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ABSTRACT

Studied in this paper are some control problems which can conveniently utilize

the solution of the linear algebraic equation AX + XB = — Q. These problems
include, in addition to the already known ones, -

(i) Evaluation of ISE (Integral of the squared error) for a linear time invariant
system with a single input of the polynomial type.

(ii) Determination of ISE of a model following system.
(ill) Simplification of large dynamic systems.

Key words: Time invariant system, [ntegral square error, Model followin'g. Simplification
of large systems.

]. INTRODUCTION

It is known that the solution of the linear algebraic equation
AX +XB=—Q (D)

where A and B are square matrices is useful in

(a) the study of stability of a dynamical system [l] (with B = 4’)

(b) the construction of observers for linear time invariant multivariable
systems {2, 3]

(¢) studying suboptimal problems by aggregation [4, 5]

(d) the pole assignment of multi-input systems [6].

Rf:fcrences [3] and [5] give methods of obtaining the explicit solution for
(1). A survey of various methods of solving (1) can be found in [7].

| In this paper we are concerned with some new applications of the solu-
tion of (1). Itis well known [I 1] that for a unique solution X to exist when
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Q is not a null matrix, 4 and — B should not have common eigenvalye
Further if the eigenvalues of A and B are stipulated to have negative real
parts, then X is given by

o0

X = [ eAt Qebt dr. o

But evaluation of X vig (2) is a formidable task. Computationally it
would be simpler to solve for X using one of the methods suggested in [3],
[5] and [7). This advantage is availed in discovering new applications for
X in this paper.

This paper is organised as follows. In section 2.1, we are concerned
with the determination of ISE for polynomial type of inputs, more speci-
fically for step, ramp and parabolic inputs. In section 2.2, we consider
the evaluation of an improved error criterion essentially for the same inputs
considered in section 2.1. In section 3, the evaluation of ISE for a model
following system is considered. In section 4, the application of (2) to the
simplification of large dynamical systems is dealt with.

2.1. Determination of ISE-polynomial input.—Consider the system
described by

dx (0)/dt = Ax (1) + bu (1)
y(1) =hx(1) 3)

where x is (nX']) state vector, z and y are scalar input and output respectively.
A, b and h are matrices of appropriate dimensions. In what follows, we ar¢
concerned only with inputs which are polynomials in time /.

Let _
e()=u(t) — y(1). (4)

Then for a stable system (eigenvalues with negative real parts) ISE=
I e? (1) dt is a measure of the quality of the transient response of the

system For the system (3), for zero nutlal state, it 1s known that

p(1) = J het =1 by (7) dr, (%)
¢
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From (5) it is easy to derive explicit expressions when u () is a unit step,
‘ramp or parabolic inputs. If «(7) 1s a unit step input, then (5) yields

y(t) = — hA™2 b + het* A b (6)
when

H(f) =1,
(5) takes the form

y()=hA2e*t b— hA~2b — hA~' bt (7
when

u(l) = 321,
we get

y()=hA3eA b — hA3b— hA~* bt — hA™' b 1%2! (8)

Equations (6), (7) and (8) are derived under the assufnption that 4~ exists.
This is true since A4 is a strictly stable matrix and does-not have any poles
at the origin or on the imaginary axis.
If the input is a polynomial, input of the type u(f) =1 + ¢ + (+3/2!) then
by superposition
y(t) = (hA-3 eAt b + hA~2 e** b + hA™! €4t b)
— hA3b — hA2b(1 +¢)— hA b (1 4 ¢ + 32). (9
From (4) and (6) to (9), it is easy to derive expressions for e () when inputs

are as described above. From these expressions it is clear that for the ISE
to be finite we require that

hA b = — 1
hA2b =0
hA=2 b = 0. | " (10)

Under these restrictions we get the following expressions for a step, ramp,
parabolic and a polynomial input respectively. '

o) = — hA- At b 1

e(t) = — hA-2eAt b : (12)
e(t) = — hA3e*t b (13)

e(t) = — (hA3 + hA2 4+ hA™Y) 4 p, (14)
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Under these conditions A. A. Krasovskii [8] developed a formula f,;
calculating 1SE for step inputs. Krasovskil’'s method involves eXpansion

of E(s) as
M41
| Z Uks®?
E(s) =3 nai .
T X Vst

kw1

and evaluation of N-th order determinats formed from V;, i = 1,2...N
We present here an alternate method utilising the solution of the equation (1)

From (11), it is true that for step inputs
ISE = feﬂ (1) di = T (RA- e4b bl eX't AVH') dt
= hA* XAV R | | (15)
where X = :]Fe“bb’ et dt is the well-known solution of

AX + XA' = — bb'. (16)

In a similar way when the inputs are ramp, parabolic and polynomial inputs
the ISE can be expressed utilising X, the solution of (16). More explicitly

ISE = hA-2 XA-*F, (u(t) =1) . (17)
ISE = hA* XA~ ¥, (u (1) = ?[2!) | (18)
ISE=(hA2 + hA 2+ hA ) X(AYH + A2 + AV h)

(u(y =141+ 122). (19)

2.2. Improved error criterion.—In many cases, the minimisation of the
ISE may result in systems with excessively strong oscillations. In such cases,
it is desirable to consider the criterion

= o

= f [«5'2 (1) + T(‘;—f)s:' dt (20)

a

where 7T i1s a specified constant [8].

The procedure described in 2.1 may be extended to evaluate [ when
the inputs are of the polynomial type. Here we shall consider only step
and ramp inputs. For other types of polynomial inputs the application IS
straightforward, ' |
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oo o0 ;
To evaluate [, we need find only [ (de/dt)? di since | e? (¢) dt is evaluated
0 0

already in §2.1. When u(t) is a wunit step, for t > 0, using (4) we get

‘:1'-: — — dyldt = — hAx — hb = — he' b, (21)

When u(f) is a unit ramp, for 1 >0, we get

édg; o s (dy/dt) — | — hAx — bt = — A1 (:'At b U-Sing (10). (22)

Along the samc lines of §2.1 it is easy to scc that
fie = hA XAV k' + hXh' [u(t) = step-input ] | (23)

and
I = hA 2 XA T + hA Y XA Y [u(t) = (] (24)
where X is the solution of (16).

From §2°1 and 2.2 it is interesting to notc that the evaluation of the
ISE or [ involves only the solution X of (16) for polynomial type of inputs,

3. MOoDEL FOLLOWING SYSTEM

There are situations when we stipulate that the output of the system (3)
should follow the output of another system called the Model described by

dxgl/dt = Agxg + bqu
yd = haxq (25)

when both (3) and (25) are excited by the same input. In such cases we
need to evaluate

Ig = :F Ly (1) - yd (f)] dt. (26)

Augmenting (3) with (25) we get

[vaar) =0 ) [50) + (] w0
= AqXa + balt (27)
X

.ld] = hul’a

€(f)=y—yd=[fr—/=d][
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when « (f) is a step-input, using (6), we get
e(1) = — hgAg" by + hadgt eAethy’.
For /4 to be finite we require that hgAdgs™' by = 0. Under this condition

Id — haAa__-l X Aa_l, ka’

where X is the solution of

AaX + 1~(J‘4ﬂ"‘r = - baba’.

Similar expressions can be derived in an analogous way when the input
is any other polynomial type.

4.1. A brief summary of a method of simplification of large dynamic
systems.—The problem of simplifying linear dynamical systems was the
subject of a number of papers by Chidambara [9] and Davison [10]. The
problem can be stated as follows [9]:

Given an exact p-input, g-output n-th order lincar time invariant system
dx/dt = Jx + Gu
y = Kx (28)

where J is the Jordan matrix; to find a simplified model of order /< n given by

2= Fz + Du
y=Ez (29)
such that

(i) the simplified model (29) retains / dominant eigenvalues of the
system (28),

(ii) the model amplitudes should be such that the integral of the squarcd
error between the exact and simplified models is minimum for
a step input.

~ (iii) the initial and final values of the transient response of the simpli-
fied model under the influence of a polynomial input upto second
degree in time shall show no error when compared with the corres-
ponding exact response.
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To solve the above problem, rewrite (28) [10]
[atae] = [0° m) (2] + [ ]« (30)
y () = (KKl [ ]

where Jp contains / predominant eigenvalues and J, the remaining (1 — )
clgenvalues Following [9], assume the simplified model as

z=Jp z-"Glu

y*= K+ 9 z (31)

In (31) Q has to be selected such that for =1, 2, .y {5 J-(E'i ei) dt 1S minimum

where

!

where ¢;; is the error in the i-th output for a step input at the j-th input node

The complete solution to this problem was given by Chidambara [9].
Let g," be the i-th row of Q. Then Q is determined from

M N il Vi
v o)l =[] -
where y; are Lagrange multipliers, and

M= [ (Jgt et G,G, 't Jy~Y) dt (33)

(34)
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where K’ ¢ is the /-th column of K.

Also if

. e ’
Hi = Min _f €; €4 dt
0

then
pi = Ky, § MuK's, i + g’ Mq; — 2V, g4

where

M, = [ (Ju=! et GoGy' et Jy7) di

0
n = Max M3
i1=1, 2,; q

determines the goodness of the model.

4.2. Application of the solution of (1).—From (32), one can evaluate for
g;'s only if M, v; are known. To determine the goodness of the simplified
model one needs M,. As was done in the previous section, one can express
M, v; and M, as solutions of the algebraic equation (1) more specifically

M=Jy1 XI5 "
where X is ihe sblulion of
JpX + XIy = — G,G,’ o 03
vi = Jp ! YU VK, ;
where Y is the solution of
Lo ¥ 4 Yily'=— GGy T (36)
and finally
My = Jn ZJY
where Z is the solution of
InZ + ZJy' = — GGy @37

Combining (35), (36) and (37), oﬁe can write
Ja + aJ' = GG’ - (38)
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J= diag {Jp, J-n} , ‘

where
B [X Y
*=ly z]
and
_ |G
hr = [Gg]

Thus the calculation of the matrices M, v; and M, by evaluating the integrals
is converted to solving the algebraic equation (38).

5. CONCLUSIONS

Some problems which were being solved by involved and cumbersome
computations are shown to be capable of being solved conveniently by the
application of the solution of linear algebraic equation AX + XB = — O.
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