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Abstract 

A problem of interest in the operation of trickle bcd and liquid-fluidized bed reactors is convective 
transfer with surface reaction at low Reynolds and high Peclet numbers. The paper presents an analysis 
of the problem for flow across an array of cylindrical catalyst pellets under fast and intermediate kine- 
tic regimes. The flow field is modelled by creeping flow hydrodynamics in conjunction with free 
surface cell model. Diffusion boundary layer equations are solved to obtain expressions for concentra- 
tion distribution, mass flux to the surface, boundary layer thickness and average Sherwood numbe r.  
The effect of system parameters such as Peclet number, Damkoehler number, and void fraction of the 
array on these quantities is numerically evaluated. 

Key words : Convective transfer, surface reaction, creeping flow, diffusion boundary layer, cell 
model, cylindrical pellets. 

Introduction 

Analysis of convective transfer with surface reaction with flow past isolated simple 
bodies at low Reynolds numbers has received some attention in the literature; for 
example, past flat plates, 1-4  rotating discs and spheres 1  and cylinders.' For such 
simple bodies the system equations are solved analytically for creeping flow' and 
numerically for laminar boundary layer flow.2-5  For multiparticle systems such as 
arrays of cylinders, packed beds and fluidized beds the flow field and consequently 
the concentration and temperature fields are complex. Here modelling is essential 
for the analysis. 	A model that finds wide application is Happel's free-surface 
mode1.6  The application of the model replaces the complex and difficult problem of 
the multiparticle assemblage by a set of concentric cells each cell containing a 
single particle surrounded by a hypothetical fluid envelope. The model assumes 
that a spherical particle is enclosed by a spherical envelope, and a cylindrical 
particle by a cylindrical envelope. The envelope has zero 'shear stress at its outer 
surface. Each envelope is assumed to contain the same amount_of ,  fluid,, and the 

amount is such that the ratio of the particle volume to that, of theta is given by the 
concentration of the assemblage. 
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It is now sufficient to solve the simple problem of a single cell for analysing the multi- 
particle assemblage. The free-surface model has been successfully used for predicting 
pressure drop and transport in packed beds, in particular, in the range of voidages of 
0.25 to 0.8, and at low Reynolds numbers: 7-w The application of the model for the 
analysis of deep-bed filtration is reported recently." Brauer and Schlueter, 8  and Govinda- 
rao and Lelcshminarayanan" adopted the free surface model for multiparticle assemblage 

of spheres with •surface reaction. 

The purpose of this work is to present an analysis of the problem of convective mass 
transfer with surface reaction for creeping flow across an array of circular cylinders 
(see Fig. I) at high Peclet numbers. Large Peclet and low Reynolds number condi- 
tions are encountered in the operation of multiphase systems involving liquids such 
as trickle bed and liquid-fluidized bed reactors. While the problem studied here is of 
direct interest in. the analysis of systems such as filter mats, and reactors with catalyst 
deposited on fibers, etc., in general, in catalytic reaction engineering practice, beds of 
cylindrical particles are randomly packed. For such random assemblages one must 
employ a weighted average of the results for flow normal to the axis of cylinders and 
those for flow parallel to the axis." 

Model equations 

We consider here a steady, isothermal and isobaric system. By application of the 
free-surface model the hydrodynamic problem reduces to one of a solid cylinder of 
radius a and length L placed at the origin of a cylindrical coordinate system and sur- 
rounded by a cylindrical envelope of fluid having a free surface at radius b, with the fluid 
envelope moving perpendicular to the axis of the cylinder at a constant velocity U. 
The radius b of the envelope is related to the voidage of the assemblage by 

d = bla = (I — 0 -1 	
( 1 ) 

(b) 
FIG. 1. (a) Assemblage of cylinders and (6) schematic of the unit cell. 
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We assume that (i) all the assumptions associated with the frec-surfacc models hold 
good in the present analysis also, (ii) the concentration of the forward moving fluid is 
that of the cell boundary, (iii) the concentration of the dissolved reactant in the liquid 
is equal to its equilibrium value, (iv) at the forward stagnation point the incident flow 
is not depicted by diffusion, and therefore the concentration at this point is equal to the 
concentration in the bulk liquid. 

For brevity, we consider the surface reaction to be irreversible, first-order with respect 
to the dissolved component and zero-order with respect to the liquid reactant. The 
reaction is assumed to take place only on the external surface of the particles; where 
pore diffusional effects are significant, they can be represented by the inclusion of an 
effectiveness factor in the rate equation. Also, the two faces of the cylindrical particle 
are assumed to be inactive. 

Under these assumptions the flow of the liquid over the cylindrical particle is des- 
cribed bye 

tfr = U w sin 0 
	

(2) 

For large Peclet numbers, normally encountered in problems with convective transfer 
in liquids, the change in the concentration from the bulk liquid phase to the catalyst 
surface occurs entirely in a thin boundary layer very close to the surface of the particle. 
For such thin boundary layers yla <1, where y = r — a. Then eqn. (2) reduces to 

2Ug tfr —
a 

y2  sin 0 (3) 

The diffusion equation is given by 

, 	1 ac ac ve ac D 	+ 'L7 	+ 	 dr2 	r r 3-6 	r ao 
(4) 

with boundary conditions 

at r = a 	and 	0 = 0 	c co 
	 (5) 

at r = b 
	 c = c o 

	 (6) 

at r==a and 0 > 0: 
for intermediate kinetics (where the rate of reaction 
is comparable to the rate of transport): 

Oc 	 (7) D = k, c 
8r 

for fast kinetics (where the rate of reaction is very 

high): 

r- 0 	
(8) 
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Equation (5) arises because of the assumption iv. 

Rewriting equ. (4 ) in terms of the dimensionless concentration C and the 
52 c1 1 Sc 

less stream function 0, and noting that for yfa <1 	 , we get 
' ar 2 	r Or 

(3c Lan ac 
eta 80 L`r 

(9) 

The boundary conditions now become 

at 0 =0 and t=0 C=1 
	

(10) 

a s 	co 	 C 1  

at0=0: 

OC 
(8 sin 0) (ii', 2 	k1  C (for intermediate kinetics) 

a 	 ao (12) 

C = 0 
	

(fast kinetics) 
	

(13) 

In writing eqn. (11), it is assumed that the stream function at the outer surface approaches 
infinity. This is logical since the quantity (b — a) is always much larger than the thick- 
ness of the diffusion boundary layer. 

Intermediate kinetics 

Eqn. (9) with the boundary conditions of eqns. (10) to (12) can be solved rigorously 
by Levich's method' to get for the surface concentration 

C 
F (2/3) 	 (14)  

where 

co 
1 = 5 exp (-- pz 213) exp (-- 2 -113  dz 	 (15) 

0 

Flux: The flux to the catalyst surface is 

OC =--- 	=1: k" C 
aY m=0  

Substituting for C in this equation from eqn. (14) we get 
c 

---t- 
I-% (213) 	 (16) 
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Effective thickness of the diffusion boundary layer: 
sion boundary layer (normalised with respect to the 
by 

The local thickness of the diffu- 
radius of the particle) is defined 

C)  
6 = 

aj 

Substituting for C and j from eqns. (14), and (16), we have 

3— 
2 [r 

I 
(2/3)  ITD 	— 1 1 (17) 

As will be shown later, for small and large values of p. I can be approximated 
as a series in p (see eqns. 25 and 28). 

Further simplifying these expressions for very small and very large p, we get 

for p <1 

, 	 1' 32p 
Om  ft.' Ar 	 = 1078 N/701f8  gainf sTD 

and for p >1 

, 	2  I' (2/3)p  = 1 •474 Ni;;113  flisf 0y1D iLti 	3ND 

(18) 

(19) 

Average surface concentration: The average surface concentration is given by 

7 
— 	1 
C=— f Cd0 

ir 
• 

On substitution for C from eqn. (14), we get 

1 
-e . Ri,--,-

(2/

-3-)  
. 

7 	 7 

f MO = O•2352 f I dO 

0 	 0 

(20) 

Average Sherwood number: The average value 
local mass transfer coefficient is defined based on 

of the Sherwood number, where the 
the limiting flux, is given by 

V 
RSil = AP:Tir )  f C (10 = ND C 

o 

(21) 
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Fast kinetics 

The governing equations for this situation are eqns. (9) to (II) and (13). These may 
be solved by the method of similarity transformationl to get 

42 

4 

	

 
C T-4-7  f exp (— 3 )dg 	 (22) 

• 

Flux: The flux to the surface is given by 

eo  
j 	

D 
1.203 - 	(sin 0)112  t -'13  

a 

Effective thickness of the diffusion boundary layer: This is now given by 

Dc,, 
6 = 	1.474 N1 ' 3 g -1 / 3  f 	 (23) 

aj 

Equation (23) is the same as eqrt. (19), the expression for the boundary layer thick- 
ness in the case of intermediate kinetics for very large values of p. This is expected 
since p becomes very large for large Damkoehler numbers, and this corresponds to 
the surface reaction being very fast. 

Since f becomes large for 0 relatively close to it (greater than about 170 0), the boun- 
dary layer thickness becomes very large and comparable to the radius of the particle 
for these values of 0. In fact, the solution predicts that for 0 = n, 6 is infinity and 
the mass flux is zero. Actually, however, (5 does not become infinity at 0 = n, and the 
flux is not zero. Thus, we note that the model presented here breaks down in the 
range of values of 0 close to 7r. However, this range does not cause any significant 
effect on the total mass flow to the surface and thus on the average concentration. 
These observations are valid for the case of intermediate kinetics also. 

Average Sherwood number: The average Sherwood number for fast kinetics is given by 

2a 
77/5C-0 f j dO 

o 
 

1•16 Ngs g113  (24) 

Equation (24) is similar in form to the one obtained for the average Sherwood number 
for transport (without reaction) to spheres at high PecIet numbers by Pfeffer,' 
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Analysis of results 

The model and the solutions are evaluated numerically to determine the effect of 
the system parameters Damkoehler number, Peclet number and void fraction of the 
assemblage over wide ranges, namely ND  : 0.05 to 5,000; Npe : 5 to 5,000; and e : 0.3 
to 0.8. 

Fast kinetics 

Fig. 2 is a plot of the average Sherwood number for fast kinetics against voidage 
with NJ,6  as parameter. The Sherwood number increa ses sharply with an increase 
in the Peclet number and a decrease in void fraction. For a given set of operating 
conditions higher rates of transfer are obtained with more closely packed arrays (small 6) 
than with dilute ones. 

Intet mediate kinetics 

Computation of the average concentration and the average Shervvocd number for 
the intermediate kinetics involves evaluation of the integral I, given by eqn. (15), an 
improper integral that involves infinity at the upper limit crd a singularity at the lower 
limit. 

0,2 
	

0.4. 	0.6 	UM 

lr VOIDAGE, 67.  

Fro. 2. Average Sherwood pumber for fast kinetics versus 
vcid fraction for different Peciet 

punters. 
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Expanding exp (—p z2 4) in a series, we obtain' an expression for 1 in powers of p 
i that is convergent for all values of p. However, t is convenient to use this series only  

for small values of p. Thus, for small values of P, I may be approximated, neglecting 

terms of the order of p5, by 

r (2) 2  r 
I 	= r (2/3) —I" (4/3)p ± 	p 

ver 
1=11a:46 al 

17 (10/3) , 	r (4) 5 p 
r 	4! 	5 ! 

(25) 

For large values of p„ we make the substitution 

peis = s 
	 (26) 

whereby I becomes 

00 

2p
3 	 , 12 f e xp s) exp [ 	ds 

0 

(27) 

Expanding exp [— (s / p)3' 2] in series we can now approximate I for large values of 

p by 

7 	P 5 5 1 .5 r (5/2) 	1 -5 T (4) 	1 -5 r (1 1 /2) 
4. ____.- ... ....._.... 

P 	p2.5 
	2!p 	3 !pee.' 

1. 5 r (7) 1 .5 f (17M 
4.  4 ! p7 	5 i P8.6 	

(28) 

where terms of the order of rug are neglected. 

The magnitude of p depends upon ND, Npe, C as well as 0. Among these only the 
variation in ND is reflected to the same fold variation in p, and thus for any range of 
the parameters the value of p being small or large mostly depends upon the value of N. 

At p = 0.9 the contribution of the p 5  term in eqn. (25) to the quantity 1 is only about 
0.5 per cent, and thus for p < 0•9, eqn. (25) may be used without making any sigm- 
ficant error for approximating the value of I. Similarly at p = 3 the contribution of 
the last term in eqn. (28) is only about 0.5 per cent and therefore, for p 3 eqn. (28) 
is satisfactory for estimating 1. For values of p in the range 0.9 to 3, 1 should be 
evaluated numerically from eqn. (15) or (27). The form given in eqn. (27) is more con-. 
venient for this purpose, particularly because it avoids the problem of singularity at 
the lower limit. Suitable values that can be used to replace the upper limit of infinity 
in this integral giving a sufficiently good approximation were determined for the 
range 0.9 < p < 360. 
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Based on the above observations the following procedure was adopted for the compu- 
tations. 

1. Since the solution, as stated earlier, fails in the close neighbourhood of it, the 
integral in eqn. (20) is carried out up to 176° only, and the average values were deter- 
mined by using the corresponding surface area. Thus C is now given by 

176 

-e. 0.2404 f Id° (29) 

2. The quantity p for all values of 0 will be <09 if this condition is satisfied by 
p at 0 close to 176. Therefore, for such combinations of Np,,c and ND we can replace 
I in eqn. (29) by 4, given by eqn. (25), and the indicated integrations (now on the func- 
tion f) may be carried out numerically. This gives for the average concentration: 

C„ =-- 	0-7149 h + 0.5494 h2  — 0.5047 h3  + 0.5517 kg — 0.6711 h5 	(30) 

1. 0 

cc( 0.2 

o
e 10 	20 	3U 	Loti 

.,J 

DAMKOEHLER No.,ND 

3. Average su rface concentration against Damkoehler number for different values of Peclet 

number and void fraction. 
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3. Similarly, for values of Np., t and ND  that give a p of about 3 for 0 close to zero 

degrees, p for all the other values of 0 will be?.-- 3, and I in eqn. (29) may be replaced 

by fn. With this substitution and performing the resulting integrations on fwe get for C 

C„= 1•16 h -1  — 2.0013 h -2 05  + 63134 h 4  — 26.539 h -.5.5  

+ 136.3825 ha — 809.0075 h -8.6 
	

(31) 

4. For combinations of Np., e and ND  that do not fall into either of the above two 

situations, I for a given 0 is calculated from eqn. (25) whenever the corresponding 

0.9, from eqn.. (28) whenever 	3, and by numerical integration of eqn. (27) 

for the other values of p. The average concentration is then computed by numerical 
integration by using eqn. (29) and these I values. 

Fig. 3 shows the average concentration as a function of the Damkoehler group 
for different Peclet numbers and different void fractions. All the three quantities have 
a strong effect on the average surface concentration and thus on conversion and 
rate of reaction. As ND  increases the average concentration falls steeply first and 
approaches zero asymptotically. At large values of ND the rate of reaction becomes 
very rapid and the surface concentration approaches zero, and consequently diffu- 
sional effects become predominant. This is the case of fast kinetics analysed above. 
On the other hand, as ND  approaches zero the average concentration approaches unity 
and the effects of diffusion are negligible compared to those of the surface reaction. 
Thus kinetics become the controlling step. The curves also indicate that transport 
effects are significant even at as low a ND as about 2; the effects are more significant at 
lower Np 0  and higher void fraction. 

The average Sherwood number (in the intermediate kinetics regime) is plotted against 
ND with Np8  and a as parameters in. Fig. 4. Fig. 5 gives a plot of the ratio of this 
Sherwood number to that for fast kinetics against the same parameters as in Fig. 4. 
As ND increases Rsh  approaches R shix . For Np e  upto about 1,000 the ratio Ns h /Nsh ic 
approaches unity for ND of about 400 itself; for lower Npe  at still lower ND values. For 
higher Peelet numbers the corresponding ND value is much larger indicating that for such 
conditions both transport and kinetic processes must be considered even for fairly fast 
reactions. For a particular ND, the average Sherwood number (and thus the rate of 
the overall process) increases with increase in N p„ the effect being more significant for 
closely packed assemblages. 
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Notation 

a 	: radius of the cylinder 

: radius of the fluid envelope 

: concentration 

co 	: free stream concentration 

: normalized concentration, c/co  

: average surface concentration 

C., 	: average concentration where 1 I,p  for all values of 0 

: average concentration where I z_d l ip for all values of 0 

: defined by eqn. (I) 

: diffusivity 

: Rim (sin 0) -112  

g 	(d4  — 1)/g' 

g' 	•. 2 + (1 + d4) (2 ln d 1) 

I; 	: Ni, N1 113  g -413  

I 	: integral defined by eqn. (1 5) 

: I for small values of p 

: I for large values of p 

: flux to the surface 

ki 	: first-order rate constant 

k. 	: mass transfer coefficient 

: length of the cylinder 

- f (sin 0)112  de 
" 

ND : Damkoehler number, 2a ka 

Np e 	: Peclet number, 2a UID 

Nsb 	: Sherwood number, 2a Ica 

Aersh 	: average Sherwood number 

&h. : average Sherwood number for fast kinetics 
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112 t-113 

. r , : radial coordinate 

: defined by eqn. (25) 

: 56569 mINp e  g 

U 	: free stream velocity 

: radial velocity component 

vo 	: angular velocity component 

	

r [ r2 	 a2  d4  w 	: 	 (1 + d 4) ln r 	l) + 2 [1 + (I  

	

a2 	 r2 

: r — a 

: independent variable 

Greek letters 

: normalized (with respect to the radius of the particle) thickness of the diffu- 
sion boundary layer 

Ovsp 	: 6 for very small values of p (p < 1) 

; 6 for very large values of p (p > 1) 

: voidage of the assemblage 

: angular coordinate 

(i) 	: normalized stream function, Nu ag 

: stream function 
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