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ABSTRACT 

Studied in this paper are some control problems which can conveniently utilize 
the solution of the linear algebraic equation AX XB = — Q. These problems 
include, in addition to the already known ones, 

(1) Evaluation of ISE (Integral of the squared error) for a linear time invariant 
system with a single input of the polynomial type. 

00 Determination of ISE of a model following system. 

(iii) Simplification of large dynamic systems. 

Key words: Time invariant system, Integral square error, Model following, Simplification 
of large systems. 

1. INTRODUCTION 

It is known that the solution of the linear algebraic equation 

AX XB = 	 (0 

where A and B are square matrices is useful in 

(a) the study of stability of a dynamical system [I] (with B = A') 

(b) the construction of observers for linear time invariant multivariable 
systems [2, 3] 

(c) studying suboptimal problems by aggregation [4, 5] 

(d) the pole assignment of multi-input systems [6]. 

References [3] and [5] give methods of obtaining the explicit solution for 
(1). A survey of various methods of solving (1) can be found in [7]. 

In this paper we are concerned with some new applications of the solu- 
tion of (I). It is well known [11] that for a unique solution X to exist when 
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Q is not a null matrix, A 
Further if the eigenvalues 
parts, then X is given by 

and — B should not have common eigenvalues. 
of A and B are stipulated to have negative real 

• 

= eAt Q eat d ie  
0 (2) 

But evaluation of X via (2) is a formidable task. Computationally a 
would be simpler to solve for X using one of the methods suggested in [3], 
[51 and [7]. This advantage is availed in discovering new applications for 
X in this paper. 

This paper is organised as follows. In section 2.1, we are concerned 
with the determination of ISE for polynomial type of inputs, more speci- 
fically for step, ramp and parabolic inputs. In section 2.2, we consider 
the evaluation of an improved error criterion essentially for the same inputs 
considered in section 2.1. In section 3, the evaluation of ISE for a model 
following system is considered. In section 4, the application of (2) to the 
simplification of large dynamical systems is dealt with. 

2.1. Determination of ISE-polynomial input. Consider the system 
described by 

dx (Oldt --= Ax (t) bu (1) 

y 	= hx 
	

(3) 

where x is (nil) state vector, u and y are scalar input and output respectively. 
A, b and Ii are matrices of appropriate dimensions. In what follows, we are 
concerned only with inputs which are polynomials in time t. 

Let 

e 	u 	y (t). 	 (4) 

Then for a stable system (eigenvalues with negative real parts) ISE 

I e2 (t)dt is a measure of the quality of the transient response of the 
0 
system. For the system (3), for zero initial state, it is known that 

y (I) = J heA (t-r) bu  (r) 	 (5) 
9 
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From (5) it is easy to derive explicit expressions when u (t) is a unit step, 
'ramp or parabolic inputs. If II (0 is a unit step input, then (5) yields 

y (t) = 	/1/4-1  b heAt A-1 b 	 (6) 

when 
(1) = t, 

(5) takes the form 

y = hA-2  eAt b ItA-2  b kti bt 
	

(7) 

when 
u(1) = t 2,12!, 	. 

we get 
y = hA.-3 eAt b ht3  b hA-2  bt — 	b Oa! 

	
(8) 

Equations (6), (7) and (8) are derived under the assumption that A-' exists. 
This is true since A is a strictly stable matrix and does•not have any poles 
at the origin or on the imaginary axis. 

If the input is a polynomial, input of the type u (t) = 1 	t (t 2/2!) then 
by superposition 

y = (hA-3  e t b it.A-2 eAt b hA-1 eAt 

hA-3  b — hA-2  b (1 + — 	b a l+ t t2129. 	(9) 

From (4) and (6) to (9), it is easy to derive expressions for e(t) when inputs 
are as described above. From these expressions it is clear that for the ISE 
to be finite we require that 

hA-1  b 

hA-2  b 0 

hA-3  b = 0. 	 (10) 

Under these restrictions we get the following expressions for a 
parabolic and a polynomial input respectively. 

e (t) = — 	eAt b 

e (t) 	hip-2 eAt b 

e (t)=-4 — hats eAt b 

e (t) = — (hA-3  hA-2 + m-9 4t b,  

step, ramp, 



178 

Under 
calculating 
of E(s) as 

M. R. CHIDAMBARA AND N. VISWANADHAM 

these conditions A. A. Krasovskii [8] developed a formula fo r  
1SE for step inputs. 	Krasovsk ii's method involves expansion 

M+1 

E Uksk -1  
ke 1 
A1+1 

Vkskei 

k est 

and evaluation of N-th order determinats formed from Vi, = 1, 2,... N. 
We present here an alternate method utilising the solution of the equation (1). 

From (11), it is true that for step inputs 

ISE = Te2 (t) = 	
0 

(hA -1  eAt 	egt ' s  t 	dt 
0  

	

hA-1  XA --1?  Ix' 	 (15) 

where X = et bb'et dt is the well-known solution of 
0 

Ard- 	=- — bb'. 	 (1 6) 

In a similar way when the inputs are ramp, parabolic and polynomial inputs 
the ISE can be expressed utilising X, the solution of (16). 	More explicitly 

ISE = hA-2 	(u (t) = 	 ( 17) 

ISE =is hA-3  XA -3'h', (u (t) = 1 2121) 
	

(18) 

ISE = (hA-3  hA-2  hit') X (A -3' h' A -2°  Ii' 
(u(t) = 1 	t 	t 2/21). 	 (19) 

2.2. Improved error criterion. In many cases, the minimisation of the 
ISE may result in systems with excessively strong oscillations. In such cases, 
it is desirable to consider the criterion 

00 
de) 2] = f [e2  + tit  dt 	 (20) 

0 
where T is a specified constant [8]. 

The procedure described in -2 .1 may be extended to evaluate lk when 
the inputs are of the polynomial type. Here we shall consider only step 
and ramp inputs. For other types of polynomial inputs the application is 
atraightforward. 
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To evaluate lk, we need find only Ii(deldt) 2  di since r e 2  (t) di is evaluated 
0 	 0 

already in §2.1. When u(t) is a unit step, for t > 0, using (4) we get 

de dyldt 	hAx hb — heAt b. 	 (21) 
dt 

When it (t) is a unit ramp, for I > 0, we get 

de 
di

= 1 — (dyldt) = 1 — hAx — hbt 	hA -1  eAt b using (10). (22) 

Along the same lines of §2.1 it is easy to see that 

lk = hA -1  XA -r 	hXh' 	= step-input] 	• 	(23) 

and 

= hA-2  XA-2i  If ± het' XA -A P  [u (t) = tJ 	 (24) 

where X is the solution of (16). 

From §2 - I and 2.2 it is interesting to note that the evaluation of the 
ISE or Ik involves only the solution X of (16) for polynomial type of inputs. 

3. MODEL FOLLOWING SYSTEM 

There are situations when we stipulate that the output of the system (3) 
should follow the output of another system called the Model described by 

dxd/dt = Adxd bdu 

Yd = hdxd 	 (25) 

when both (3) and (25) are excited by the same input. In such cases we 
need to evaluate 

= 0 [31  — Y d 	dt 
	

(26) 

Augmenting (3) with (25) We get 

rdx/dti = FA iixon + richt@  
dxd fdt 	 L (0J 	1 bd 

--= A axa  ± bail (27) 

e = Y Yd= 	hd] Pei haxa 
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when it (0 is a step-input, using (6), we get 

e (t) = — haila-1  ba ± haAa-i  eA stba t  . 

For id to be finite we require that haA as' ba  = 0. Under this condition 

Id = haA a-i X Acr h a ' 

where X is the solution of 

AaX XA a' = baba'. 

Similar expressions can be derived in an analogous way when the input 
is any other polynomial type. 

4.1. A brief summary of a method of simplification of large dynamic 
systems. The problem of simplifying linear dynamical systems was the 
subject of a number of papers by Chidambara [9] and Davison [10]. The 
problem can be stated as follows [9J: 

Given an exact p-input, q-output n-th order linear time invariant system 

dxIdt = ix Gu 

y Kx 	 (28) 

where J is the Jordan matrix; to find a simplified model of order l< n given by 

2 = Fz + Du 

y Ez 
	

(29) 

such that 

(i) the simplified model (29) retains / dominant eigenvalues of the 
system (28), 

(ii) the model amplitudes should be such that the integral of the squared 
error between the exact and simplified models is minimum for 
a step input. 

(iii) the initial and final values of the transient response of the simpli- 
fied model under the influence of a polynomial input upto second 
degree in time shall show no error when compared with the corres- 
ponding exact response. 
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To solve the above problem, rewrite (28) [10] 

[dd.etta://ddit i = [0.43 JO] rard + [ GGJ 
it 	 (30) 

y(t) = [KIK2] 11 x2  

where 4 contains I predominant eigenvalues and .1 n  the remaining (ii — 0 
eigenvalues. Following [9], assume the simplified model as 

2 = Jp  z + Giu 

Y * 4= (K1 + 0 z. 	 (31) 
co 

In (31) Q has to be selected such that for i=1, 2, . ., q; f (e'i et) di is minimum 
0 

where 

* 

where qj is the error in the i-th output for a step input at the j-th input node 

The complete solution to this problem was given by Chidambara [9]. 
Let q1 ' be the i-fit row of Q. Then Q is determined from 

N'liqi i 
0 i Lyi j 

=r vii  
i wi  j (32) 

where yi are Lagrange multipliers, and 

M = rcfp-' ept G1 01 ' eept Jr-") dt 
0 

4-e] 

41 

N == 	[4-2' 
13-31  

(33) 

Vi = al (4-1  ept G1 G2' eV 4-11 ./C2, i) dt 
0 

rn-1  
wit G2 1  4-21 Ki2, t 

In-3  

(34) 
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where 	i is the i-th column of K2'. 

Also if 
00 

pi = Mtn f 
0 

then 

pi = K2 , i 112K I2, 	(A' Mqi 21/1 ' th 

where 

M2 = 
f00 

(in-1  ein t  G2G2 i  trjnit  4-1) dt 
0 

Max in 
4=1. 2,... 

determines the goodness of the model. 

4.2. Application of the solution of (I).—From (32), one can evaluate for 
gi's only if M, vi are known. To determine the goodness of the simplified 
model one needs M2 . As was done in the previous section, one can express 
M, vi and M2 as solutions of the algebraic equation (1) more specifically 

M = 	XJp-1P  

where X is the solution of 

pX XJ = G 1 ' 	 • 

vi = 40-1  Yin-17‘2, I 
• 

where I is the solution of 

• Jp Y Yin' ---= — GiG 2' 

• 

	 (35) 

(36) 

and finally 

M2= .41-1  Zinsit  

where Z is the solution of 

4Z 	= G 2G 2' . 	 • 
	(31) 

Combining (35), (36) and (37), one can write 

Ja 	= GC 	 - 	(38) 
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where 
	 • IP 

	 • 

J = diag Up, 41 
ix yi 

a=ft zi 

and 

G =[ Gl ] 
G2 

Thus the calculation of the matrices M, vi and M2 by evaluating the integrals 
is converted to solving the algebraic equation (38). 

5. CONCLUSIONS 

Some problems which were being solved by involved and cumbersome 
computations are shown to be capable of being solved conveniently by the 
application of the solution of linear algebraic equation AX XB = Q. 
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