_{a i}}\left(g_{\alpha}<\Delta \xi_{a i}>{ }_{\delta}\right)\right. \\
& \left.+\frac{1}{2 c_{\alpha}^{2}} \cdot \frac{\lambda^{g}}{\partial v_{\alpha i} \partial v_{\alpha j}}\left(g_{\alpha}<\Delta \xi_{\alpha i} \Delta \xi_{\alpha j}>\delta\right)\right] \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
c_{a}=\left(\frac{K T_{a a}}{m_{a}}\right)^{1 / 2} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{\delta \alpha}=\left(\frac{T_{a \alpha}}{2 \pi T_{\delta \alpha}}\right)^{3 / 2} \exp \left[-\frac{T_{a \alpha}}{2 T_{\delta \alpha}}\left(\mathbf{v}_{\alpha}-\mathbf{v}_{\delta \alpha}\right)^{2}\right] \tag{2.5}
\end{equation*}
$$

In writiting the above equation, we have denoted by $\mathbf{v}_{\delta \alpha}$ and $T_{\delta \alpha}$ the nondimensional cross velocities and temperatures denoting the average velocity and temperature of scattered α-type of particles due to their encounter with δ-type particles. Further, we have as usual, terminated the Fokker-Planck expressions at the second term, taking into account the effects of only diffusion and dispersion terms as for most of the investigations these two terms are sufficient. The detailed expressions for the averages $<\Delta \xi_{a i}>_{\delta}$ and $<\Delta \xi_{a l} \Delta \xi_{a j}>_{\delta}$ are given in the Appendix I. Following I, we expand the non-dimensional distribution function g_{a} in the form

$$
\begin{equation*}
g_{a}\left(\mathrm{v}_{\alpha}, \mathbf{r}, t\right)=\omega\left(\mathrm{v}_{\alpha}\right) \sum_{n=0}^{\infty} a_{\alpha}^{(n)}(\mathrm{r}, t) H^{(n)}\left(\mathrm{v}_{\alpha}\right), \tag{2.6}
\end{equation*}
$$

where $\omega\left(\mathbf{v}_{a}\right)$ is the non-dimensional Maxwell's distribution function. By the orthogonality property of the generalized Hermite Polynomials $H^{(n)}\left(\mathbf{v}_{a}\right)$, we have

$$
\begin{equation*}
a_{a}^{(n)}(\mathrm{r}, t)=\left(1 / X^{(n)}\right) \int H^{(n)}\left(\mathbf{v}_{a}\right) g_{a} d \mathbf{v}_{a}, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
X^{(n)} & =\int \omega\left(v_{a}\right)\left[H^{(n)}\left(v_{a}\right)\right]^{2} d \mathbf{v}_{a} \\
& =n_{1}!n_{2}!n_{3}! \tag{2.8}
\end{align*}
$$

where n_{1}, n_{2}, n_{3} are the number of suffixes of direction 1,2 and 3 contained in the set (n), with $n_{1}+n_{2}+n_{3}=n$. From the kinetic equations [2.3], the equations governing the coefficients $a_{a}^{(n)}$ can be obtained by multiplying throughout by $H^{(n)}\left(v_{a}\right)$ and integrating. In Cartesian tensor product notation, we have

$$
\begin{align*}
D^{(n)} a_{a}^{(n)}= & -\tau_{\alpha} X^{(n)} a_{a}^{(n)} \\
& \left.+\sum_{\delta}\left\{\frac{N_{\delta}}{\sigma_{\delta a}}\left(\frac{T_{\alpha a}}{2 \pi T_{\delta \alpha}}\right)^{3 / 2} A_{\delta \alpha}^{(n)}+\sum_{l} \sum_{m} a_{\alpha}^{(1)} a_{\delta}^{(m)} I_{\delta \alpha}^{\prime \prime}, m ; n\right)\right\} \tag{2.9}
\end{align*}
$$

where

$$
\begin{align*}
& D^{(n)} a_{a}^{(n)}= X_{a}^{(n)} \frac{\partial a_{a}^{(n)}}{\partial t} \\
&+\left[(n+3) X^{(n)} a_{a}^{(n)}+2 X^{(n-2)} \delta^{(2)} a_{a}^{(n-2)}\right] \frac{\partial}{\partial t}\left(\log c_{a}\right) \\
&+c_{a} \int_{X^{(n+1)}} \frac{\partial a_{a i}^{(n+1)}}{\partial x_{i}}+X^{(n-1)} \delta_{i}^{(2)} \frac{\partial a_{a}^{(n-1)}}{\partial x_{i}} \\
&+(n+4)\left[X^{(n+1)} a_{a i}^{(n+1)}+X^{(n-1)} \delta_{i}^{(2)} a_{a}^{(n-1)}\right] \frac{\partial}{\partial x_{i}}\left(\log c_{a}\right) \\
&\left.+2 X^{(n-3)} \delta_{i}^{(2)} \delta^{(2)} a_{a}^{(n-3)} \frac{\partial}{\partial x_{i}}\left(\log c_{a}\right)\right\} \\
&-\frac{1}{c_{a} m_{a}}\left(F_{a i}+e_{a} E_{i}\right) X^{(n-1)} \delta_{i}^{(2)} a_{a}^{(n-1)} \\
&-\frac{e_{a}}{c m_{a}} \epsilon_{i j} j_{i} H_{l}\left[X^{(n)} \delta_{i}^{(2)} a_{a j}^{(n)}+X^{(n-2)} \delta_{i}^{(2)} \delta_{j}^{(2)} a_{a}^{(n-2)}\right] \\
&+\frac{\partial}{\partial t}\left(\log \frac{N_{a}}{c_{a}^{3}}\right) X^{(n)} a_{a}^{(n)} \\
&+c_{a} \frac{\partial}{\partial x_{i}}\left(\log \frac{N_{a}}{c_{a}^{3}}\right)\left[X^{(n+1)} a_{a i}^{(n+1)}+X^{(n-1)} \delta_{i}^{(2)} a_{a}^{(n-1)}\right], \tag{2.10}\\
& \tau_{\alpha}=\sum_{\delta} \frac{N_{\delta}}{\sigma_{\delta a}}, \tag{2.11}
\end{align*}
$$

$$
\begin{equation*}
A_{\delta \alpha}^{(n)}=\int H^{(n)}\left(\mathbf{w}_{a}+v_{\delta a}\right) \exp \left[-\frac{T_{a a}}{2 T_{\delta \alpha}} \mathbf{w}_{a}^{2}\right] d \mathbf{w}_{a}, \tag{2.12}
\end{equation*}
$$

and

$$
\begin{aligned}
& I_{\delta \dot{a}}^{(l, m ; n)}=\iiint H^{(n)}\left(v_{a}\right) \omega\left(v_{a}\right) \omega\left(v_{\delta}\right) \times\left\{\frac{\partial}{\partial v_{\alpha i}}\left[H^{(l)}\left(v_{a}\right) H^{(m)}\left(v_{\delta}\right)\left(v_{\alpha i}^{\prime}-v_{a i}\right)\right]\right. \\
&-\frac{1}{2} \cdot \frac{\partial^{2}}{\partial v_{a l} \grave{c} v_{\alpha j}}\left[H^{(l)}\left(v_{a}\right) H^{(m)}\left(v_{\delta}\right)\left(v_{\alpha i}^{\prime}-v_{\alpha i}\right)\left(v_{a j}^{\prime}-v_{a j}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\times g_{\delta a} b d b d \epsilon d v_{a} d v_{\delta} \tag{2.13}
\end{equation*}
$$

the primes denoting the non-dimensional velocities after collision.
We note the following points about the set of moment equations (2.9). The operator $D^{(n)}$ introduces coupling between the convective derivatives of $a^{(n+1)}$ with lower order moments. Further, the Fokker-Planck terms through $I^{(l, m ; n)}$ preserve the non-linear collisional coupling in its complete generality. Hence, to obtain a complete set of transport equations, a suitable cut-off is necessary. Following I, and $G_{r a d}{ }^{2}$, we terminate the expansion at $n-3$. This adequately takes into account the effects of mean velocity, stresses and the heat flux. Again, on the same lines of Grad, we restrict the collisional terms to $l+m-3$, thereby neglecting the intense interactions arising out of heat flux and stresses. It has been found justifiable to do so for most of the physical situations encountered, including shock phenomena ${ }^{2},[I]$ With the help of the above assumptions, we get a consistent system of equations. Since $a_{a}^{(n)}$ are nothing but linear combinations of the physical moments, converting back we obtain the following transport equations:

$$
\begin{align*}
& \frac{\partial N_{\alpha}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(N_{\alpha} u_{a \alpha i}\right)=0, \tag{2.14}\\
& \frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial t}\left(N_{\alpha} u_{\alpha a r}\right)+\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{\alpha} P_{\alpha i r}\right)-\frac{1}{m_{\alpha}}\left(F_{\alpha r}+e_{\alpha} E_{r}\right)-\frac{e_{\alpha}}{c m_{a}} \epsilon_{r j k} u_{\alpha a j} H_{k} \\
& -\frac{\Sigma}{\delta}\left\{\frac{N_{\delta}}{\sigma_{\delta a}} \cdot \frac{A_{\partial a}}{m_{a}}\left(u_{\delta \delta r}-u_{a \alpha r}\right)+\frac{16}{15} \cdot \frac{K_{\delta a}}{m_{a} c_{\delta a}}\left[5 c_{\delta a}^{2}\left(u_{\delta \delta r}-u_{\alpha a r}\right)\right.\right. \\
& \left.\left.+\left(u_{\delta \delta r} P_{\alpha i i}-u_{\alpha a r} P_{\partial i i}\right)+2\left(u_{\delta \delta i} P_{\alpha i r}-u_{\alpha a i} P_{\delta i r}\right)+2\left(S_{\delta r}-S_{\alpha r}\right)\right]\right\} \tag{2.15}\\
& \frac{1}{N_{\alpha}}: \frac{\partial}{\partial t}\left(N_{\alpha} P_{\alpha r r}\right)+\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{\alpha} S_{a i t r}\right)-\frac{2}{m_{\alpha}}\left(F_{\alpha r}+e_{\alpha} E_{r}\right) u_{\alpha a r}-\frac{2 e_{\alpha}}{c m_{\alpha}} \epsilon_{r j k} P_{\alpha j r} H_{k} \\
& =\sum_{\delta}\left\{-\frac{N_{\delta}}{\sigma_{\delta \alpha}}\left(P_{\alpha, r r}-u_{\delta \alpha r}^{2}-\frac{K T_{\delta \alpha}}{m_{\alpha}}\right)+\frac{64}{15} \cdot \frac{K_{\delta \alpha}}{c_{\delta \alpha}}\left[-5 c_{\alpha}^{2} c_{\delta \alpha}^{2}\right.\right.
\end{align*}
$$

$$
\begin{align*}
& +\left\{c_{a}^{2}+\left(5 c_{\delta}^{2}+7 e_{a}^{2}\right) \delta_{i r}\right\} u_{\alpha \alpha i} u_{\delta \delta i}-c_{a}^{2}\left(1+2 \delta_{i r}\right)\left(P_{\delta i l}-c_{\delta}^{2}\right) \\
& \left.-\left\{c_{a}^{2}+\left(10 c_{\delta}^{2}+12 c_{a}^{2}\right) \delta_{i r}\right\}\left(P_{a i i}-c_{a}^{2}\right)\right] \\
& +\frac{64}{15} L_{\delta \alpha} c_{\delta \alpha}\left[5 c_{\delta \alpha}^{2}+\left(1+12 \delta_{i r}\right)\left(P_{a i i}+P_{\delta i i}-c_{\delta a}^{2}\right)\right. \\
& \left.\left.-\left(1+12 \delta_{i r}\right) u_{\alpha \alpha i} u_{\delta \delta i}\right\}\right\} \tag{2.16}\\
& \frac{1}{N_{\alpha}} \cdot \frac{\partial}{c t}\left(N_{\alpha} P_{a r s}\right)+\frac{1}{N_{a}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{a} S_{\alpha i r s}\right) \\
& -\frac{1}{m_{a}}\left[\left(F_{a r}+e_{a} E_{r}\right) u_{a \alpha s}+\left(F_{a s}+e_{a} E_{s}\right) u_{\alpha a r}\right]-\frac{e_{a}}{c m_{a}}\left(\epsilon_{r j k} P_{a j s}+\epsilon_{s j k} P_{\alpha j r}\right) H_{k} \\
& -\sum_{\delta}\left\{-\frac{N_{\delta}}{\sigma_{\delta \alpha}}\left(P_{\alpha r s}-u_{\delta \alpha r} u_{\delta \alpha s}\right)+\frac{32}{15} \cdot \frac{K_{\delta \alpha}}{c_{\delta \alpha}}\left[-2 c_{\alpha}^{2} P_{\delta r s}-2\left(5 c_{\delta}^{2}+6 c_{a}^{2}\right) P_{\alpha r s}\right.\right. \\
& \left.+\left(5 c_{\alpha}^{2}+7 c_{\delta}^{2}\right)\left(u_{\alpha a r} u_{\delta \delta s}+u_{\alpha a s} u_{\delta \delta r}\right)\right] \\
& +\frac{64}{5} L_{\delta \alpha} c_{\delta \alpha}\left[2\left(P_{a r s}+P_{\delta r s}\right)-2\left(u_{\alpha a r} u_{\delta \delta_{s}}+u_{\alpha a s} u_{\delta \delta r}\right)\right]_{j}^{\}}, \tag{2.17}\\
& \frac{1}{N_{a}} \cdot \frac{\partial}{\partial t}\left(N_{a} S_{a r r r}\right)+\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{a} Q_{\alpha i r r r}\right)-\frac{3}{m_{a}}\left(F_{a r}+e_{a} E_{r}\right) P_{a r r}-\frac{3 e_{a}}{c m_{a}} \epsilon_{r j k} S_{a j r r} H_{k} \\
& -\sum_{\delta}\left\{-\frac{N_{\delta}}{\sigma_{\delta \alpha}}\left(S_{\alpha r r r}-u_{\delta \alpha r}^{3}-\frac{3 K T_{\delta \alpha}}{m_{\alpha}} u_{\delta \alpha r}\right)+A_{\delta a r r r}\right\} \tag{2.18}\\
& \frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial t}\left(N_{\alpha} S_{\alpha r r s}\right)+\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{\alpha} Q_{\alpha i r r s}\right)-\frac{1}{m_{\alpha}}\left(F_{\alpha, s}+e_{\alpha} E_{s}\right) P_{a r r}-\frac{2}{m_{a}}\left(F_{\alpha r}+e_{\alpha} E_{r}\right) P_{a r s} \\
& -\frac{e_{a}}{c m_{\alpha}}\left(2 \epsilon_{r j k} S_{a j r s}+\epsilon_{s j k} S_{\alpha j r r}\right) H_{k} \\
& =\sum_{\delta}\left\{-\frac{N_{\delta}}{\sigma_{\delta \alpha}}\left(S_{\alpha r r s}-u_{\delta \alpha r}^{2} u_{\delta \alpha s}-\frac{K T_{\delta \alpha}}{m_{\alpha}} u_{\delta a s}\right)+B_{\delta a r r s}\right\}, \tag{2.19}\\
& \frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial t}\left(N_{\alpha} S_{\alpha r s t}\right)+\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{\alpha} Q_{\alpha i r s t}\right)-\frac{1}{m_{\alpha}}\left(F_{a r}+e_{\alpha} E_{r}\right) P_{a s t}-\frac{1}{m_{\alpha}}\left(F_{a s}+e_{\alpha} E_{s}\right) P_{\alpha, r} \\
& -\frac{1}{m_{\alpha}}\left(F_{a t}+e_{\alpha} E_{t}\right) P_{\alpha r s}-\frac{e_{a}}{c m_{\alpha}}\left(\epsilon_{r j k} S_{\alpha j s t}+\epsilon_{s j k} S_{a j t r}+\epsilon_{t j k} S_{a j r s}\right) H_{k} \\
& =\sum_{\delta}\left\{-\frac{N_{\delta}}{\sigma_{\delta \alpha}}\left(S_{\alpha r s t}-u_{\delta \alpha r} u_{\delta a r} u_{\delta a t}\right)+C_{\delta \alpha r s t}\right\}, \tag{2.20}
\end{align*}
$$

where

$$
c_{\delta \alpha}^{2}=c_{\delta}^{2}+c_{\alpha}^{2}
$$

The lengthy expressions $A_{\delta a r r r}, B_{\delta a r r s}$ and $C_{\delta a r s t}$ are glven in the Appendix II. The constants $K_{\delta \alpha}$ and $L_{\delta \alpha}$ arise from the diffusion and dispersion parts of the Fokker-Planck terms and are given by

$$
\begin{align*}
& K_{\delta \alpha}=\frac{m_{\delta} N_{\delta}\left(b_{u}^{2}-b_{l}^{2}\right)}{m_{a}+m_{\delta}} \sqrt{\left(\frac{\pi}{2}\right),} \tag{2.21}\\
& L_{\delta \alpha}=\frac{m_{\delta}^{2} N_{\delta}\left(b_{u}^{2}-b_{l}^{2}\right)}{\left(m_{a}+m_{\delta}\right)^{2}} \sqrt{ }\left(\frac{\pi}{2}\right), \tag{2.22}
\end{align*}
$$

where b_{u} and b_{l} are the upper and lower cut-offs for the impact parameter during weak interactions between a and δ type particles. [refer I].

The following important points should be noted regarding the above transport equations: The momentum equations are not affected by the dispersion part of the Fokker-Planck terms, but are directly coupled to the stresses as well as the heat flux vectors. The stress equations are not coupled directly with heat-flux tensors. The heat-flux tensors are coupled directly with all the lower order moments. Consequently, even in the absence of magnetic field, we expect intense anisotropy in the medium.

3. Stationary Non-equilibrium Processes

In this section, we shall consider some simple stationary non-equilibrium processes to obtain explicit expressions for electrical conductivity, viscosity, heat conductivity and diffusitivity of the assembly, following the procedure of I.

In order to find the expression for electrical conductivity and diffusivity terms, we consider Lorentz problem. Expressing the higher order moments in terms of the equivalent lower order moments, the momentum equation reduces to

$$
\begin{align*}
& \quad \frac{1}{N_{\alpha} m_{\alpha}} \cdot \frac{\partial}{\partial x_{r}}\left(N_{\alpha} K T_{a \alpha}\right)-\frac{1}{m_{\alpha}}\left(F_{\alpha r}+e_{\alpha} E_{r}\right)-\frac{e_{a}}{c m_{\alpha}} \epsilon_{r j k} u_{\alpha x j} H_{k} \\
& =\sum_{\delta}\left\{\frac{N_{\delta}}{\sigma_{\delta \alpha}} \cdot \frac{A_{\delta \alpha}}{m_{\alpha}}\left(u_{\delta \delta r}-u_{\alpha a r}\right)+\frac{32}{3} K_{\delta \alpha} c_{\delta \alpha}\left(u_{\delta \delta r}-u_{\alpha a r}\right)\right\}, \tag{3.1}
\end{align*}
$$

The right hand side of the above equation can be rewritten as

$$
\begin{gather*}
\sum\left\{\frac{N_{\delta}}{m_{\alpha}}\left(\frac{C_{\delta \alpha}}{\sigma_{\delta a}}+\frac{32}{3} \mathcal{K}_{\delta a} c_{\delta a}\right)\left(u_{\delta \delta r}-u_{\alpha a r}\right)\right\} \\
\equiv \sum_{\delta} \frac{N_{\delta}}{m_{\alpha}} D_{\delta a}\left(u_{\delta \delta r}-u_{\alpha a r}\right) \tag{3.2}
\end{gather*}
$$

where

$$
D_{\delta a}=\frac{\mathcal{A}_{\delta a}}{\sigma_{\delta a}}+\frac{32}{3} \mathcal{K}_{\delta a} c_{\delta a}
$$

from which we conclude that the contribution of the Fokker-Planck term to the momentum equation for this simple case is to increase the number of collisions per unit volume per unit mass as expected. Consequently, for the Lorentz problem, the current density expressions remain unaltered and are given by [5.1] - [5.3] of I excepting that
where

$$
\begin{gather*}
\frac{\mathcal{G A}_{\delta a}}{\sigma_{\delta \alpha}} \text { is replaced by } \frac{\mathcal{G}_{\delta \alpha}}{\sigma \delta \alpha}+\frac{32}{3} \mathcal{K}_{\delta \alpha} c_{\delta \alpha}, \\
\mathcal{K}_{\delta \alpha}=\frac{m_{a} m_{\delta}}{m_{a}+m_{\delta}}\left(b_{\mu}^{2}-b_{l}^{2}\right) \sqrt{ }\left(\frac{\pi}{2}\right) \tag{3.3}
\end{gather*}
$$

Hence, the electrical conductivity σ and the generalized diffusivities σ_{α} and σ_{β} are given by

$$
\begin{align*}
\sigma & =\frac{\left(e_{\beta} N_{\beta}-e_{\alpha} N_{\alpha}\right)^{2}}{4 N_{\alpha}} \cdot \frac{D_{2}}{D_{\beta}}, \tag{3.4}\\
\sigma_{a} & =\frac{\left(e_{\beta} N_{\beta}-e_{\alpha} N_{\alpha}\right)}{2 D_{1}} D_{a \gamma}, \tag{3.5}
\end{align*}
$$

$$
\begin{equation*}
\sigma_{\beta}=\frac{\left(e_{\alpha} N_{a}-e_{\beta} N_{\beta}\right)}{2 D_{1}} D_{\beta \gamma}, \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{1}=N_{a} D_{\beta a} D_{a \gamma}+N_{\beta} D_{\gamma \beta} D_{\beta a}+N_{\gamma} D_{\beta \gamma} D_{\gamma \alpha}, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}=N_{\alpha} D_{a \gamma}+N_{\beta} D_{\beta \gamma} . \tag{3.8}
\end{equation*}
$$

From [3.4] we conclude that due to the diffusive effects of Fokker-Planck term, the electrical conductivity decreases, this is natural since the effect is to increase the number of collisions.

Concentrating on the gradient dependence of the stresses and rewriting the equations [2.16] and [2.17], we obtain,

$$
\left(\tau_{a}+2 \mathcal{M}_{a}\right) P_{a r r}+C \mathcal{N}_{a} P_{a i l}-2 \omega_{a} \epsilon_{r j 3} P_{a j r}=-\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{a} S_{\alpha, r r}\right), \text { [3.9] }
$$

and $\quad\left(\tau_{\alpha}+\mathcal{M}_{\alpha}\right) P_{a r s}-\omega_{a}\left(\epsilon_{r / 3} P_{\alpha / s}+\epsilon_{s / 3} P_{a j r}\right)=-\frac{1}{N_{\alpha}} \cdot \frac{\partial}{\partial x_{i}}\left(N_{\alpha} S_{\alpha i r s}\right)$
where

$$
\omega_{\alpha}=\frac{e_{\alpha} H}{c m_{\alpha}},
$$

$$
\begin{align*}
& \mathcal{M}_{a}-\sum_{\delta}\left[\frac{64}{15} \cdot \frac{K_{\delta a}}{c_{\delta \alpha}}\left(G c_{\alpha}^{2}+5 c_{\delta}^{2}\right)-\frac{128}{5} L_{\delta \alpha} c_{\delta \alpha}\right] \\
&+\frac{32 \sqrt{ } 2}{15} K_{\alpha \alpha} c_{\alpha}-\frac{128}{5} \sqrt{ } 2 \tag{3.12}\\
& L_{\alpha \alpha} c_{\alpha}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{O} N_{a}=\frac{64}{15} \sum_{\delta}\left[\frac{K_{\delta a}}{c_{\delta \alpha}} c_{\alpha}^{2}-L_{\delta \alpha} c_{\delta \alpha}\right]+\frac{32 \sqrt{ } 2}{15}\left(K_{\alpha a}-2 \dot{L}_{\alpha a}\right) c_{a} \tag{3.13}
\end{equation*}
$$

For simplicity of argument, we have chosen the z-axis along the direction of the magnetic field. As in I, we replace the heat-flux tensors by their equivalent moments and solving [3.9] and [3.10] we obtain

$$
\begin{equation*}
P_{a 33}=-\mu_{a 33}^{(0)} e_{a 33}-\mu_{a 33}^{(1)} \nabla T_{a \alpha}-\mu_{a 33}^{(2)} \nabla N_{a}-\mu_{a 33}^{(3)}\left(e_{a 11}+e_{a 22}+e_{a 33}\right), \tag{3.14}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu_{a 33}^{(0)}=\frac{2 K T_{\alpha a}}{m_{\alpha}} \cdot \frac{1}{\tau_{\alpha}+2 \mu_{\alpha}} . \tag{3.15}\\
& \mu_{a 33}^{(1)}=\frac{K}{m_{a}^{\prime}(\tau+2)\left(M_{a}\right)}\left(u_{a a 1}, u_{a a 2}, u_{a a 3}\right) \\
& \left.-\frac{5 K C N_{a}}{m_{a}\left(\tau+2 \mathcal{M}_{a}\right)\left(\tau_{a}+2\right.} \mathcal{M}_{\alpha}+3 C V_{a}\right)\left(u_{a \alpha 1}, u_{\alpha a 2}, u_{\alpha a 3}\right), \tag{3.16}\\
& \left.\mu_{a 33}^{(2)}-\frac{6 K T_{a \alpha}}{N_{a} m_{a}\left(\tau_{a}+2\right.} \bar{M}_{a}\right)\left(0,0, u_{a \alpha 3}\right) \\
& -\frac{K T_{a \alpha} C N_{\alpha}}{N_{a} m_{a}\left(\tau_{\alpha}+2 M_{a}\right)\left(r_{\alpha}+2 M_{a}+3 C N_{a}\right)}\left(u_{a \alpha 1,}, u_{\alpha a 2}, u_{\alpha \alpha 3}\right) \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
& \mu_{a 33}^{(3)}=\mu_{a 33}^{(0)} \frac{C V_{a}}{\tau_{a}+2} \overline{M_{a}+3 C N_{a}} \tag{3.18}\\
& {\left[\begin{array}{l}
P_{a 23} \\
P_{a 31}
\end{array}\right]--\mu_{\alpha 3}^{(0)}\left[\begin{array}{l}
e_{a 23} \\
e_{a 31}
\end{array}\right]-\mu_{a 3}^{(1)} \nabla T_{a a}-\mu_{a 3}^{(2)} \nabla N_{a}} \tag{3.19}
\end{align*}
$$

where

$$
\mu_{a 3}^{(0)}=\frac{2 K T_{a \alpha}}{m_{\alpha} \Delta_{1}}\left[\begin{array}{cc}
\tau_{\alpha}+M_{\alpha} & -\omega_{a} \tag{3.20}\\
\omega_{\alpha} & \tau_{\alpha}+\mathcal{M}_{\alpha}
\end{array}\right]
$$

$$
\begin{align*}
& \mu_{a 3}^{(1)}=\frac{1}{2 T_{a a}} \mu_{a 3}^{(0)}\left[\begin{array}{ccc}
0 & u_{a a 3} & u_{a \alpha 2} \\
u_{a a 3} & 0 & u_{a \alpha 1}
\end{array}\right], \tag{3.21}\\
& \mu_{a 3}^{(2)}=\frac{T_{a a}}{N_{a}} \mu_{a 33}^{(1)}, \tag{3.22}\\
& \Delta_{1}=\left(\tau_{a}+\mathcal{M}_{a}\right)^{2}+\omega_{a}^{2}, \tag{3.23}\\
& P_{a 12}=-\mu_{a 12}^{(0)}\left(\begin{array}{l}
e_{a 11} \\
e_{a 12} \\
e_{a 22}
\end{array}\right)-\mu_{a 12}^{(1)} \nabla T_{a a}-\mu_{a 12}^{(2)} \nabla N_{a}, \tag{324}
\end{align*}
$$

where

$$
\begin{align*}
& \mu_{a 12}^{(0)}=\frac{2 K T_{a \alpha}}{m_{\alpha} \Delta_{2}}\left(-\omega_{\alpha}, \tau_{\alpha}+2 \mathcal{M}_{\alpha}, \omega_{\alpha}\right), \tag{3.25}\\
& \left.\mu_{a 12}^{(1)}=\frac{K}{m_{a} \Delta_{2}}\left(\tau_{\alpha}+2 \mathcal{M}_{a}\right) u_{\alpha a 2}-2 \omega_{1} u_{a \alpha 1},\left(\tau_{\alpha}+2 \mathcal{M}_{a}\right) u_{a a 1}+2 \omega_{a} u_{\alpha a 2}, 0\right] \tag{3.26}
\end{align*}
$$

$$
\begin{equation*}
\mu_{a 12}^{(2)}=\frac{T_{a a}}{N_{\alpha}} \mu_{a 18}^{(1)}, \tag{3.27}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{2}=\left(\tau_{\alpha}+\mathcal{M}_{\alpha}\right)^{2}+4 \omega_{\alpha}^{2} . \tag{3.28}
\end{equation*}
$$

$$
P_{a 11}=-\mu_{a 11}^{(0)}\left[\begin{array}{l}
e_{a 11} \\
e_{a 12} \\
e_{\alpha 22}
\end{array}\right\}-\mu_{a 11}^{(1)} \nabla T_{\alpha a}-\mu_{a 11}^{(2)} \nabla N_{\alpha}
$$

$$
\begin{equation*}
-\mu_{\alpha 11}^{(3)}\left(e_{a 11}+e_{\alpha 22}+\boldsymbol{e}_{a 33}\right), \tag{329}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu_{a 11}^{(0)}=\frac{2 K T_{a \alpha}}{m_{a}\left(\tau_{a}+2 \mathcal{M}_{a}\right) \Delta_{2}}\left[\left(\tau_{a}+2 \mathcal{M}_{a}\right)\left(\tau_{\alpha}+\mathcal{M}_{a}\right)+2 \omega_{a}^{2}, 2\left(\tau_{\alpha}+2 \mathcal{M}_{a}\right) \omega_{a}, 2 \omega_{a}^{2}\right] \tag{3.30}\\
& \left.\mu_{a 1_{1}}^{(1)}-\frac{K}{m_{a}\left(\tau_{a}+2\right.} \mathcal{M}_{\alpha}\right) \Delta_{2}\left[\left\{\left(\tau_{\alpha}+2 \mathcal{M}_{a}\right)\left(\tau_{\alpha}+\mathcal{M}_{\alpha}\right)+2 \omega_{a}^{2}\right\}\left(3 u_{a \alpha 1}, u_{\alpha a 2}, 0\right)\right. \\
& +2\left(\tau_{\alpha}+2 \mathcal{M}_{a}\right) \omega_{a}\left(u_{\alpha a 2}, u_{\alpha a 1}, 0\right) \\
& \left.+2 \omega_{\alpha}^{2}\left(u_{\alpha a 1}, 3 u_{\alpha a 2}, 0\right)+\Delta_{2}\left(0,0, u_{\alpha a 3}\right)\right] \\
& -\frac{5 K C N_{a}}{m_{a}\left(\tau_{\alpha}+M_{a}\right)\left(\tau_{\alpha}+2 M_{a}+3 C N_{a}\right)}\left(u_{a \alpha 1}, u_{a \alpha 2}, u_{a \alpha 3}\right), \quad[3.31]
\end{align*}
$$

$$
\begin{align*}
& \mu_{a 11}^{(2)}=\frac{2 K T_{a \alpha}}{m_{a} N_{a}\left(\tau_{\alpha}+2 M_{\alpha}\right) \Delta_{2}} \\
& \times\left[\left\{\left(\tau_{\alpha}+\mathcal{M}_{\alpha}\right)\left(\tau_{\alpha}+2 \mathcal{M}_{\alpha}\right)+\omega_{\alpha}^{2}\right\} u_{\alpha a 1}+\left(\tau_{\alpha}+2 \mathcal{M}_{\alpha}\right) \omega_{a} u_{\alpha a 2},\right. \\
& \left.\left(\tau_{\alpha}+2 \mathcal{M}_{a}\right) \omega_{\alpha} u_{a \alpha 1}+2 \omega_{a}^{2} u_{a \alpha 2}, 0\right] \\
& -\frac{2 K T_{a \alpha} C N_{a}}{N_{a} m_{a}\left(\tau_{a}+2 M_{a}\right)\left(\tau_{a}+2 M_{a}+3 C N_{a}\right)}\left(u_{\alpha a 1}, u_{\alpha a 2}, u_{a a 3}\right), \tag{3.32}
\end{align*}
$$

and

$$
\begin{equation*}
\mu_{a 11}^{(3)}=\frac{2 K T_{a a} C V_{a}}{m_{a}\left(\tau_{a}+2 \mathcal{M}_{a}\right)\left(\tau_{a}+2 \mathcal{M}_{a}+3 C V_{a}\right)} \tag{3.33}
\end{equation*}
$$

with similar expressions for $P_{a 22}$.
The following important points have to be noticed regarding the viscosity matrices: The Fokker-Planck terms introduce very high anisotropy even in the absence of magnetic field and the magnitudes of the viscosity coefficients in the principal directions are decreased. This is natural since the FokkerPlanck terms increase the collisions, as we have already pointed out. Further the diagonal terms of the stress tensor depend also on the dilatation term $\left(e_{a 11}+e_{a 22}+e_{\alpha 33}\right)$ apart from other couplings. From this we conclude that one of the functions of Fokker-Planck terms is to increase the bulk viscosity of the plasma apart from introducing the anisotropy. Along the direction of the magnetic field, the main viscosity term is given by

$$
\begin{equation*}
\frac{2 K T_{a a}}{m_{a} \tau_{a}}\left(1-\frac{2 \mathcal{M}_{a}}{\tau_{a}+2} \tilde{M}_{a}\right) \tag{3.34}
\end{equation*}
$$

Thus, the viscosity is decreased by a factor of

$$
\left(1-\frac{2}{r_{a}+2} \frac{M_{a}}{M_{a}}\right)
$$

by the Fokker-Planck terms. As in r, the stresses in the plane containing the magnetic field are coupled by the magnetic field and the viscosity is given by

$$
\begin{equation*}
\frac{2 K T_{a a}}{m_{a} \tau_{a}}\left(1-\frac{M_{a}}{\tau_{i a}+\frac{M_{a}}{}}\right)\left(1-\frac{\omega_{a}^{2}}{\left(\tau_{a}+M_{a}\right)^{2}+\omega_{a}^{2}}\right) \tag{3.35}
\end{equation*}
$$

The effect of the magnetic field and the Fokker-Planck terms are self-evident. The viscosity co-efficients corresponding to $P_{a 12}$ and $P_{a 11}$ and $P_{a 22}$ are given by

$$
\begin{equation*}
\frac{2 K T_{a \alpha}}{m_{\alpha} \tau_{\alpha}}\left[1-\frac{M_{a}^{2}+4 \omega_{a}^{2}}{\left(\tau_{\alpha}+M_{a}\right)^{2}+4 \omega_{a}^{2}}\right] \tag{3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 K T_{a a}\left[\left(\tau_{a}+2 M_{a}\right)\left(\tau_{a}+M_{a}\right)+2 \omega_{\alpha}^{2}\right]}{m_{a}\left(\tau_{a}+2 M_{a}\right)\left[\left(\tau_{\alpha}+M_{a}\right)_{r}^{2}+4 \omega_{a}^{2}\right]} . \tag{3.37}
\end{equation*}
$$

The anisotropy is evident even in the absence of the magnetic field.
Proceeding in a similar fashion, for the heat flux vector, we obtain,

$$
\begin{gather*}
S_{a 3}=-K_{a 3}^{(0)} \nabla_{3} 7_{a a}-K_{a 3}^{(1)} \nabla_{3} N_{a}, \tag{3.38}\\
{\left[\begin{array}{c}
S_{a 1} \\
S_{a 2}
\end{array}\right]=-K_{a}^{(0)} \nabla_{1} T_{a a}-K_{a}^{(1)} \nabla_{1} N_{a},} \tag{3.39}
\end{gather*}
$$

where

$$
\begin{align*}
& K_{a 3}^{(0)}=\frac{5 K^{2} T_{a a}}{m_{a}^{2} \tau_{a}}\left[1-\frac{\tau_{a}\left(K_{\alpha}+2 J_{a}\right)+J_{a} K_{a}}{\left(\tau_{a}+K_{a}\right)\left(\tau_{\alpha}+K_{a}+J_{a}\right)}\right] \tag{3.40}\\
& K_{a 3}^{(1)}=\frac{T_{a a}}{2 N_{a}} K_{a 3}^{(0)}, \tag{3.41}\\
& K_{a}^{(0)}=\frac{}{m_{a}^{2}\left[\left(\sigma_{a}+K_{a}+J_{a}\right)^{2}+\omega_{a}^{2}\right]}\left[\begin{array}{cc}
\gamma_{a}+K_{\alpha}+J_{a} & \omega_{\alpha} \\
-\omega_{a} & \tau_{a}+K_{a}+J_{a}
\end{array}\right] \\
& K_{a}^{(1)}=\frac{T_{a a}}{2 N_{a}} K_{a}^{(0)},
\end{align*}
$$

where

$$
\begin{gather*}
J_{\alpha}=\sum_{\delta}\left[\frac{16 K_{\delta a}}{35 c_{\delta \alpha}^{3}}\left(14 c_{\delta}^{2}+11 c_{\alpha}^{2}\right) c_{\alpha}^{2}-\frac{32 L_{\delta \alpha}}{35 c_{\delta \alpha}}\left(7 c_{\delta}^{2}+18 c_{a}^{2}\right)\right] \\
 \tag{3.44}\\
+\left(\frac{12 \sqrt{ } 2}{35} K_{\alpha a}+\frac{176 \sqrt{ } 2}{35} L_{\alpha \alpha}\right) c_{\alpha}
\end{gather*}
$$

and

$$
\begin{align*}
K_{\alpha}=\sum_{\delta}[& \frac{16 K_{\delta a}}{105 c_{\delta a}^{3}}\left\{299 c_{a}^{4}+518 c_{a}^{2} c_{\delta}^{2}+210 c_{\delta}^{4}\right\} \\
& -\frac{32 L_{\delta a}}{105 c_{\delta a}}\left\{306 c_{a}^{2}+259 c_{\delta}^{2}\right\} \\
& +\left(\frac{12 \sqrt{ } 2}{35} K_{a a}+\frac{752 \sqrt{ } 2}{105} L_{\alpha a}\right) c_{a} \tag{345}
\end{align*}
$$

As in the case of stresses, both the magnetic field and the Fokker-Planck terms introduce anisotropy, even though the intense coupling is mainly due to magnetic field. The coefficient of heat conductivity along the magnetic field is

$$
\begin{equation*}
\frac{5 K^{2} T_{\alpha \alpha}}{m_{\alpha}^{2} \tau_{\alpha}}\left[1-\frac{\tau_{\alpha}\left(K_{\alpha}+2 J_{\alpha}\right)+J_{a} K_{\alpha}}{\left(\tau_{\alpha}+K_{\alpha}\right)\left(\tau_{\alpha}+K_{\alpha}+J_{\alpha}\right)}\right], \tag{3.46}
\end{equation*}
$$

while transverse to the magnetic field, it is

$$
\begin{equation*}
\frac{5 K^{2} T_{a a}}{m_{a}^{2} \tau_{a}}\left[1-\frac{\tau_{a}\left(J_{a}+K_{a}+J_{a}\right)+\omega_{a}^{2}}{\left(\tau_{a}+K_{a}+J_{a}\right)^{2}+\omega_{a}^{2}}\right], \tag{3.47}
\end{equation*}
$$

Two points are worthy of note : (i) The magnitudes of these coefficients are reduced mainly by the Fokker-Planck terms and the magnetic field. (ii) The ratio of the coefficients of heat conductivity and viscosity along the magnetic field is no longer a constant, as in the pure collisional case. This suggests that pure ideal gas approximation and adiabatic approximations may not be strictly valid for the high density, high temperature plasmas, or gases under long-range forces of interaction.

Appendix I

Following Jeans ${ }^{17}$, we shall derive the change in the molecular velocity $\vec{\xi}_{a}$ of the particle m_{a} due to its interaction with a particle m_{δ} due to its interaction with a particle m_{δ} moving with velocity $\vec{\xi}_{\delta}$.

Consider relative motion of m_{δ} with respect to m_{a} situated at O. Let the plane of interaction make an angle ϵ with the fixed plane $X O G$ and let θ be the angle through which the relative velocity $\mathbf{g}_{\delta a}=\vec{\xi}_{\delta}-\vec{\xi}_{a}$ turns after interaction. Let X, Y, Z, G, G^{\prime} be the points where the coordinate axes and the relative velocities before and after collision intersect the unit sphere with centre at the origin. Denoting by prime the velocities after collision, from conservation of momentum, we have

$$
\begin{equation*}
m_{a} \vec{\xi}_{a}+m_{\delta} \vec{\xi}_{\delta}=m_{a} \vec{\xi}_{a}^{\prime}+m_{\delta} \vec{\xi}_{\delta}^{\prime} \tag{array}
\end{equation*}
$$

Also, from the spherical triange $X G G^{\prime}$,

$$
\cos X G^{\prime}=\cos X G \cos G G^{\prime}+\sin X G \sin G G^{\prime} \cos \angle X G G^{\prime}
$$

or

$$
\begin{equation*}
\xi_{a x}^{\prime}-\xi_{\partial x}^{\prime}=\left(\xi_{\delta c}-\xi_{\alpha x}\right) \cos 2 \theta+\left(g_{\delta a y}^{2}+g_{\delta \alpha z}^{2}\right)^{1 / 2} \sin 2 \theta \cos \epsilon . \tag{1.2}
\end{equation*}
$$

Eliminating $\xi_{\delta x}^{\prime}$ between [I.1] and [I.2], we get
$\Delta \xi_{\alpha x}=\xi_{\alpha x}^{\prime}-\xi_{\alpha x}$

$$
\begin{equation*}
-\frac{1}{m_{\alpha}+m_{\delta}}\left[m_{\delta}(1+\cos 2 \theta)\left(\xi_{\delta x}-\xi_{\alpha x}\right)+m_{\delta}\left(g_{\delta \alpha, y}^{2}+g_{\delta \alpha z}^{2}\right)^{1 / 2} \sin 2 \theta \cos \epsilon\right] . \tag{array}
\end{equation*}
$$

Similarly, from the spherical triangle $Y G G^{\prime}$, we have

$$
\begin{align*}
\xi_{a y}^{\prime}-\xi_{\delta y}^{\prime}= & \left(\xi_{\partial y}-\xi_{a y}\right) \cos 2 \theta+\left(g_{\delta \alpha z}^{2}+g_{\delta \alpha x}^{2}\right)^{1 / 2} \sin 2 \theta \\
& \times\left(\cos \omega_{1} \cos \epsilon+\sin \omega_{1} \sin \epsilon\right) \tag{I.4}
\end{align*}
$$

where ω_{1} is the angle between the planes $X O G$ and $Y O G$. From the spherical triangle $X Y G$, we have

$$
\begin{equation*}
0=\left(\xi_{\delta x}-\xi_{\alpha x}\right)\left(\xi_{\delta y}-\xi_{a y}\right)+\left[\left(g_{\delta \alpha}^{2}-g_{\delta \alpha x}^{2}\right)\left(g_{\delta \alpha}^{2}-g_{\delta \alpha y}^{2}\right)\right]^{1 / 2} \cos \omega_{1} . \tag{1.5}
\end{equation*}
$$

Eliminating $\xi_{\delta y}^{\prime}$ and ω_{1} from [I.1], [1.4] and [1.5] we get

$$
\begin{align*}
\Delta \xi_{\alpha y}= & \xi_{\alpha y}^{\prime}-\xi_{a y} \\
- & \frac{m_{\delta}}{m_{\alpha}+m_{\delta}}\left[(1+\cos 2 \theta)\left(\xi_{\delta y}-\xi_{a y}\right)\right. \\
& \left.+\frac{\sin 2 \theta}{\left(g_{\delta \alpha}^{2}-g_{\delta \alpha x}^{2}\right)^{1 / 2}}\left\{-g_{\delta \alpha x} g_{\delta \alpha y} \cos \epsilon+g_{\delta \alpha} g_{\delta \alpha y} \sin \epsilon\right\}\right] \tag{1.6}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\Delta \xi_{\alpha z}= & \xi_{a z}^{\prime}-\xi_{a z} \\
= & \frac{m_{\delta}}{m_{a}+m_{\delta}}\left[(1+\cos 2 \theta)\left(\xi_{\delta z}-\xi_{\alpha z}\right)\right. \\
& \left.-\frac{\sin 2 \theta}{\left(g_{\delta a}^{2}-g_{\delta a x}^{2}\right)^{1 / 2}}\left\{g_{\delta \alpha x} g_{\delta \alpha z} \cos \epsilon+g_{\delta a} g_{\delta a y} \sin \epsilon\right\}\right] . \tag{1.7}
\end{align*}
$$

* Jeans has taken minus sign instead of $+v e$ sign in the last factor. This alters the expressions for $\Delta \xi_{a y}$ and $\Delta \xi_{a z}$.

Appendix II

$$
\begin{aligned}
& A_{\delta a r r}=\left(16 K_{\delta a} / 35 c_{\delta a}^{3}\right)\left[\left\{-14\left(13 c_{\alpha}^{2}+10 c_{\delta \delta}^{2}\right) c_{\alpha}^{2} u_{\alpha a r}+42 c_{a}^{4} u_{\delta \delta r}\right\} c_{\delta \alpha}^{2}\right. \\
& -\left(107 c_{\alpha}^{4}+182 c_{\alpha}^{2} c_{\delta}^{2}+70 c_{\delta}^{4}\right)\left(S_{\alpha r r r}-3 c_{\alpha}^{2} u_{\alpha a r}\right)-5 c_{\alpha}^{4}\left(S_{\delta r r r}-3 c_{\delta}^{2} u_{\delta \delta r}\right) \\
& +\left(139 c_{\alpha}^{4}+224 c_{\alpha}^{2} c_{\delta}^{2}+70 c_{\delta}^{4}\right)\left(P_{\alpha r r}-c_{\alpha}^{2}\right) u_{\delta \delta r} \\
& -\left(27 c_{a}^{4}+42 c_{a}^{2} c_{\delta}^{2}\right)\left(P_{\delta r r}-c_{\delta}^{2}\right) u_{a \alpha r}+\sum_{i}\left\{-3 c_{\alpha}^{4}\left(S_{\delta i i r}-c_{\delta}^{2} u_{\delta \delta r}\right)\right. \\
& +\left(11 c_{a}^{4}+14 c_{\alpha}^{2} c_{\delta}^{2}\right)\left(S_{\alpha, l r}-c_{\alpha}^{2} u_{a, r}\right)-3 c_{a}^{4}\left(P_{a \| l}-c_{a}^{2}\right) u_{\delta \delta r} \\
& +\left(11 c_{a}^{4}+14 c_{a}^{2} c_{\delta}^{2}\right)\left(P_{\delta i i}-c_{\delta}^{2}\right) u_{c a r}+\left(22 c_{a}^{4}+28 c_{a}^{9} c_{\delta}^{2}\right) P_{a i r} u_{\delta \delta t} \\
& \left.\left.+6 c_{\alpha}^{4} P_{\delta i r} u_{\alpha a i}\right\}\right]+\left(32 L_{\delta \alpha} / 35 c_{\delta \alpha}\right)\left[14 c_{\delta \alpha}^{2}\left\{\left(5 c_{\delta}^{2}+18 c_{\alpha}^{2}\right) u_{\alpha a r}-13 c_{\alpha}^{2} u_{\delta \delta r}\right\}\right. \\
& -23 c_{a}^{2}\left(S_{\delta r r r}-3 c_{\delta}^{2} u_{\delta \delta r}\right)+\left(91 c_{\delta}^{2}+114 c_{a}^{2}\right)\left(S_{\alpha r r r}-3 c_{\alpha}^{2} u_{\alpha a r}\right) \\
& +\left(91 c_{\delta}^{2}+160 c_{a}^{2}\right)\left(P_{\delta r r}-c_{\delta}^{2}\right) u_{a \alpha r}-\left(182 c_{\delta}^{2}+251 c_{a}^{2}\right)\left(P_{a r r}-c_{a}^{2}\right) u_{\delta \delta r} \\
& +\sum_{i}\left\{\left(7 c_{\delta}^{2}+18 c_{\alpha}^{2}\right)\left(S_{\alpha i i r}-c_{a}^{2} u_{a \alpha r}\right)-11 c_{a}^{2}\left(S_{\delta i i r}-c_{\delta}^{2} u_{\delta \delta r}\right)\right. \\
& +\left(7 c_{\delta}^{2}+18 c_{a}^{2}\right)\left(P_{\delta i i}-c_{\delta}^{2}\right) u_{a \alpha r}-11 c_{\alpha}^{2}\left(P_{a \mid i}-c_{a}^{2}\right) u_{\delta \delta r} \\
& \left.\left.+22 c_{a}^{2} P_{\partial i r} u_{\alpha a i}-\left(14 c_{\delta}^{2}+36 c_{a}^{2}\right) P_{\alpha i r} u_{\delta \delta i}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& B_{\delta a r r s}=\left(16 K_{\delta a} / 105 c_{\delta z}^{3}\right)\left[14 c_{a}^{2} c_{\delta a}^{2}\left\{3 c_{\alpha}^{2}\left(u_{\delta \delta s}-u_{\alpha a s s}\right)-10 c_{\delta a}^{2} u_{\alpha a s}\right\}\right. \\
& -3 c_{a}^{4}\left(S_{\delta s s s}-S_{a s s}\right)-14 c_{\alpha}^{2} c_{\delta a}^{2} S_{a s s s}+9 c_{\alpha}^{4} c_{\delta}^{2}\left(u_{a \alpha s}+u_{\delta \delta s}\right) \\
& +33 c_{\delta \alpha}^{2} c_{\alpha}^{4} u_{a \alpha s}+\left(19 c_{\alpha}^{4}+28 c_{\alpha}^{2} c_{\delta}^{2}\right)\left(P_{\alpha s s}-c_{a}^{7}\right) u_{\partial \delta \delta} \\
& -\left(5 c_{\alpha}^{4}+11 c_{a}^{2} c_{\delta}^{2}\right)\left(P_{\delta s s}-c_{\delta}^{2}\right) u_{\alpha a s}+\sum_{i}\left\{3 c_{\alpha}^{4}\left(S_{\delta i i s}-c_{\delta}^{2} u_{\delta \delta s}\right)\right. \\
& +\left(11 c_{\alpha}^{4}+14 c_{\alpha}^{2} c_{\delta}^{2}\right)\left(S_{\alpha i i s}-c_{a}^{2} u_{a \alpha s}\right)+6 \delta_{i r} c_{a}^{4}\left(S_{\delta i i s}-c_{\delta}^{2} u_{\delta \delta s}\right) \\
& +\left(288 c_{\alpha}^{4}+504 c_{\alpha}^{2} c_{\delta}^{2}+210 c_{\delta}^{4}\right) \delta_{i r}\left(S_{a i i s}-\tau_{\alpha}^{2} u_{a \alpha, s}\right) \\
& -3 c_{a}^{4}\left(P_{a i i}-c_{\alpha}^{2}\right) u_{\delta \delta s}-\left(i 1 c_{\alpha}^{4}+14 c_{\alpha}^{2} c_{\delta}^{2}\right)\left(P_{s i t s}-c_{\delta}^{2}\right) u_{a \alpha s} \\
& +\left(70 c_{\delta}^{4}+196 c_{a}^{2} c_{\delta}^{2}+120 c_{a}^{4}\right) \delta_{i r}\left(P_{\alpha / I}-c_{a}^{2}\right) u_{\delta \delta ;}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(22 c_{a}^{4}+28 c_{a}^{2} c_{\delta}^{2}\right) \delta_{i r}\left(P_{\delta i i}-c_{\delta}^{2}\right) u_{a \alpha s}+\left(22 c_{a}^{4}+28 c_{a}^{2} c_{\delta}^{2}\right) P_{a l s} u_{\delta \delta i} \\
& +6 c_{a}^{4} P_{\delta i s} u_{\alpha a i}+\left(240 c_{\alpha}^{4}+392 c_{a}^{2} c_{\delta}^{2}+140 c_{\delta}^{4}\right) \delta_{i r} P_{a / s} u_{\delta \delta i} \\
& \left.\left.-\left(44 c_{a}^{4}+56 c_{a}^{2} c_{\delta}^{2}\right) \delta_{l r} P_{\delta l s} u_{\alpha a i}\right\}\right] \\
& +\left(32 L_{\delta \alpha} / 105 c_{\delta \alpha}\right)\left[14 c_{\delta \alpha}^{2}\left\{\left(18 c_{\alpha}^{2}+5 c_{\delta}^{2}\right) u_{\alpha \alpha s}-13 c_{\alpha}^{2} u_{\delta \delta s}\right\}\right. \\
& +\left(7 c_{\delta \delta}^{2}+18 c_{\alpha}^{2}\right)\left(S_{\alpha s s s}-3 c_{\alpha}^{2} u_{a \alpha s}\right)-11 c_{\alpha}^{2}\left(S_{\delta s s s}-3 c_{\delta}^{2} u_{\delta \delta s}\right) \\
& +\left(7 c_{\delta}^{2}+40 c_{a}^{2}\right)\left(P_{\delta s s}-c_{\delta}^{2}\right) u_{\alpha a s}-\left(14 c_{\delta}^{2}+47 c_{a}^{2}\right)\left(P_{a s s}-c_{a}^{2}\right) u_{\delta \delta,} \\
& +\left(7 c_{\delta}^{2}+18 c_{a}^{2}\right)\left(P_{\delta s s}-c_{\delta}^{2}\right) u_{a a s}-11 c_{a}^{2}\left(P_{\alpha s s}-c_{a}^{2}\right) u_{\delta \delta s} \\
& +\sum_{i}\left\{\left(7 c_{\delta}^{2}+18 c_{a}^{2}\right)\left(S_{a i t s}-c_{a}^{2} u_{a \alpha, s}\right)-11 c_{a}^{2}\left(S_{\delta i t s}-c_{\delta}^{2} u_{\delta \delta s}\right)\right. \\
& +\left(252 c_{\delta}^{2}+228 c_{a}^{2}\right) \delta_{i r}\left(S_{a i i s}-c_{a}^{2} u_{a \alpha s}\right)-36 c_{a}^{2} \delta_{i r}\left(S_{\delta i i s}-c_{\delta}^{2} u_{\delta \delta,}\right) \\
& +22 c_{a}^{2} P_{\delta i s} u_{a \alpha i}-\left(14 c_{\delta}^{2}+36 c_{a}^{2}\right) P_{a l s} u_{\delta \delta t} \\
& +\left(84 c_{\delta}^{2}+120 c_{\alpha}^{2}\right) \delta_{i r}\left(P_{\delta s s}-c_{\delta}^{2}\right) u_{a a s} \\
& -\left(168 c_{\delta}^{\frac{2}{\delta}}+204 c_{a}^{2}\right) \delta_{i r}\left(P_{a s s}-c_{a}^{2}\right) u_{\delta \delta s}+\left(240 c_{a}^{2}+168 c_{\delta}^{2}\right) \delta_{i r} P_{\delta i s} u_{\alpha a i} \\
& \left.\left.-\left(336 c_{\delta}^{2}+408 c_{a}^{2}\right) \delta_{i r} P_{a i s} u_{\delta \delta i}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C_{\text {darst }}=-\left(32 K_{\delta a} / 105 c_{\delta \alpha}^{3}\right)\left[-3 c_{\alpha}^{4} S_{\delta r s t}+\left(105 c_{\delta}^{4}+252 c_{\alpha}^{2} c_{\delta}^{2}+144 c_{\alpha}^{4}\right) S_{\alpha r s t}\right. \\
& +\left(11 c_{a}^{4}+14 c_{a}^{2} c_{\delta}^{2}\right)\left(P_{\delta 23} u_{a \alpha 1}+P_{\delta 31} u_{a \alpha 2}+P_{\delta 12} u_{\alpha \alpha 3}\right) \\
& \left.-\left(60 c_{a}^{4}+98 c_{a}^{2} c_{\delta}^{2}+35 c_{\delta}^{4}\right)\left(P_{a 23} u_{\delta \delta 1}+P_{a 31} u_{\delta \delta 2}+P_{a 12} u_{\delta \delta 3}\right)\right] \\
& +\left(64 L_{\delta \alpha} / 35 c_{\delta a}\right)\left[\left(42 c_{\delta}^{2}+48 c_{a}^{2}\right) S_{a r s t}-6 c_{\alpha}^{2} S_{\delta r s t}\right. \\
& +\left(14 c_{\delta}^{2}+20 c_{a}^{2}\right)\left(P_{\delta 23} u_{a \alpha 1}+P_{\delta 31} u_{a \alpha 2}+P_{\delta 12} u_{\alpha a 3}\right) \\
& \left.-\left(28 c_{\delta}^{2}+34 c_{a}^{2}\right)\left(P_{a 23} u_{\delta \delta 1}+P_{\alpha 31} u_{\delta \delta 2}+P_{a 12} u_{\delta \delta 3}\right)\right] .
\end{aligned}
$$

Acknowledgement

The authors express their gratitude to Prof. P. L. Bhatnagar for his kind help and encouragement throughout the preparation of the manuscript.

References

1. Devanathan, C., (Miss) Uberoi C., J.Indian.Inst. of Sci., 1965, 47, 106. and Bhatnagar, P. L.
2. Grad, H. Comm.Pure and Appl.Math., 1949, 2, 331.
3. Bhatnagar, P. L., Gross, E. P. and Phys.Rev., 1954, 94, 511. Krook, M.
4. Bhatnagar, P. L. . . Zeit.Astrophys., 1962, 54, 234.
5.
6. Fokker, A. D. Ann. d. Physik, 1914, 43, 812.
7. Planck, M. . . . Sitz. der Preuss. Akad. 1917, 324.
8. Einstein, A. Ann. d. Physik, 1905, 17, 549.
9. Smouloucheski, M. V. Ibid, 1906, 21, 756.
10. Chandrasekhar, S. Rev.Mod.Phys., 1943, 15, 1.
11. Landau, L. D. . . . Physik. Zeit.Sowjtunion, 1936, 10, 154.
12. Allis, W. P. Handbuch der Phys. Vol. 12, "Gas Discharges II ' ', (ed) S. Flugge, 1956.
13. Bhatnagar, P. L. Unpublished.
14. Spitzer, L. and R. Härm Phys.Rev. 1953, 89, 977.
15. Cohen, R.S., Spitzer, L. and Ibld, 1950, 80, 230. McRoutly, P.
16. Langevin, P. . . . Comptes rendus, 1908, 146, 530.
17. Jeans, J. H. . . . "Dynamical Theory of Gases", Dover, 1954.
