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ABSTRACT 

Atlirrya m d  Knpioi? proved the convergerice of the axe clisiributio~r in a super- 
critical ow-dinzensional Be\lman-lfarris process. In this pirper the terhniqurs of 
that paptr urr applied lo u ge~icrni groi~.t/i nzodd infuodzict~r! by Jaxers. The results 
are also specialized to flge-d~ap:i~~lei~t birth and death procmes.  

Key words : Ay-dependent branching proccss, type-distribution, .lagel-5 ' model, birth 
and death process convergence. 

In a recent paper [I] Athreya and Ka.plan established the convergence 
of the age distribution in a supererirical one din~ensional Bellmen-Harris 
process under fzirly generid conditions. The techniques of that paper are 
amenable to a great degree of generalizziion m d  in this paper, we apply 
them to prove a corresponding result about :a. general growth model intro- 
duced by bgers [ 5 ] .  We also specielize our results to  the age-dependent 
birth and death process. 

The distinguishing feature in Jagers' model is that the offspring produc- 
tion does not have to wait till the death of the parent as in Bellman-Haais 
processes. Jagers postulates that to every individual x entering the pro- 
cesses there is an associated pair of objects (A,, pX) where A, is a non-negative 
random variable denoting the life time of the individual and p, a point pro- 
cess on [0, m) such that p, [A,, w) = 0 with probability one. It is assumed 
that ~ L Z  (0. Ax)< 00 w.p.1.11 i s  not assumed that A, and p, are independent. 
Finally, it is assumed that the pairs (A,, i*,) as x varies over all the individuals 
are mutally independent. The rigorous construction of such a process along 
the lines of Harris' family histories treatment [4] is done by Jagers in [ 5 ]  and 
more recently in his book [6]. 
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We shall follow the notation in [ 5 ] .  

Let Zt denote the total number of particles in the systemand Yt = (O,, 02, . . .8,, 
denote the ' type ' chart at time t where Oi is an element of the type space 8 
and consists of the present age and history of the associated particle produc- 
tion p upto the present. Thus O 

= {(a: p (v) : v< a), a 2 0, 

p ( v )  2 0 is a nondecreasing integer valued right continuous 
funclion]. 

A moment's reflection shows thst the stochastic process ( Y t :  t 2 0) is a 
Markov process with stationary transition probabilities. The state space 
consists of 

m 
B = LIB where Bn is the n-fold cartesian product of 8 and 

n=o - denotes the equivnlence relation on On equating two vectors if they have 
the same components. 

Let 3 3  be the o-algebra on @ generated by cylinder sets of the form 

{ 0 :  8 = { a ,  p ( v )  : v<a); 

a< r ,  p (A l )  = rl, . . . .p (Ak) = rk} 

where r is a +ve number 

r i s  are+ve integers 

and At's are intervals in [0, a]. 

De$ne now the type distriburion at time f by 

1 = 
A (t, B,w) = E ss (O{) 

Zt i-1 

whcre 1 3 6 3  and (4, R,, . . Ozc) is the type chart at time t. Clearly, A (t;, UJ) 
is a random probability measure. 

We now study the convergence of this measure as f+w assuming the 
following self explanatory conditions : For each individual x: 

(A.1) P{px(A;c)  = O ) = o  

( A . 2 ) P { h , > 0 } = 1  



Here (A,, pjC (0) : 21 20) denote the life time variable and the particle pro. 
duction process associated with individual x. Recall the assumption of 
Jagers that the distributions of (A,, p, (.) ) over all the individuals entering 
the population are i.i.d. 

Our main result is that A (t, . , w )  converges to a deterministic probabi- 
lity measure as t + cc provided some mild regularity conditions are satis- 
fied. Let Z(8, s, B) denote the random variable =number of particles 
in the set B at time s in a colony starting from one particle of  type 8 a t  time 0. 

Let M (8, s, B) = E{ Z (0,  s, B) 1. 
The following integral equation for M (0, s, B) is now immediate from the 
definition of a Jagers process. 

where B = (a, p (v) : v <  a) and 

q (8, s) = P{a type 6' particle lives beyond time s and its type at 
time s lies in B )  

By specializing (1) to 6' = 0 , we get 

M (0, S, B) = q (0, S )  + j M (0, s - U, B) ~ E P  (u). (2) 
0 

We have used the convention that when 6 = 0, the conditional measure 
given % is the same as the unconditional measure for a brand new particle. 
Now define the Malthusian parameter a by the relation 

ce 

J8.'"dEu(u) = 1. 
0 

(Recall the aspmptions A.l - A.4 here. Note that a must statisfy 0 < 
a < 00). 

MultiplI'ini? both  ides of (2) by ems and using standard renewal theory, (see 
Chapter 4, [23, we get 
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Multiplying both sides of (1) by e-4S, we get 

ie-as M (8, s, B) - A" (B) V (0) j 

+ ~ T M ( o , s ,  - 4  B ) ~ - ~ ( S - U ) - ~ ( B )  Ie-nUdE 
o 

where 
m 

V (0) = J cau dE u (11 + a 1 8) 
0 

0 = (a, u ( v )  : v <  a) 

Now let us make the following assumptions in addition to (A.l) - (A.4). 

(A.6) sup Jme-a~ dE (U (a  + u) / 8) + 0 
6 8 

BS S--+W 

(A.7) For each 0 c s cr w 

sup E , { p ( s + a ) - u ( a ) :  u ( s + a ) - r r . ( a ) > k }  4 0 as k 1' m 

where a and 8 are related as before. 

Kom (4), * hoosing first k and then s, we can read off the following : 

Lemma 1: Under assumptions A.1-A.6 

sup I e-aS M (0, s, B) - V (8) 2 (B) I + 0 
6.B 

as s -t w. 

Fix 0 < s < w and B €33. Consider 

We now prove the following basic, 



Lemma2: For fixed O t s < o o a n d  B E = ,  x ~ : > o  
where Xt is defined by (5), provided (A.l)-(A.7) hold. 

Proof : Since the random variables Z ( 9 ,  s, B) are non-negative and 
sup M(9,  s, B) < m, we can employ moment generating functions. 
a. B 
To prove the lemma, it sufficies to show that for each y 2 0 

E { ~ r ~ r l  F,} -. 1 in probability as t -+ m where F is the 
U-algebra generated by family histories upto time t .  

In view of the assumptions A.l-A.7 

where N (B), Zj (s) ,j = 1, 2,. . . . are independent with Zj ' s  having the 
sxme distribution as Z (0, s, @) and N (9) having the distribution p ( s  + a) 
- p (a) Conditioned on 9. 

This makes the family ( Z (0, s, B), 6 c O, BE a) uniformly integrable. 

Let P(y ,  9, s,B) = E(e-'fzIa,S$BI 1. 
By uniform integrability 

a s ~ $ 0  
and sup M (0, s, B) < m. 

0. B 

Using the fact log (1 - h) = - h + o (h) 

as h 4 0 , we conclude $at 
E {e+t j Ft} 

2% - "p {C & M (%is, B) + log P(&, Bi, S, B ) ]  
1-1 

+ I  w.p.1 since Z t + m  as t 4mw.p . l .  q.e.d. 

Let us now introduce one further assumption : 

(A.8) k$ V(0)  > 0. 
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4. The Main result : 

We are rcady to state our main result. 

Theorem 1 : Assume 4.1 4 . 8  hold. Then for any initlal d i s t r~but io~  
with finite number of parucles, for each 

B €3, A ( t ,  R W )  -+A ( B )  L a (G) 
'2 (0) 

where A ( t ,  B, co) and A (B) are respectively as defined by (*) and (3)  in 83. 

Proof' : Ii sufficies to consider the case of starting with one particle. 
of type 0 ,  Then by the addilivity of the process 

l+ 
Z(8,, t + s , R ) =  2 Z ( B i ,  S, B) 

* = I  

Where {Bi, i = 1, 2, - . .Zti is the type  char^ at time t. 

I 
- x The Numerator = 
z t  { , s B - M (Ii, s, B M c n s  

8 - ,  

21 

- t  C [M (R,, s, I3)e -as - Y (B i )  '2 (B)I Zt 

Z t  
1 j3t x The Denominator - {A [Z (B i ,  A ,  @) - M(4, @ ) l p - n s  

2=1 

Given an .t > 0 there exists by lemma 1 an so > 0 such that 
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Now let t + oo and appeal to lemma 2, to make the first term of the 
numerator and denominator to go to zero in probability. Finally use (A.8) 
to see that 

is bounded below and hence may be removed as a common factor. q.e.d. 

5.  AGE-DEPENDENT BIRTH AND DEATH PROCESS 

In age-dependent Birth and Death Processes introduced first by Kendall 
[7]), each object produces a random number of off-springs, born at various 
times throughout its lie ; the process is specified by the birth rate h (.) and 
the death rate p (.) ; the conditional probability that a particle alive and of 
age x at time t gives birth to an offspring in the time interval [t, r + dt] 
is )i (x)dt and the probability of the particle dying in the same interval 
is p (x) dt and that these probabilities are independent of the past once 
the age is known. 

In this section, we obtain conditions on the birth rate A (.) and the death 
rate p (.) which ensure that Theorem 1 of section $ 4 holds for age-dependent 
Birth and Death processes. We assume that hand w are continuous functions 

m 

on [O, f f i ) ,  that h and p are non-negative and J p (y) dy = w. We use 
notations similar to those in the previous section: : In this case, the type 
space is [o, w), Z (x, y, s, o) denotes the number of particles of age < y 
at  time s, initiated by a single particle of age x a t  time o, in the " family w ": 
M(x,  y, s) is the expected value of Z ( x ,  y, s, w) .  We write Z ( x ,  s, w )  
and M(x,  s)  for Z ( x ,  w ,  s,  w) and M (x, W, s )  respectively. We 
assume in what follows that the probability of extinction is zero. We define 

f (x,  s )  = P (Initial particle lives upto time s/ its age at  time zero = X )  
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where, the Malthusian parameter a is defined by the relation 

The expected number C, ( t )  of first generation offspring produced in time 
by a particle of age x at time o is given by 

EQ 

I1 is clear that ' a ' is determined by 1 e-au dC, (u) = 1 

The integral equation for M (x, y, s )  is : 

Where J (u) = ) if O 
I O i f  u > O  

Theorem 2 : 

Assume that h is bounded, 

- '+U 

l& h (x)  > 0 and lirn .f p (y )  dy < m 
*--fm n-+m G 

Then, A (t, x, UJ) -n+ A (x). 

ProoJ-From the integral equation satisfied by M ( x ,  y, s), it is clear 

by renewal theory [2] that lim e-aSM (0, y, s)= A (y ) ,  
a - - * a  

where 

m 

,-a cs-'o - L? (y) j e-a* d C, (u) + Constant 1 e -aU d C s  (u). 
4-k 



M <; 
if 1 h ( t )  I< M V  r r [ o  oo). 

Hence, sup ['T 1 M (0, y, s - U) e-a I - A ( y )  e -*!) d cr ( y ) ]  

m 
sup 1 J e r a U d C X  ( u ) / + O a s ( s - - k ) + m .  

s-X 

It follows, therefore, that 

SUP j e - a S M ( x , y , s ) - d ( y ) V ( x )  1 + O  a s s  + m .  

From the integral equation : 

M(x ,  s )  =f (x,  .r) + J M ( o ,  3 - U) d CX (u) 

satisfied by M (x, s) = IM (x ,  m, s), we see that 

sup / e - O S M ( x ,  s ) - K ( W ) V ( X )  1 + - O  as s + m .  

By the argument in Lemma, 2, 3, it follows that 

, i l  

fixed s in (o m) and y in (o m). 
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Since h is continuous, so is V, by bounded convergence theorem. Since 
[im h (x )  =. , 0, h does not have compact support : hence V ( x )  > 0 for 
- -. 
,-+ 

-each fixed x. By continuily, inf V ( x )  > 0 for each k < m. 
r e [O hl 

By Fatou's lemma, 

a+" 
since ( x )  > 0 and lim .I" p ( y )  dy < oo for some u. 

=-+- s+Do D 

Thus, inf V ( x )  > 0. I t  follows that -- V (xi) i s  bounded below 
0 4 r < i - m  z (XI GZL ? 

in probability. 

The theorem now follows. 
P 

Theorem 3 : If lim X (x )  = 0, then A (t, x, w )  + A  (x) 
a+- 

provided, E ( r, (y )  log 1 ,\ (y )  ]) < m, where A b )  = .I' e-av ( y )  dy and y 

is a random variable having distribution F, where 

Proof.-We have, 
z ($1 

Z (t + S) r"S = 
( 2 )  

z&j z 2, ($1 e--, where Zf (s)  = number of 
,=1 

particles a t  time (s + t )  originated from the jth particle a t  time t. 

Then 

1 Z s f  reas = -- 1 
z ( t )  z ( r )  z Zj ($1 cas + - C z, ( s )  e - l ,  

iri < k z (0 
= $ > h  

where, as  usual, 

{xj]fL1i is the ' age-chart ' at time t. 

Now, E ( Z j  (s) e-"S = E ( M  ( xj, s) etas. ,., , 



00 a+* 

v (x )  = J exp (--a u) h (x + u)  exp (- J" u (y )  dy) du . 
1 0  as x + w, the last term : 

Zkiz Zj ( 3 )  can be made arbitiarily small (in probability iiy 
I ,  > I 

choosing s large an? k large. 

is bounded above in probabiliiy since M (x. .r) cQS is bounded for x and 
in (0, w). 

We now show that 'At *s)ez" is bounded below in probability. For z ( t )  

(1) - t O  as t + w and 6, 1 0 ,  since - - converges in distribution eat 
to a positive random variable W with a continuous distribution function. (See 
Donq [3] ,  Theorem 7.7)- 

Also since M (a, t )  e-'t is bounded above, it is lear that 

P(Z(t)e4> 8 3  +O as r -. co and 6, -+ m. 

-, 
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From the equation 

z ( t  +?)e-.S - Z ( k I t )  -1 
( I )  z (t) z (k, tj pj (s) 

*I<": 

as k i- m and t --z m. It now followL, as in Athreya, Kaplan ([1], Corollary 
2, 4) that 

Z (f) 

&n ZV (x7) is bounded away from O in probability as t + CO. 

,=1 

Since sup V (x) < oo and - s+u 
sup Je-"U A ( x  t u) exp (- j" L L C ~ )  dy)du -+O 
r T  

as T -- w, i 

SYP 

"P 

and 

1 

follows exactly as in the previous cases that 

(Mu  (x, s) E - ~ "  - V ( y )  2 (x) j + 0 as s + oo 

M,(w, s)e a S - - ~ ( c m ) ~ ( y ) I - t O a s s - + o g  

This completes the proof of theorem 3. 
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