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ABSTRACT

Athreya and Kaplan proved the convergence of the age distribution in a super-
critical one-dimensional Bellman-Harris process. In this paper the technigues of
that paper are applied to a general growth model introduced by Jagers. The results
are dlso specialized to age-dependent birth and death processes.
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1. INTRODUCTION

In a recent paper [1] Athreya and Kaplan established the convergence
of the age distribution in a supercritical one dimensional Bellman-Harris
process under fairly general conditions. The techniques of that paper are
amenable to a great degree of generalization and in this paper, we apply
them to prove a corresponding result about a general growth model intro-

duced by Jagers {5]. We also specialize our results to the age-dependent
birth and death process.

2. THE MODEL

The distinguishing feature in Jagers’ model is that the offspring produc-
tion does not have to wait till the death of the parent as in Bellman-Harris
processes. Jagers postulates that to every individual x entering the pro-
cesses there is an associated pair of objects (Ay, pye) where ), is 2 non-negative
random variable denoting the life time of the individual and py a point pro-
cesson [0, oo} such thatpx{Az, oo) = 0 with probability one. It is assumed
that py §0,_ Ag)< cow.p.. Tt is notassumed that Ay and py are independent.
Finally, it is assumed that the pairs (A, py) a5 x varies over all the individuals
are mutally independent. The rigorous construction of such a process along
the lines of Harris’ family histories treatment [4] is done by Jagers in [5] and
more recently in his book [6].
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Convergence of Type Distribution in a General Growth Model 103
3. PRELIMINARIES

We shall follow the notation in [S].

Let Z; denote the total number of particles inthe systemand Yy = (6,, 6, . . by,
denote the ‘ type ’ chart at time # where 8; is an element of the type space &
and consists of the present age and history of the associated particle produc-
tion p upto the present. Thus @
={a p(@);v<a), a=0,
w{(v) >0 is a nondecreasing integer valued right continuous
function}.

A moment’s reflection shows that the stochastic process { Y¢:7 >0} is a
Markov process with stationary transition probabilities. The state space
comnsisis of
bd . .
L= UB" ~ where ®8"is the n-fold cartesian product of & and

=0

~ denotles the equivalence relation on @ equating two vectors if they have
the same components.
Let &5 be the s-algebra on © generated by cylinder sets of the form
{0:8={a pn®:v<a};
asr, p(dy) =ry, ....p (i) =ri}
where r is a *ve number
ris are--ve integers

and A4;’s are intervals in [0, a].

Define now the type distribution at time ¢ by
1 Z "
= Xg (&
AQ@, B,w) Z: é; X (6) ()
where Begs and (8, 6,,..07¢) is the type chart at time 7. Clearly, 4 (%,", w)
is a random probability measure.
We now study the convergence of this measure as #>oo assuming the
following self explanatory conditions : For each individual x.
(A1) P{pe () =0} =0
(A2 P{az>0}=1



104 K. B. ATHREYA AND XK. RAMAMURTHY
(A-3) E{ug (M)} < oo
(A-4) P{pghy, 00} =0}=1

Here (A, pe (v) : v >0) denote the life time variable and the particle pro-
duction process associated with individual x. Recall the assumption of
Jagers that the distributions of (Ay, pe (-)) over all the individuals entering
the population are ii.d.

Our main result is that 4 (¢, . , ») converges to a deterministic probabi-
lity measure as 7 — co provided some mild regularity conditions are satis-
fied. Let Z (6, s, B) denote the random variable = number of particles
in the set B at time s in a colony starting from one particle of type  at time 0.

Let M(6, s, Y=E{Z(, 5, B)}.

The following integral equation for M (¢, s, B) is now immediate from the
definition of a Jagers process.

Mt 5 By =g (6, )+ M (0,5~ BYE(du @+ a) | (@ u ©):
< a)) ey
where 6 = (g, . (v): v<a) and

g (8, s) = P{a type 0 particle lives beyond time s and its type at
time 5 lies in B}

By specializing (1) to 8 =0, we get

M@, S, B)=q(0,s)+ [ M@©,s— u,B) dE (). @

[

\\_/e ha.v? used the convention that when 8 = 0, the conditional measure
given @ is the same as the unconditional measure for a brand new particle.
Now define the Malthusian parameter o by the relation

Tew dEu () = 1.

(]

(Recall )the asgumptions A.l — A4 here, Note that o must statisfy 0 <
a < oo},

Multiplying both sides of (2) by e=% and using standard renewal theory, (see
Chapter 4, [2]), we get

. . .
Im e MO 58 =4
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[--4
g, 1) evtdu
= 3
[ ues® dEu (u)
1]
Multiplying both sides of (1) by ¢, we get
le®s M0, s, BY— A (B V(D]

<e+[[MQO,s, —u Byes &0 _ 4 (B) et dE
'
(«(u+al () +ocomst. [ et dE@u+ald) (4
i
where
V(6) =] e dEu(u+alb)
0

0 =(a u@:v<sa)
Now let us make the following assumptions in addition to (A.1)-(A.4).

(A.5) sgp (fe—“” dE(u(a 4+ v)}8)) < oo

(A6) sup e dE(u(a +v)|6) =0

as § ~—-»>o0
(A.7) For each 0 < s << co
S%p E{puGs+a)—u(@: ui+a)—u(@=k} | 0as k?t

where ¢ and 6 are related as before.
Fiom (4), - hoosing first k£ and then s, we can read off the following :

Lemma 1: Under assumptions A.1-A.6
sup | e M (9, 5, B)—V () A(B)| ~0
B

as § —» oo.

Fix0 < 5 < oo and B «%. Consider
Z
Xe= 4 (2 (6 5 BH— MO, 5, B)} )
ti=1 : >

We now prove the following basic,
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Lemma 2 : For fixed 0 <5 <<coand B e, X i>0
where X: is defined by (5), provided (A.1)-(A.7) hold.

Proof : Since the random variables Z (6, s, B) are non-negative and
sup M(8, s, B) < oo, we can employ moment generating functions.
0.5
To prove the lemma, it sufﬁcies to show that for each y >0

E{e"&| F} -1 in probability as ¢->oco where F is the
c-algebra generated by family histories upto time 2

In view of the assymptions A.1-A.7
K (6) .
PZ®, s, )= K}<P{1+ 3 Z;(s) > K} ®
j=r

where N(8), Z;(s),j=1, 2,.... are independent with Zj’s having the
same distribution as Z (0, s, @) and N (6) having the distribution u (s + a)
- p(a) Conditioned on 6.

This makes the family {Z (6, s, B), 6 ¢ @, Be &} uniformly integrable.
let F(y, 8, s, B) = E(e~7% (6,5, 8)),
By uniform integrability

sup }fl:fﬁ;_w)ﬂ — M@, 5 B -0

asy |0
and gup M, s, B) < oo,
. B

Using the fact log (1 — A =—h+o(h)

as 240, we conclude that
E {e™7™ | Fy}

z S
= exp {le%—tM (835, B) +103F(2y‘t» bir 5, B)}

-1 w.p.l since Z; + oo as £ — cow.p.l. g.e.d.

Let us now introduce one further assumption :
(A.8) ix%f V{8 >0.
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4. The Main result

'We are rcady to state our main result. )
Theorem 1 : Assume A.1-A.8 hold. Then for any initial distribution
with finite number of particles, for each
A
4@
where A (#, B, ») and A (B) are respectively as defined by (*) and (3) in §3.

BeB, A(l, B w) > A(B) =

Proof : It sufficies to consider the casc of starting with one particle.
of type 0, Then by the additivity of the process
z
ZBot+5 B)=2Z (6 5 B)
Where {0;, i =1, 2, ---Zz} 1is the type chart at time 7.

_Z (0, t+ 5B
AC T8 Bo) =75 s 0)

Zt
! &
2, > The Numerator = { - L [Z (6;, 5, B) — M(8;, 5, B)jess

+ zlzZ [M (8, 5, Ble™** — V' (8;) A (B)]

Zt
1 v ~
+ 7 DV @)}
Zt_‘
%t x The Denominator = {%t ZJ [Z(8;, s, ®) — M(8;, s, D)]e—ss

i=1

Zy
3
+ 5. ) M@ s ©) e

i=1
Zt

~V6)A®) + 5 ) v ) A®)]

=1

Given an .« > 0 there exists by lemma 1 an s, > 0 such that

Zt
1y\h B .
S?}E,_TZL [ (8; 5, Ble==s — V(8) A (B)] < «

i=1



108 K. B. ATHREYA AND K. RAMAMURTHY

Now let 7 ~ oo and appeal to lemma 2, to make the first term of the
mmerator and denominator to go to zero in probability. Finally use (A.8)
to see that

Zy
2ol
nf 7 ) V)

=1

is bounded below and hence may be removed as a common factor. q.ed.

5. AGE-DEPENDENT BIRTH AND DEATH PROCESS

In age-dependent Birth and Death Processes introduced first by Kendall
[7D, each object produces a random number of off-springs, born at various
times throughout its life ; the process is specified by the birth rate A(.) and
the death rate x(.) ; the conditional probability that a particle alive and of
age X at time 7 gives birth to an offspring in the time interval [z, 7 df]
is X (x)dt and the probability of the particle dying in the same interval
is p(x)dr and that these probabilities are independent of the past once
the age is known.

In this section, we obtain conditions on the birth rate A (.) and the death
rate p (.) which ensure that Theorem 1 of section § 4 holds for age-dependent
Birth and Death processes. We assume that A and p are continuous functions
on {0, co), that A and p are non-negative and ofo w(y) dy = oo. We use
potations similar to those in the previous sections : In this case, the type
space is o, o), Z(x, y, 5, ) denotes the number of particles of age <y
at time s, initiated by a single particle of age x at time o, in the “ family « ”:
M (x, y, 5) is the expected value of Z(x, y, 5, »). We write Z (x, 8, @)
and M(x, s) for Z(x, oo, 5, w) and M (x, oo, 5) respectively. We
assume in what follows that the probability of extinction is zero. We define

A(x 1, @)= Z_% ‘E’B‘, t;))‘")

I.e“‘s f(o, 8)ds
AX) = T—
fﬂe”“sf(o, s)ds

£(x, 5) = P (initial particlelives upto time s/ its ageat time zero = x)

Vo) =Te A (x + wyexp [~ T u(y) dy] du
. ]
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where, the Malthusian parameter o is defined by the relation
Tema@exp — () dy] du =1

The expected number Cy (f) of first generation offspring produced in time
by a particle of age x at time o is given by

Co ) =foxpl—Tu0) ] 2 (v + u d
It is clear that ‘«’ is determined by ?:e"““ dCy () =1
The integral equation for M (x, y, 5) is :
M(x, y, 8)=f(x, S)J(x—l—s~—y)+fM(o,y,s~ w) dCy (u)

1 1ifu<0

Where J (u) = W0 if u> 0

Theorem 2 :

Assume- that A is bounded,

— &tu
Iim A(x)>0and Zim [ p(dy <<o
2550 -390 &
Then, A (1, x, w)—— A (x).

Proof—From the integral equation satisfied by A (x, y, s), it is clear

by renewal theory [2] that lim e—**M (o, y, s)= 4 (3),
]

where
_ } e~ f(o, s) ds
A0)= 5————
J 167t d Co ()
0
Also,

le M, y,) = APV |<e™ +TIM(0J,S'— “)

e - — 7 ()] &% d Cy (4) + Constant [ e~**d Cz ().
P
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Now, |'T e d Ce ()|
) =g - st
=|f e a(x+u) eXp(A- I opdy du|)
(] _ e~u(s_-k)

<

<

sl® elE

if 1A | K MV 1ieloco)
Hence, sup [a}k | M (0, 3,5 — u)e=* S — 4(y) e~ d Cy (y)]
—~0as (5s— k) — oo,

oo

Also, | | e=*dCy (1)
-k

=i T e~ A (x + upexp (— '}uﬁ'(}’) dy) du |

<4§e‘“ k) | 5o that

sup | ;ﬁ e~ dCqx (W) | —0as (s — k) - oo,

I: follows, therefore, that

sup e S M (x,y,5) — APV (x) | ~0 as s -+ oo

Fr:)m the integral equation :

M(x 8) =S )+ Mo, s—u)d Ca @)
satisfied by M (x, s) = M (x, oo, 5), we see that

sup | e % M (x, 5) — A () V(x) | =0 as s — oo,

By the argument in Lemma, 2, § 3, it follows that
| Z g
Y, r .
XtEZ'(t’jz_‘{é:ri(Sa ¥)— Mg (s, )} =0 for

fixed s in (0 =) and y in (0 ool

Now, ¥ () =T e A(x + w oxp [~ T () dy] di,
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Since A iIs continuous, so Is ¥, by bounded convergence theorem. Since
lim A(x)>,0, A does not have compact support : hence V(x)> 0 for

2» . . . -
—each fixed x. By continuity, inf V{x)> 0 for each k < co.
€ [ok]

By Fatou’s lemma,
oo R P
m V@) =le® im A(x+w) exp (— m [ p()dy)du>0
3 o &> 00 z>00

£

ot
since Iim A(x)> 0 and Ilim [ 4 (¥)dy < oo for some w.
300 z>0Q o

e
1 Z(¢)
Thus, inf ¥(x)> 0. It follows that —. ZV(x,-) is bounded below
0 2< 00 z(x)

in probability.

The theorem now follows.

Theorem 3 : If Hm A(x) =0, then A (1, x, w) — 4 (x)

230
provided, E(A () log | A () ) < o0, where A () =[e~*¥ X (3) dyand y
o
is a random variable having distribution £, where

(o e .
o) — {1 — exp. ( {p\y) dy) if t>0
if +<<0.

Proof—We have,

Zin
Z(t+s8) . 1
‘A(Z'Tz)“lr S 10 Z Z; (s) e*5, where Z; (s) = number of
1=1
particles at time (s + £) originated from the j** particle at time ¢,
Then
Z(t+s) . 1 . 1 a
2O =2 L A0 gy D50,

2 <k Lidd

where, as usual,
{32 is the ‘age-chart’ at time f.

Now, E(Z; (s) e==5 = E (M ( xj, 5) es,
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Since sup | M (x, 5) e — A V()| =0 as s — oo and since

oo . U
Vix)=] exp(—aw) X(x +u) exp (— w(y) dy)du
. -
— (0 as x — oo, the last term :
1 ) . I . -
ZZI)Z Zj (s} can be made arbitrarily small (in probability by

>k
choosing s large and k large.
] . y o -
Also, 70D Z‘ Zj(s)e
A
is bounded above in probubility since M (x, 5) ¢ % is bounded for x and
in (o, o).

Z(t 4 s)es

We now show that "z is bounded below in probability. For
Z(t4-5)e s
0<n < 1, we have P W(—Z(t‘%‘ << ()}

CPZ+s)esh =5, Z () e < 8y, 8, <18y
+P(Z(+ 5)esH < )
+P(Z (et = 5)
=P(Z(¢+s)e-E+D < §)
+P(Z(Ee=t> 5y
if 8. 8, are positive and 8, > 8,, Now P(Z(t + s)e~t S+ < (5)

. Z(t e
+0as z—~ co and § 0, since ’Ea‘('f converges in distribution

toa positive raudom variable W with a continuous distribution function. (See
Doney [3), Theorem 7-7)—

Also since M (o, H)e—! is bounded above, it is lear that

P(Z() e 8) >0 as 1 - oo and 8, — oo,
Thus,

Z(t+ s)ees
P(*( z(s[)je““">7l)‘*1 as 7 -0 and ¢ — oo,

uniformly in s,
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From the equation

Z(t-— Ye s Z(k, D)
20 T 20 Z (k 5% ®

<t

1 .
+mZZj (), it now follows that
>k
Z (&, D

P(-—Z‘(—”)— = 17)) - 1 for sufficiently small %,

as k —> coand t -» co. It now follow., as in Athreya, Kaplan ([1], Corollary
2, 4) that
Za)

Z ( ) ZV()O,) is bounded away from 0 in probability as ¢ — oo,
Since sup V(x) < oo and

oo .
sup [e % X(x + u) exp (——f w(y) dyydu -0
© T Il

as 7 — oo, it follows exactly as in the previous cases that

sup [(My(x,5)e~2 — V() A(x) | ~0as s+ co

sup | My (o0, s)e * — A(c0) ¥'(3) | 0 ass — oo

and
Z@)

22 i ) — Mui (e 91} -0 as 1 oo,
This completes the proof of theorem 3.
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