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Abstract

A problem of interest in the operation of trickle bed and liquid-fluidized bed reactors s convective
transfer with surface reaction at low Reynolds and high Peclet numbers, Tke paper presents an 2nalysis
of the problem for flow across an array of cylindrical catalyst pellets under fast and intermediate kine-
tic regimes. The flow field is modelled by creeping flow hydrodynamics in conjunction with free
surface cell model, Diffusion boundary layer equations are solved to obtain expressions for concentya
tion distribution, mass flux to the surfzee, boundary layer thickness and average Sherwocod number

The effect of system parameters such as Peclet number, Damkoehler number, and void fractjon of the.

array on these quantities is numerically evaluated.

Key words : Convective transfer, surface reaction, creeping flow, diffusion boundary layer, cell
model, cylindrical pellets.

Introduction

Analysis of convective transfer with surface reaction with flow past isolated simple
bodies at low Reynolds numbers has received some attention in the literature; for
example, past flat plates,!~* rotating discs and spheres’ and cylinders.® For such
simple bodies the system equations are solved analytically for creeping flow?! and
numerically for laminar boundary layer flow>® For multiparticle systems such as
arrays of cylinders, packed beds and fluidized beds the flow field and consequent_ly
the concentration and temperature fields are complex. Here modelling 1s essential
for the analysis. A model that finds wide application 1is H.:flppe]’s free-surface
model.* The application of the model replaces the complex and difficult .prol_)lfm of
the multiparticle assemblage by a set of concentric cells each cell containing  a
single particle surrounded by a hypothetical fluid envelope. The model gssur_ne?
that a spherical particle is enclosed by a spherical envelope, and a C?’]f_nd”fa

particle by a cylindrical envelope. The envelope has zero shear stress at 1't:s-dou ;r
surface. FEach envelope is assumed 1o contain the same.amount. of ﬂu1§;~ dnb Ihf
amount is such that the ratio of the particle volvme to that. of the cell.1s given by the

ccncentration of the assemblage. e o
1
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It is now sufficient to solve the simple problem of a singlc cell for analysing the mujy;.
particle assemblage. The free-surface model t}as been succc:ssfully used for predicting
pressure drop and transport in packed beds, in part:cular,' n .the range of voidages of
0-25 to 0-8, and at low Reynolds numbers.”1® The application of the model for the
analysis of deep-bed filtration i reported recently.’* Brauer and Schiueter,® and Govinga-
ra0 and Lekshminarayanan'? adopted the free surface model for multiparticle assemblage
of spheres with -surface reaction. :

The purpose of this work is to present an analysis of the problem of convective mass
transfer with surface reaction for creeping flow across an array of circular cylinders
(see Fig. 1) at high Peclet numbers. Large Peclet and low Reynolds number condi-
tions are encountered in the operation of multiphase systems involving liquids such
as trickle bed and liquid-fluidized bed reactors. While the problem studied here is of
direct interest in the analysis of systems such as filter mats, and reactors with catalyst
deposited on fibers, etc., in general, in catalytic reaction engineering practice, beds of
cylindrical particles are randomly packed. For such random assemblages one must

employ a weighted average of the results for flow normal to the axis of cylinders and
those for flow parallel to the axis,!®

Model equations

We consider here a steady, isothermal and isobaric system. By application of the
free-surface model the hydrodynamic problem reduces to one of a solid cylinder of
radius a and length L placed at the origin of a cylindrical coordinate system and sur-
rounded by a cylindrical envelope of fluid having a free surface at radius b, with the fluid
envelope moving perpendicular to the axis of the cylinder at a constant velocity U.
The radius b of the envelope is related to the voidage of the assemblage by

d= bla= (1 —¢)-} (1)
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We assume that (1) all the assumptions associated with the frec-surface model® h
good in the present analysis also, (ii) the concentration of the forward movin eﬂ .;l,d
that of the cell boundary, (iit) the concentration of the dissolved reactant in 1ﬁe ll!l lg
is cqual to its equilibrium value, (iv) at the forward stagnation point the incidcntl?lz]
is not depleted by diffusion, and therefore the concentration at this point isequal to 1ht
concentration in the bulk liquid.

For brevity, we consider the surface reaction to be irreversible, first-order with respect
to the dissolved component and zero-order with respect to the liquid reactant. The
reaction is assumed to take placc only on the external surface of the particles; where
pore diffusional effects are significant, they can be represented by the inclusion of an
effectiveness factor in the rate equation. Also, the two faces of the cylindrical particle

are assumed to be inactive.
Under these assumptions the flow of the liquid over the cylindrical particle is des-
cribed by®
l,[l = Uwsin 0 (2)
For large Peclet numbers, normally encountered in problems with convective transfer
in liquids, the change in the concentration from the bulk liquid phase to the catalyst

surface occurs entirely in a thin boundary layer very close to the surface of the particie.
For such thin boundary layers y/a <€ 1, where y =r —a. Then eqn. (2) reduces to

Y ~ ;—a@ y*sin 0 (3)

The diffusion equation is given by

oc . vgoc _ (;df__c 1 (_7_{) @
oot ran= P\ Trar
with boundary conditions
atr=a and 0=0 c¢c=2¢ (5)
(6)

atr=2>b C 2= €

at r=a and 0 > 0: |
for intermediate kinetics (wherc the rate of reaction

is comparable to the rate of transport):

7
Dg‘;'=klc ()

for fast kinetics (where the rate of reaction 18 very
high):
gh) -

c=0
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Equation (5) arises because of the assumption 1v.

Rewriting equ. (4)in terms of the dimensionless concentratlon C and the dimensiop.

less stream function @, and noting that for yla <k l, 6r’ >-— =, we get

BC’ ~ 3 ["‘""2 ] )
o 0¢
The boundary conditions now become
at ¢ =0 and t=0 C=1 (10)
as ¢ = o0 C=1 (11)
at ¢ =0:

2 (8 sin 0)'2 (t;b” # 6C) k, C (for intermediate kinetics) (12)
C=0 (fast kinetics) (13)

[n writing eqn. (11), it is assumed that the stream function at the outer surface approaches
infinity. This is logical since the quantity (b — a) is always much larger than the thick-
ness of the diffusion boundary layer.

Intermediate kinetics

Eqn. (9) with the boundary conditions of eqns. (10) to (12) can be solved rigorously
by Levich’s method! to get for the surface concentration

I
C=r B (14)
where
= fexp (—pz2¥) exp (— 2) z 113 4; (15)

Flux: The flux to the catalyst surface is

Substituting for C in this equation from eqn. (14) we get

ky Co_ .
I (2/3) (16)

J=
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Effective thickness of the diffusion boundary layer: The 1ocal thickness of the diffy

sion boundary layer (normalised with respect to the radius of the particle) is defined
by

_1_)5'0 (1 —-C)
— a7

0

Substituting for C and j from eqgns. (14), and (16), we have

- 3[40

(17)

As will be shown later, for small and large values of p, / can be approximated
15 a series in p (see eqns. 25 and 28).

Further simplifying these expressions for very small and very large p, we get

for p<L1

1°32p
Dyyy 22 N

= 1078 Np'® g-Usf (18)

and for p>1

2T 23)p

Oup = = - 1-474 Np2'® g 13 f (19)

Average surface concentration: The average surface concentration is given by
"
= 1
€=~ Cdb
n
@

On substitution for C from eqn. (14), we get

_ | (20)

o 2/3)

f1d9=o-2352f 1 do
1) 0

alue of the Sherwood number, where the

Average Sherwood number: The average v ¢ flux, is given by

local mass transfer coefficient is defined based on the Iimitin

_ - (21)
Nsh=%f C49=NDC
0
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Fast kinetics

The governing equations for this situation are eqns. (9) to (11) and (13). These may
be solved by the method of similarity transformation! to get

1 4
C=177 f exp ("‘ 9 q’) a (22)

Flux: The flux to the surface is given by

¥ s T _D_c_'_’ : 1{2 4138
Jj==1+203 . (sin 0)112 ¢

Effective thickness of the diffusion boundary layer: This is now given by

5 = D; — 1474 NpMe g-uma g (23)

Equation (23) is the same as eqn. (19), the expression for the boundary layer thick-
ness in the case of intermediate kinetics for very large values of p. This is expected

since p becomes very large for large Damkochler numbers, and this corresponds to
the surface reaction being very fast.

Since f becomes large for € relatively close to @ (greater than about 170°), the boun-
dary layer thickness becomes very large and comparable to the radius of the particle
for these values of 0. In fact, the solution predicts that for 8 = =, ¢ is infinity and
the mass flux is zero. Actually, however, 8 does not become infinity at 0 = x, and the
flux is not zero. Thus, we note that the model presented here breaks down in the
range of values of 6 close to . However, this range does not cause any significant
effect on the total mass flow to the surface and thus on the average concentration.
These observations are valid for the case of intermediate kinetics also.

Average Sherwood number: The average Sherwood number for fast kinetics is given by

o 2a .
Nsyoo = zDe. f_; d
0

= 116 N2I* g1 (24)
Equation (24) is similar in form to the one obtained for

: the average Sherwood number
for transport (withoyt reaction) to spheres at high Pec] ;

et numbers by Pfeffer,’
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[ Analysis of results

' The mode] and the solutions are evaluated numerically to determine the effect of
the system parameters Damkoehler number, Peclet number and void fraction of the
assemblage over wide ranges, namely Np : 0-05 to 5,000; Ng, : 510 5,000; and ¢ : 0-3
to 0-8.

Fast kinetics

Fig. 2 is a plot of the average Sherwood number for fast kinetics against voidage
with Np, as parameter. The Sherwood number increases sharply with an increace

. in the Peclet number and a decrease in void fraction. For a given set of operating
conditions higher rates of transfer are obtained with more closely packed arrays (small ¢)
than with dilute ones.

Inteymediate kinetics

Computation of the average concentration and the average Sherwocd numter for
the intermediate kinetics involves evaluation of the integral 7, given by eqn. (15), an
improper integral that involves infinity at the upper limit crd a sirgularity at the lower

limit.

8'0 Npe : E
. 5000 i
v 2000 R
W 1000 '
400

"<« 3 VOIDAGE, €
i ' ifferent Peclet
FiG. 2. Average Sherwood number for fast kinetics versus vcid fraction for difiere

numbers.
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expanding exp (— pz*¥) ina series, we obtain! an expression for J in powers of P
that li convergent for all values of p. However, it is convenient to use this series only
for small values of p. Thus, for small values of p, / may be approximated. neglecting

terms of the order of pb by

2 I (8/3
ro =T ~T@p + 52— P

I 4) .
Ao, @, | )

For large values of p, we make the substitution
pzela — 5 26)

whereby 7 becomes

=3 Jorseol ()]

Expanding exp [— (s / p)*?] in series we can now approximate / for large values of
p by

pap =15 _LSTGR) 15T @ _1ST1)

p pts 21 pt - 3 1p5b
1-51T (7 1-5T (17/2
T 4 !p'r) 5 !E,s.sl ) (28)

where terms of the order of p~1° are neglected.

The magnitude of p depends upon Np, Np,, € as well as 8. Among these only the
variation in Nj is reflected to the same fold variation in p, and thus for any range of
the parameters the value of p being small or large mostly depends upon the value of Np.

At p = 0-9 the contribution of the p® term in eqn. (25) to the quantity 7 is only about
05 per cent, and thus for <09, eqn. (25) maybe used without making any signi-
ficant error for approximating the value of 7. Similarly at p = 3 the contribution of
?he la*st term in eqn. (28) is only about 0-5 per cent and therefore, for p = 3 eqn. (28)
1s satisfactory for estimating . For values of p in the range 0'9 to 3, I should be
cval_uated numerically from eqn. (15) or (27). The form given in eqgn. (27) 1s more con-
venjent for. this purpose, particularly because it avoids the problem of singularity at
the lower limit. Suitable values that can be used to replace the upper limit of infinty

in this integral giving a sufficiently good approximation were determined for the
range 09 < p < 3+0.
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Based on the above observations the f ollowing procedure was ado

. pted for the compu-
tations-

I. Since the solution, as stated earlier, fails in the close neighbourhood of =, the
mtegral in eqn. (20) is carried out up to 176° only, and the average values were deter-
mined by using the corresponding surface area. Thus C is now given by

C—0-2404 [ Id6 (29)

@

2. The quantity p for all values of 8 will be < 09 if this condition is satisfied by
p at 0 close to 176°. Therefore, for such combinations of Np,, € and Np we can replace

I in eqn. (29) by 7 given by eqn. (25), and the indicated integrations (now on the func-
tion f) may be carried out numerically. This gives for the average concentration:

Co=1—0-7149 h + 0-5494 k2 — 0-5047 h® + 0-5517 i* — 0-6711 A° (30)

-0 % VOIDAGE
1O —swr— -0
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m |
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0.4  Npe: "
o ] 100
14 400
= 800
< 0.2 5000 “
5000
L | | ' 6 5

DAMKOEHLER No.,,ND

gainst Damkoehler number for different values of Peclet

Fia. 3. Average surface concentration a
number and void fraction.
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3. Similarly, for values of Npe, & and Np, that give a p of about 3 for 6 close to zerg

degrees, p for all the other values of 0 will be = 3, and I i‘n eqn. .(29) may be replaced
bygl l'With this substitution and performing the resulting integrations on S we get for C
1p*

& =116 —2:0013 A~25 + 63134 h~4 — 26°539 =5-0
10
+ 136-3825 h—7 — 8090075 h—%° a1)

4. For combinations of Np., ¢ and Np that do not fall into either of the above two
situations, 7 for a given 8 is calculated from eqn. (25) whenever the corresponding p<
0-9, from eqn. (28) whenever p =3, and by numerical integration of eqn. (27)
for the other values of p. The average concentration is then computed by numerical
integration by using eqno. (29) and these / values.

Fig. 3 shows the average concentration as a function of the Damkoehler group
for different Peclet numbers and different void fractions. All the three quantities have
a strong effect on the average surface concentration and thus on conversion and
rate of reaction. As N, increases the average concentration falls steeply first and
approaches zero asymptotically. At large values of Np the rate of reaction becomes
very rapid and the surface concentration approaches zero, and consequently diffu-
sional effects become predominant. This is the case of fast kinetics analysed above.
On the other hand, as N, approaches zero the average concentration approaches unity
and the effects of diffusion are negligible compared to those of the surface reaction.
Thus kinetics become the controlling step. The curves also indicate that transport

effects are significant even at as low a N, as about 2; the effects are more significant at
lower Np, and higher void fraction.

The average Sherwood number (in the intermediate kinetics regime) is plotted against
Np with Np, and ¢ as parameters in Fig. 4. Fig. 5 gives a plot of the ratio of this
Sherwood number to that for fast kinetics against the same parameters as in Fig. 4.
As Np increases N, approaches Ng.. For Np, upto about 1,000 the ratio Ng/Nse
approaches unity for N, of about 400 itself; for lower Np, at still lower Np values. For
higher Peclet numbers the corresponding N, value is much larger indicating that for such
conditions both transport and kinetic processes must be considered even for fairly fast
reactions. For a particular N, the average Sherwood number (and thus the rate of

the overall process) increases with increase in N pe, the effect being more significant for
closely packed assemblages.
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Notation

a  : radius of the cylinder

b radius of the fluid envelope
¢ . concentration

Co . free stream concentration

C normalized concentration, ¢/co
C . average surface concentration
o average concentration where 7 =~ I, for all values of 0
C, : average concentration where 7 = I, for all values of §
d defined by eqn. (1)

D : diffusivity

i § . m!3 (sin )12

g : (@ =1)/g

g’ : 24+ (0 +dY2Ilnd—1)

h Np Ng,'l* g—18

I integral defined by eqn. (15)
Isp I for small values of p

Iy I for large values of p

j flux to the surface

k, first-order rate constant

k, mass transfer coefficient

L length of the cylinder

m f (sin 8)42 d6

Np Damkoehler number, 24 k,/D
Nee Peclet number, 2z U/D

Ns, Sherwood number, 24 k /D

Ny, average Sherwood number
NShm

average Sherwood number for fast kinetics
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0:8165Ahf

b V2 ¢-V/3

radial coordinate e,
defined by eqn. (25)

5°6569 m[Np, g

free stream velocity

radial velocity component

angular velocity component

y 2 | 2 J4
;[—g HU+d)QInr =D+ 21+ (1 +d9Ina} S ]
r —a

independent variable

Greek letters

CHAMBRE, P, L,
4. Petersen, E. E.

0 normalized (with respect to the radius of the particle) thickness of the diffu-
sion boundary layer

Ovsp o for very small values of p(p < 1)

Ovip ; 0 for very large values of p(p > 1)

2 voidage of the assemblage

o angular coordinate

¢ normalized stream function, ¥/U ag

v stream function
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