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Abstract 

Similarity analyses of the governing equations of three types of turbulent wall jet—the Radial 
Wall Jet, the Plane ,Wall Jet and one that is referred to as the Spherical Wall Jet—are developed. 
The analyses indicate how self-preserving flow can obtain in all the three cases. The Radial Wall Jet 
and the Plane Wall Jet have been investigated extensively and are reported to possess self-preserving 
flow. In the present case, a large number of mean velocity measurements have been taken in the 
fully developed region of turbulent Spherical il Jets. Some of these velocity profiles 
are presented here and are seen to exhibit similarity. 

• 

I. Introduction 

The turbulent wall jets that develop on plane surfaces when a jet of fluid impinges 
on them have been studied extensively. In particular, two types of wall jet have 
received great attention; one, usually called the Radial Wall Jet, is the flow that deve- 
lops on a plane surface against which a small circular jet of fluid impinges normally 
and, the other, usually called the Plane Wall Jet, is the flow that develops over a plane 
surface which is placed parallel to a narrow slot from which a two-dimensional fluid 
jet emerges. In both cases, it has been observed that the velocity profiles in the fully 
developed regions of the wall jet are 'self-preserving' and are geometrically similar at 
stations beyond a short development region? ,  2  

In the following, an attempt has been made to extend the study to the axisymmetric 
wall jet that develops on a spherical surface when a small circular fluid jet impinges on 
it radially. This will be referred to as the Spherical Wall Jet. The study is confined 
to cases where the diameter of the spherical surface is large compared to the jet dia- 
meter so that the equations of motion can be simplified with the boundary-layer approxi- 
mations. First, a simple similarity analysis is presented for fully developed flow for 
each of the three cases, the Radial Wall Jet, the Plane Wall Jet and the Spherical Wall 
Jet. The analysis brings out certain requirements for each case in order that the 
velocity profiles are self-preserving. The results of a large number of mean velocity 
measurements in Spherical Wall Jets are then presentee. 
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2. Similarity analysis *  

Fig. I shows a typical ' se lf-preserving' velocity profiles in a wall jet. 	Region (a) 
in which the velocity increases from zero at the surface to U, the maximum value 
at that section, has been compared to a two-dimensional boundary layer in a unif orm  
stream by some authors and may be called the inner layer. Region (b) where the  
velocity decreases from U to zero in the free boundary asymptotically may b e Come  
pared to a free jet and called the outer layer. It is difficult to define exactly the thick- 
ness of the outer layer and, consequently, the thickness of the wall jet itself. We m ay  
arbitrarily define the thickness 6 of the wall jet at any location as the distance from 
the surface at which the velocity u has decreased to one half of U, the maximum velo. 
city at that section as indicated in Fig. I. 

2.1. The radial wall jet 

We now consider the fully developed region of flow in a turbulent Radial Wall Jet 
with self-preserving velocity profiles. Assuming steady, incompressible flow and 
introducing the boundary layer approximations, the governing equations can be 
written, with the usual notation, as: 

a, 	a 
/ 

ou 	Er) 
Ox +V a-y- 	p  

Continuity equation 

Momentum equation 

Flu I 
FIG. 2 

* A similarity analysis for wAli 
jets very similar to f 

However, when the authors ev 	 he one developed here is presented in ref. 8. 
elvect this analysis, ref. had not yet been published. 
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where u and v are the mean velocities in the streamwise (x) and the transverse (y) 
directions respectively. 

Now, 

It 	 --, vs— — u v 
ay 

where it' and if are instantaneous fluctuations in u and v. Near the solid boundary, the 
turbulent fluctuations die down and molecular diffusion of momentum predominates 
over turbulent diffusion. As one moves away from the solid boundary, the contri- 
bution of turbulent diffusion increases very rapidly until, at a small distance away from 
the wall, molecular diffusion can be neglected completely. If 6, is the thickness of 
the layer beyond which molecular diffusion is negligible, then, 3  

6, • u* 
tatit  0 t.) • 

V 

However, the thickness of the layer in which the shear stress is constant (and equal to 
that at the wall) is very much more than this. One may therefore substitute Tip =--- 

u' v' from the edge of the constant shear layer to the wall and thus for the entire 
boundary layer so that the momentum equation can be written as: 

0U 	OU a ....._ 	 . 
+ v ----. = — — zit vi Ox 	ay 	lay 

We now seek a similarity solution of these equations by introducing the following: 

1. Power law variation for the wall jet thickness 6 and the maximum velocity at 

any section U given by: 

U Ax° ; 6 = Bx b  

x being measured from a 'virtual origin' not necessarily coincident with the 

stagnation point on the surface. 

2. A similarity parameter ri yI6 = yiBx b . 

3. The self-preserving velocity profile u/U f (i1). 

4. Representation of the Reynolds Stresses as 	= U2  . h (1). 

The continuity equation is eliminated by introducing the stream function 

that 

IP such 

u 
X Op 

1 	atfr 
V = 	a' • x Ox tang 

A 
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The stream function at any section x is then: 

xudy 	ABx 14b 11  o
f f CO. (hi — A Be b. ' 1  • F 

0 

where 

F 	If (i1). dn. 

With these substitutions, the momentum equation turns out as: 

A 2 	- 
A2 ax • F'2  a A 2  (a + b +1) x2c . FF" 	r • x2" h' 

li 

where the primes indicate differentiation with respect to n . 

For similarity, therefore. b = 1. 

To evaluate the index a, let us consider the Momentum-Integral 	equation of the 

Radial Wall Jet. 	Referring to Fig. 2, this equation can be written as: 

00 	
I — - 
a 	TO) 

• • 	— x = O. 
ddx f U2 X dy -I-

P  
0 

which integrates to: 

1/2  x dy + 
TCO 
--- X dx = Constant, 

or, with the present substitutions, 
-_.,. 

A 2  B 	F'2 . 	— A 2  h (0) 5°  x24  . dx re Constant 
o 	 0 

This equation is equivalent to: Momentum flow/unit time at any section x + Wall 
shear force retarding the flow up to that section = Constant = Momentum/unit time 
added to the flow by the impinging jet. 

In Free Jets where the mean velocity profiles are self-preseiving, the momentum of 
the jet fluid is conserved at all sections. This is not so in the case of wall jets because 
of loss of momentum at the solid boundary. However, one is forced to neglect this 
if one hopes to complete the similarity analyses. It may be noted that the rat'() 
of the momentum loss to the total momentum of the jet fluid will be of the order of 10

s  
: • 

The analyses will, therefore, be inaccurate to this extent and can be expected to predict 
the gross features of these flows rather than their finer details. 
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If we neglect, therefore the second Mill on the L.H.S. of the Momentum-integral 
relation, we see that: 

2a + b 1 =-- 0 

Or, 

a= —1. 

The momentum equation simplifies then to: 

h ' 
F'2  + FF"  Cl) 

with the boundary conditions: 

F' = 0; 

1-* oo : F' -es* O. 

2.2. The plane wall jet 

The governing equations are: 

au av 
= Ox Dy  V Continuity equation 

au 	au a 	, u-- +v--=—•---u,  #v 	Momentum equation. 
eX 	ay 	ay 

The stream function at any section x is now IP = 5 u.dy and we introduce the same 
;ubstitutions as before to transform the momentum equation to: 

A 2  ax"' • F'2  — A 2 (a + b) x24 --1  • FF" = A
2 	h , 

For similarity,similarity, again, b = 1. 

The momentum-integral equation is now 

u2  • dy +
Tco „ 

which integrates to. 

co 

f u2  dy + f To) • dx = Constant. 	 • 
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or, 
00 

A 2  B x"“ f F'2 	+ 
To) • dx rn--- Constant. 

In this case, therefore, 2a + b 0 Or  

The momentum equation simplifies to : 

2/1' 
F'2  FF" — eir = 0 (2) 

with the same boundary conditions as for equation (1). 

These values of a and b obtained for the two types of wail jet from the present analysis 
are compared with their experimental values reported in literature' in the table below 

Radial Wall Sat 
	

Plane Wall Sat 

Present Analysis 
	

Reported 
	

Present Analysis 	Reported 

a 	—1-0 	 —1.12 	 —0 • 5 	 —0.555 

b 	- 	1.0 	 0.94 	 1.0 	 1.0 

2.3. The spherical wall jet 

Assuming that the diameter of the circular jet impinging on the sphere is small 
compared to the sphere diameter (so that the thickness of the resulting wail jet is small), 
we can write the governing equations as (with reference to Fig. 3): 

a 	a 
Continuity equation 

au 	au a (T) 	
Momentum equation. 

We now introduce substitutions similar to those that were 
the essential difference that, in the present case, r replaces x in mations so that: 

introduced earlier with 
the similarity transfor• 
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Sc = Be, 

= Yk5  = YiBr b , 
I 00 1 a u u 	= 	• v r ay ' 	r ax'  

- 	= ABre-0-0 I 00 • di = ABra ' 11 + 1  

Further, we now write the shear force term in the momentum equation as: 

02 u 	, 	 492 2, 

	

= c • 	kg°  cos 0) • — ay   

where s is the eddy viscosity' at any section and t o  is its value at the stagnation point 
0= 0. This substitution, though artificial and highly contrived, is essential for simi- 
larity. It implies that the shear stress vanishes at 0 = 900. This may be true of the 
wall shear stress rb, as the wall jet appears to leave the surface at 0 = 90°. There is no 
justification a priori for this substitution; it can only be defended, a posteriori, from 
the similarity trend shown by the velocity profiles in the developed region of the 
Spherical Wall Jet. 

With these substitutions, the momentum equation transforms to: 
A2 ar2a . In2 cos 0 — A2  (a + b 1)r 20 ' • FF"cos 0 

	

A 	ni „ r= €0  • — • ea—  14  COS 0 
B2  

The Momentum-Integral relation indicates 2a + b 1 = 0. These result in values 
for a and b of — I and I respectively and the momentum equation simplifies to: 

F'2  + FE" + 
(AB

-12 
 
-6 Fu" = 0 	 (3) 

with the same boundary conditions as for equations (1) and (2). 

3. Numerical solution 

The three equations, (I), (2) and (3) can be integrated by standard numerical methods. 
Before this is done, however, in equations (I) and (2), the function h (I) used to represent 

the Reynolds Stress distribution has to be connected with the function F and its deri- 

vatives by invoking some theory of turbulent diffusion. In equation (3) with which 

we are now primarily concerned, the variation of to with y (and hence 	will again 

depend on the particular hypothesis of turbulent diffusion that is assumed. It is 
also likely that different empirical hypotheses may be appropriate for the inner and 
the outer layers of the wall jet. This is because, in the outer layer, diffusion by large 
eddies (as in free jets) may predominate, whereas, in the highly sheared inner layer, 
velocity gradients and small eddies may control diffusion. 
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In the present instance, for purposes of illustration, E o  has been assumed constant 

and equation (3) has been written as 

F12  FF" CF" = 0 
	

[C = Constant] 	 (4) 

and numerically integrated by the Runge-Kutta method. 

The shape of the velocity distribution curve (F') that results by integrating equation (4) 

can be varied by (a) varying the value of the constant C and (b) varying F" (0) 
ROulay),..), the velocity gradient at the surface specified at the start of the numerical 
integration process. No attempt was made to incorporate the other classical theories 
of turbulent diffusion as all are of dubious validity. 

4. Experimental results 

The present set of experiments was confined 	mainly 	to 	the 	Spherical 'Wall Jet as 
the other two types 	have been investigated extensively. 1,2 /5-7 	The Spherical Wall Jet 
was produced by a small circular air jet striking a large spherical surface radially. A 
rotary compressor supplied the air to the jet nozzle through a large reservoir to mini- 
mise pressure fluctuations. 	Mean velocities at different locations 	were measured by 
a small flattened pitot tube 0.2 mm thick and a projection manometer with an accuracy 
of 0.1 mm. 

Fig. 3 
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1  A jet nozzle of 12-7 mm (0-5") diameter (d) was used in the experiments. The paras 
meters varied were (with reference to Fig. 3): 

(a) The sphere diameter D, 

(b) The distance between the nozzle and the sphere ZN and 

• 
(c) The jet exit Reynolds number Ref U d  

, 
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FIG. 5 

Some of the results are presented in Figs. 4, 5 and 6 in the form suggested by the 
similarity analysis. As can be seen, the velocity profiles do exhibit similarity and 
seem to be little affected by the variation in the three parameters cited above. 

The curve shown in broken line in each of these figures was obtained by numerical 
integration of equation (4) with 

(a) F" (0) = 7.8 and C 0-015 in the inner layer and 

(b) C= 0-36 in the outer layer. 
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