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ABSTRACT 

It has been pointed out by Landau, Spitzer et at and others that when the 
charged particles of multicomponent assembly interact according to comparatively 
long range Coulomb forces, small random deflections of the particles are very 
effective in the evolution of the distribution function. Such small random devia- 
tions are incorporated into the kinetic equation-by using Fokker-Planck formalism. 
As has been done earlier in paper I (Devanathan, Uberoi and Bhatnagar, 
3. Indian Inst. Sci., 47, 106, 1965), the distribution functions are expanded in terms 
of•the Generalized Hermite Polynomials and following Grad, consistent set of 
transport equations deduced. It is found that the Fokker-Planck term enhances 
the relaxation times of all the physical variables and thereby decreases the electrical 
conductivity. Apart from the anisotropy due to the magnetic field among the 
stresses, F-P terms introduce an additional bulk viscosity term. Further they 
introduce intense anisotropy ttamong beat-flux tensors. Modified expressions for 
viscosity, heat conductivity and the electrical conductivity have been deduced. 

I. INTRODUCTION 

In a recent paper Devanathan, Uberoi and Bhatnagar i , referred to as 
I in sequel, have studied the transport processes in a plasma based on the 
procedure developed by Grad 2 . 	The basic kinetic equations describing 
the assembly are the modified Maxwell-Boltzmann equations. The necessary 
modification is the replacing of the complicated collision integrals by simple, 
physically significant, tractable collision models. This was first developed by 
Bhatnagar, Gross and Krook 3  for a single component assembly and 
extended to multicomponent assemblies of charged particles by Bhatnagar 4, 
Bhatnagar and Devanathan s. These collision models have been extensively 
studied and found to take account of binary encounters completely and as 
effectively as the Maxwell-Boltzmann collision integral. However, these types 
of binary collisions are well defined only when the duration of collision 
between two particles is much smaller than the time of free flight of particles 
between successive encounters. But whenever the plasma is of sufficiently 
high density and is hot as in the case of stellar interiors or fusion reactors 
Only weak multiple collisions take place apart from occasional strong binary 
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collisions. Moreover, in plasmas, the charged particles interact according to 
Coulomb law which is comparatively long ranged. Hence, even at moderate 
temperatures many charged particles undergo simultaneous weak interactions. 
Thus, for plasmas, one must take account of these interactions, as in 
Brownian motion. The corresponding change in the distribution function has 
been independently discovered in various contexts, by many investigators. 
especially Fokker', Planck 7, Einsteins, Smou1oucheskii 9, Chandrasekhar l ° and 
Landau". An elegent expression for this was obtained from the Boltzmann 
equation itself by Allis 12  and Bhatnagar 13 	in principle, the collisions are 
separated into weak collisions and strong collisions whenever the impact 
parameter is greater than or less than a suitable critical value b e . 	The effect 
of all simultanious weak collisions is to produce a random fluctuation Ai in 
the velocity 	of any particle. Then, the Boltzmann equation is expanded in 
averages and correlations of the random variable at  The critical impact 
parameter b e  for various types of encounters has been discussed in detail by 
Spitzer and Harm 14  and Cohen, Spitzer and McRoutly 15 . 	The resulting 
equation is the celebrated Fokker-Planck equation : 

?fa  C &f Fai  fa + 
at 	oxi  ma  a fai  

N 	;kr_ 
{-221_4  (Na g3ga fa) Wa:i (fa < a e >g) 

13=1 aga. 

± 1 a 	62 •( fa  < 	A easi>g) — • • •I  
2 	eat 6ea; 

Here we have used the notations of 1. The symbol < >g stands for the average 
of the deflection in a-type particle due to all encounters with fl-type particles. 
For the subsequent working we start with [1.11 as the basic kinetic equation. 

Langevin 16  has pointed out that the averages < L E a  > g and the 

correlations < A E a  A E a  >fl should be evaluated in terms of the moments 
of distribution functions themselves and should not be taken as constants. 
Hence we have evaluated these exact expressions from the actual dynamics of 
collision following Jeans", after removing a small error in Jeans treatment. 
The details of it are given in Appendix I. 

Following the procedure of Grad. in section 2 we establish the consistent 
set of transport equations and in section 3 we evaluate all the transport 
coefficients like diffusion coefficient, electrical conductivity, viscosity and heat 
conductivity coefficients, by interpreting the appropriate transport equations. 

2. DERIVATION OF TRANSPORT EQUATIONS 

In order to derive the transport equations governed by the kinetic 
equation, we introduce, following I, the non-dimensional velocity v. and 
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the non-dimensional distribution function ga  given by 
1/2 _4. 

Ir a  -• ( ma  ) 	e a 	 [2.1] 
Kraa  

and 	
1 (KT ga 	 aa

3/2 
) fa  9  [2.21 

Na  m a  

where Na is the number density and Taa , 

component and K is the Boltzmann constant. 
tion functions satisfy the kinetic equations, 

the temperature of the a-th 
The non-dimensional distribu- 
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ga  < 	a eal > 01 	 [2.3] T 2ca 	av ai 6 vaj  

Kraa ) 1/2 
where 	 c [2.4] 

3/2 

T aa  = 	T” 	exp II-22"-- (v a  voad 	 [2.51 
2-n Toa 	 2 Tor, 

In writiting the above equation, we have denoted by v oa  and To, the non- 
dimensional cross velocities and temperatures denoting the average velocity 
and temperature of scattered a-type of particles due to their encounter with 
8-type particles. Further, we have as usual, terminated the Fokker-Planck 
expressions at the second term, taking into account the effects of only 
diffusion and dispersion terms as for most of the investigations these two 
terms are sufficient. The detailed expressions for the averages < A ea,›, 
and < a eal A eai  > a  are given in the Appendix I. Following /, we expand 
the non-dimensional distribution function g a  in the form 

g a  (sr as , r, t) 	(JJ (" a ) 42/ Cia(n)  (r, 	I-1 ( n) 	 [2_6] 
• 	 nn0 

where c.0(v a ) is the non-dimensional Maxwell's distribution function. By the 
orthogonality property of the generalized Herrnite Polynomials IP" )  (v a), we have 

ci (:) (r, t) 	(1/X ( ") ) f ti(n)  (v 	d v a, 	 [2.1 
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where 
	 x(n ) = f 0) (V a) [H (n)  (V 01 2  d v a  

[2.81 

where n i  , n2 , n3  are the number of suffixes of 
in the set (n), with n i  + n2  + n 3  c n. 	From 	a 
equations 	governing 	the 	coefficients 	aia(n)  can 
throughout 	by 	I/ ( n)  (v a ) 	and 	integrating. 	4 
notation, we have 

direction 1, 2 and 3 contained 
e kinetic equations [2.3], the 
be obtained by multiplying 

n Cartesian tensor product 
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I Ta a 2 AV 	II (n)  (w a  4- va a ) eXp — 	W a.  dINct  
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[2.131 

the primes denoting the non-dimensional velocities after collision. 

We note the following points about the set of moment 

The operator D ( n )  introduces coupling between the convectil 

e+ 1)  with lower order moments. Further, the Fokker-Planl 
n)  preserve the non-linear collisional coupling in its cot 

Hence, to obtain a complete set of transport equations, a su 
necessary. Following 1, and Grad2, we terminate the exi 
This adequately takes into account the effects of mean vela( 
the heat flux. Again, on the same lines of Grad, we restric 
terms to I + m 3, thereby neglecting the intense interaction 
heat flux and stresses. It has been found justifiable to do sc 
nhvsical situations encountered, including shock phenomena 

equations (2.9). 
e. derivatives of 
k terms through 
plete generality. 
table cut-off is 
insion at ti a 3. 
ty, stresses and 

the collisional 
arising out of 

for most of the 
hi With the 

help of the above assumptions, we get a consistent system of equations. 
Since act(n)  are nothing but linear combinations of the physical moments, 
converting back we obtain the following transport equations : 
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2 	2 	2 
where 	 Ca a  am Co +C a  

The lengthy expressions A aarrn I I a.rrs and 
The constants Ka m  and La c  arise from 
the Fokker-Planck terms and are given by 

Co ar„ are given in the Appendix IL 
the diffusion and dispersion parts of 

Kaa =
Ma No (I)! 	

rY \

\ 
[2.21] 

TcL + m a  	2 	9  

M 26 A r ( b i24  bi)  / ( ) 
Lact 	 [2.22] 

(ma  +m s)2  1/  2 

where bu  and b i  are the upper and lower cut-offs for the impact parameter 
during weak interactions between a and 8 type particles. [refer ./]. 

The following important points should be noted regarding the above 
transport equations : The momentum equations are not affected by the 
dispersion part of the Fokker-Planck terms, but are directly coupled to the 
stresses as well as the heat flux vectors. The stress equations are not coupled 
directly with heat-flux tensors. The heat-flux tensors are coupled directly 
with all the lower order moments. •Consequently, even in the absence of 
magnetic field, we expect intense anisotropy in the medium. 

3. STATIONARY NON-EQUILIBRIUM PROCESSES 

In this section, we shall consider some simple stationary non-equilibrium 
processes to obtain explicit expressions for electrical conductivity, viscosity, 
heat conductivity and diffusitivity of the assembly, following the procedure 
of L 

In order to find the expression for electrical conductivity and diffusivity 
terms, we consider Lorentz problem. Expressing the higher order moments in 
terms of the equivalent lower order moments, the momentum equation 
reduces to 

I •
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The right hand side of the above equation can be rewritten as 
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GL 323c' where 	 D 5 a  um -- -4- ----f a a  Co at  9 

a  act 	3  

from which we conclude that the contribution of the Fokker-Planck term to 
the momentum equation for this simple case is to increase the number of 
collisions per unit volume per unit mass as expected. Consequently, for the 
Lorentz problem, the current density expressions remain unaltered and are 
given by [5.1] — [5.3} of !excepting that 

32e-v 
6f----15-a-- is replaced by — 	 o a  c act  , 

47 45a 	 Ot  5a 	3  
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Hence, the electrical conductivity a and the generalized diffusivities a ct  and 
Cr are given by 
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and 	 D2= Na  Day  + teDi3 7  . 	 [3.8] 

From [3.4} we conclude that due to the diffusive effects of Fokker-Planck 
term, the electrical conductivity decreases, this is natural since the effect is to 
increase the number of collisions. 

Concentrating on the gradient dependence of the stresses and rewriting 
the equations [2.16] and [2.17}, we obtain, 
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For simplicity of argument, we have chosen the z-axis along the direction of 
the magnetic field. As in 	we replace the heat-flux tensors by theit 
equivalent moments and solving [3.1 and [3.10] we obtain 
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with similar expressions for -Pa22 • 

The following important points have to be noticed regarding the viscosity 
matrices : The Fokker-Planck terms introduce very high anisotropy even in 
the absence of magnetic field and the magnitudes of the viscosity coefficients 
in the principal directions are decreased. This is natural since the Fokker- 
Planck terms increase the collisions, as we have already pointed out. Further 
the diagonal terms of the stress tensor depend also on the dilatation term 
(e a!!  + e a2 2  + e33) apart from other couplings. From this we conclude that 
one of the functions of Fokker-Planck terms is to increase the bulk viscosity 
of the plasma apart from introducing the anisotropy. Along the direction of 
the magnetic field, the main viscosity term is given by 

2 K  Taa  ( 1 	2 A G, \ 
[3.34] 

T a 	T + 2 SI 

Thus, the viscosity is decreased by a factor of 

(

2 _AC  ) 
ta +2A 

by the Fokker-Planck terms. As in 1, the stresses in the plane containing the 
magnetic field are coupled by the magnetic field and the viscosity is given by 
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2 
cx  [3.35] 
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•The effect of the magnetic field and the Fokker-Planck terms are self-evident. 
The Viscosity co-efficients corresponding to P a n and Pi and P - a 2 2 are given by 

2 Kraa  [i 	°AZ 	 [3.36] 
m a  To, 	(7, + 	+ 4 to2a. 
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and 

2 K T aa [(7„ + 2a) Cra + 	+ 2 to22 } 
m a  (T a  + 	[( sr a +J11).2  + 4 col] 	 [3.37) 

The anisotropy is evident even in the absence of the magnetic field. 

Proceeding in a similar fashion, for the heat flux vector, we obtain, 
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a ci  f 	4 K„ nx 1 	 299ca  + 518 ca2 d-{-2104} 

a  105 caa  

32 Lo  ( 	 2 
a  1306 C a  + 259 

• 	 105 cog  

( 

12"/2 	752V2  r  
Kaa + 	1-,aa)Ca 	 [3 451 

	

35 	 105 
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As in the case of stresses, both the magnetic field and the Fokker-Planck 
terms introduce anisotropy, even though the intense coupling is mainly due to 
magnetic field. The coefficient of heat conductivity along the magnetic field is 

5 K 2  Tact[i 	T a  (Ka   + 24)  + Ja  Ka_ 

M'era 
2 	 (T a  + Ka ) (T a  + Ka  + 4)1 9 	

[3.46] 
a  

while transverse to the magnetic field, it is 

5 K 2  T„{ i 	Ta (Ja + Ka + J a )  CO 2a 

2 inaTa 	era + Ka + J a r 4- tali 	
[3.41 

rsi ' 

Two points are worthy of note : (0 The magnitudes of these coefficients are 
reduced mainly by the Fokker-Planck terms and the magnetic field. (ii) The 
ratio of the coefficients of heat conductivity and viscosity along the magnetic 
field is no longer a constant, as in the pure collisional case. This suggests 
that pure ideal gas approximation and adiabatic approximations may not be 
strictly valid for the high density, high temperature plasmas, or gases under 
long-range forces of interaction. 

APPENDIX I 

Following Jeans", we shall derive the change in the molecular velocity 
Ea  of the particle m a  due to its interaction with a particle m a  due to its 
interaction with a particle m a  moving with velocity L5, 

Consider relative motion of m a  with respect to m a  situated at O. Let 
the plane of interaction make an angle E with the fixed plane XOG and let 0 
be the angle through which the relative velocity g aa  = E a  -- Z a  turns after 
interaction. Let X, Y, Z, G, 	be the points where the coordinate axes and 
the relative velocities before and after collision intersect the unit sphere with 
centre at the origin. Denoting by prime the velocities after collision, from 
conservation of momentum, we have 

in ag a. "'I Es c ma eta + rno4E. 	 [I.11 

Also, from the spherical triange XGG% 

cos XG' = cos KG cos GG' + sin XG sin GG' cos LXGG' , 

or 
etax (az (elk eax) cos 2 o + (42), e3„)112  sin 2 0 cos E. 	[1.2] 
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Eliminating e'a  between [IA and [I.2], we get 

ea.. 	— ea. 

	Un a  (1 + cos 2 0)6 
( " ax e a x)  "l a (giav eaaz)112 sin 2 9 cos 

ma + ma 
[i 

Similarly, from the spherical triangle YGG', we have 

(ay — 	cm (ea),  ear) cos 2 6  + (g2aa: giax) 112  sin 2 

k 
	 X (cos (41 cos e + sin ca l  sin E), 	 [1.43* 

where co i  is the angle between the planes XOG and YOG. From the spherical 
triangle XYG, we have 

(e 8x — ea.) (eay eay) + React —  gLx) (g2aa gLy)1 112 	cos to,. 	[1.5] 

Eliminating ray  and co l  from [I.1], [1.4] and [1.5] we get 

eav=eay—eay 

a  rn 6 
+ cos 2 0) (ea, — ear) 

m a  + ma 

sin 2  0 	
goax  gra cti, COS 4 g g o" sin e 	I 	[i.6] 

Ceba g2aaxr 

Similarly, 
Id 

A Ear 	6a.z 

a  M8 	+ cos 2 0) 	— Car) 
M a  + ma 

sin 2  e  (esa 	gaax  2  \ 02  Igactx  go ar  COS 	gut  gis ay  sin €} . 	 [1.7] 
)  

* Jeans has taken minus sign instead of +ye sign in the last factor. This alters the expressions 

for At ay  and atat. 
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APPtNDIX II 

"h a w En (1 6  Kaa/35c3aa) — 14 (13 c2a  + 10 d) c2a  u + 	4  ar 42 c a  u ut,1c25 „ 

— (107 c4a  + 182 c2a 	+ 70 c il) (Sam. — 3 c2c, ua.cir) — 5 c4a (Sam. 3 e; uaar) 

+ (139 c4c, + 224 c 2„ c28  + 70 en (Parr  C2a ) Libo r  

— (27 c: + 42 ca2  cg) (Parr  en 	+ — 3  C c4t  (S our  — C 7a uaar) 

± (11 Ca4  + 14 ca2  ci) (Sail, — ca.2  uctar) — 3  ca4 	 — Car) Ubor 

± (11 + 14 ca2  ci) (Pau — 	ucar  + (22 cl + 28 c: c3) Pair um 

! + 6 càt  P,5fr u aail11 + (32 L aa/35 c oa)ji 4 c 2oa  {(5 c + 18 ca2) uaar  — 13 co U aar} g 

— 23 ca2  (Sow  — 3  4 usar) + (91 c .ri + 114 c 4c2, ) (Sarn. — 3 c a2  I 4 up) 

± (91 4 ± 160 c a2 ) (P 	a rr  — CD Z1 acct. — (182 Cg + 251 ca2) (Parr  — ca2 ) uzror  

+ I{(7 c + 18 c,2) (scutir  — c uemr) — 11 c 	c3 unit ) 

cg)u„r 	ca2 (pa. 	ca2) uaar  

+ 22 ca2  Pair  u„ ai  — (14 4 + 36 cal Pair  ti aar l] 

3 Bactr„ = (16  Koa  /105  cas 1114 ca2  co 2a (l3 c fc2,(u 5a, — u a„,) — 10 c 2aa uaasi- 

- 3 c: (Sass, — Sans) — 14 c 	a. Sass, ± 9 ca4  eg(li a as 14 63s) 

+ 33  c2aa Ca4  Uaas (19 ca4  28 ca2  cD (Pa „  

— (5 Cgt4  + 11 C 2  CD (Pa „ 	U s  1{3 ca4  (Sa fi, cg uaos) a 	 a a 

+ 	ca4  + 14 ca2  ci) (Sall., ca2  uaas) + 6 a ir  Ca4  (Sails — 	11  tias) 

+ (288 ca4  + 504 ca2 c3 + 210c13 )8 i, (Sail, — ca2  uaa .,) 

4 	 4  — 3 c 	 2 / a(P 	ca-  u 88, 	I 	+ 14 c; c o ) ( Pans 	CS) Uaas 

+(7O4 + 196 c a2 	+ 120 c a.4 ) Ir (Pali — ea2 ) tins 
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—(22 c 	28 c 	3 i, (Pau  — 4) u cLas  + (22 cc,4  + 28 ca2  ci) P u - als - a bi 

+ 6 ca4  Pus  Uaa l + (240 C cz4  + 392 ci z eg + 140 4) S P u -ir-afsnooi 

—(44 c 	56 c4;2  4) Si P il e't 1 - ir - ois --cal, .1 

+ (32 La a f105 c aa) [14 ch{(18 c a2  + 5 cg) uaa, — 13 ca2  u aas } 

+ (7 ei + 18 ca2 ) (sans a 3 c 	— ii C a2  (sans  — 3 4 u nit) 

+ (7 cg + 40 ca2) (Pan  — cD tlaas  — (14 cg + 47 ca2 ) (Pa  33 - Ca2 ) LI 66 3  

+ (7 cg + 18 ca2 ) (Pass  — cg) u, — 11 ca2  (Pas, — cc2L ) Li sa, 

+ I {(7 ci + 18 cl) (Sail, — C 	— 11 ca2  (Sala  — cg u,,,,) 
i 

+ (252 4 + 228 ca2 ) a ir  (Salt, — ca2  uaas) — 36 ca2  $ r  (s60, — ci ti o ,,,) 

+ 22 ca2  P - 5is liaai a (14 ci + 36 ca2 ) Pais  u ni  

+ (84 cg + 120 ca2 ) a ir  (Pa„ — c3) uaas  

a (168 cg + 2O4 c) Sir (Pass  — cal Uads + (240 Ca2  + 168 ci) 8i, Pai, u agi  

— (336 ci + 408 ca2 ) 81.r Pais 11 851n 

	

Caarn n  (32 /Cad! 05 cL)[ — 3 C 	+ 0 05 4 + 252 cc:: el + 144 cal Sa „, 

+ 01 4,4  + 14 c: 40 (Pa23 uaai  + Pam  uaa2  4- P u ) . - 512 --aa3, 

7  (60 ca4  + 98 ca2  ci + 35 c 1 	u 

	

i 	Pt  La23 --bat + Pa31 U832 + Pal2 Id 533)} 

+ (64 Loaf  35 c a .) [(42 ci + 48 ca2) Sa„, — 6 ca2 Sa „, 

+ (14 ci 4- 20 c!) (P823 Ucza i + P631 lima + P u ) - 512 --aa3 1  

— (28 ci + 34 ca2) (Pan U•531 + Pa31 u862 + 'a12 U4563)]- 
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