VOLUME CHANGE OF MIXING

K. Sankaran* and D. N. Seshadri
(Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012)

Received on November 26, 1973 and in revised form on March 13, 1974

Abstract

Excess volume of benzene-carbcn Atetrachloride and benzene-1, 2-dichloroethane have been measured as functions of temperature and composition by a dilatometric method. Excess volumes predicted by cell model and average potential model are compared with experimental values aiailable in the literature.

Key words: Vohume-mixing-benzene-carbon tetrachloride-1,2-dichloroethane-dilatometer-theory-solution.

1. Introduction

Volume change of mixing or excess volume per mole of a binary mixture is given by:

$$
\begin{equation*}
V^{H}=V-x_{1} V_{1}{ }^{0}-x_{2} V_{2}{ }^{0} \tag{1}
\end{equation*}
$$

Here, the mixture as well as the corresponding pure components are considered at the same temperature and pressure. Usually, the ordinary external pressure of one atmosphere is taken as the reference pressure.

Experimental determination of volume change of mixing is useful in verifying the validity of the theory of solutions and in determining which theory conforms most to the actual facts. Excess thermodynamic functions like excess volume, excess free energy, etc., represent the deviations from the laws of perfect solution.

In this work, volume change of mixing of benzene-1, 2-dichloroethane and benzene-carbon tetrachloride is determined over a range of temperature of $30-50^{\circ} \mathrm{C}$ by using a weight dilatometer.

[^0]2. Experimental Arrangement

The weight dilatometer used in the present work is shown in Fig. 1. The volume is $5 \mathrm{~cm}^{3}$, approximately $3 \mathrm{~cm}^{3}$ being allowed for solutions and $2 \mathrm{~cm}^{3}$ for mercury. The main body of the dilatometer is blown from 14 mm I.D. Corning glass tubing and this is fused to a 1 mm capillary side

Fig. 1. Dilatometer and Casing Showing the Position of Receiving Cup. Scale :2:1
tube. The tip of the capillary is tapered and ground at an angle of 45°, as suggested by Wood and Brusie [1], to avoid any air bubble clinging to the tip when the dilatometer is filled. The brass casing and cover plate are made from a $1 \frac{1}{2}$ " diameter brass rod. A region of constant temperature is provided to the dilatometer by a thermostat with an on-off controller, which maintains temperature to $\pm 0.03^{\circ} \mathrm{C}$. Figure 2 shows the arrange-

Fig. 2. Set-up in the Thermostat.
ment of the dilatometer in the thermostat. The filling of dilatometer is done in a similar manner described by Burlew [2].

3. Determination of Volume Change on Mixing

The dilatometer is first cleaned with concentrated nitric acid to remove traces of mercury. It is then washed with water, dried by repeated heating and cooling. The dilatometer is first weighed empty and then after filling to about $1 / 3$ the total volume with mercury and finally after filling the remaining portion with the liquid mixture. From these, the weight of the liquid taken in the dilatometer is calculated. After the capillary is dried, the dilatometer is placed in the brass cylinder with receiving cup in position. The mercury thread in the capillary is then joined with mercury in the receiving cup by gently heating the brass cylinder. Each series of experiments is started at $30^{\circ} \mathrm{C}$. Then, the apparatus is kept in the thermostat. After the water inside the holder attains the temperature of the bath, the set up is left undisturbed for 15 minutes to allow the contents to attain steady state temperature. After this, the end of the capillary tube is separated from the receiving cup and then the brass cylinder with dilatometer and receiving cup is removed from the thermostat. The dilatometer is now removed from the cylinder and dried. The receiving cup and the dilatometer are now weighed separately. The dilatometer is again kept in the brass cylinder and the mercury thread in the capillary is joined with mercury in the receiving cup. The experiment is repeated at the next higher temperature. To correct for mercury evaporated from the collecting cups during the course of a run, the following procedure is adopted. A second cup of approximately the same size is always placed beside the collecting cup in order to determine this loss. The reduction in total weight of dilatometer plus receiving cup gives the total loss of mercury during a run. The reduction in weight of the dummy receiving cup for the same period gives the loss of mercury from the receiving cup and hence loss of mercury from the dilatometer can be calculated. This weight is added to the weight of mercury in the dilatometer to give the correct weight of mercury in dilatometer at each temperature. Knowing the weights of mercury in dilatometer and densities of mercury at various temperatures, volume of mercury in the dilatometer can be calculated. By knowing the total volume of dilatometer at various temperatures, the volume of liquid and hence the density at various temperatures can be evaluated.

First the dilatometer is calibrated by determining volume at $30^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C}$, $40^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ by a series of measurements using water and mercury.

The densities of water and mercury at various temperatures used in this work is given in Table I. The density bottle is calibrated by measuring the weight of distilled water that fills the bottle. The calibrated density bottle is used in the determination of density-composition relationship.

Table I

Densities of water and mercury [4]

Temperature ${ }^{\circ} \mathrm{C}$	Density of Mercury $\mathrm{gm} / \mathrm{cm}^{3}$	Density of Water $\mathrm{gm} / \mathrm{cm}^{3}$
30	13.5213	0.99568
35	13.5091	0.99406
40	13.4969	0.99225
45	13.4847	0.99025
50	13.4725	0.98070

Since the composition of the solutions used in the dilatometer cannot be determined directly, it is necessary to determine the density composition curve at one temperature. The densities of pure components and binary mixtures with mole fractions ranging from 0.1 to 0.9 in steps of 0.1 are determined using the calibrated density bottle. Knowing compositions and densities of liquid mixtures, the volume change on mixing is evaluated using the equations:

$$
\begin{equation*}
V^{M}=V-V^{0} \tag{5}
\end{equation*}
$$

where,

$$
\begin{align*}
& V=\frac{M_{1} x_{1}+M_{2} x_{2}}{d} \tag{6}\\
& V^{0}=\frac{M_{1} x_{1}}{d_{1}}+\frac{M_{2} x_{2}}{d_{2}} . \tag{7}
\end{align*}
$$

With $V=$ molar volume of the mixture; $d=$ density of the mixture; $x_{i}=$ mole fraction of component i and $M_{i}=$ molecular weight of component i.

4. Purification of Liquids

Two litres of distilled water is redistilled in a flask and the middle $1 / 3$ portion is collected. To this, about 0.2 gm of potassium permanganate
and 0.5 gm of sodium hydroxide are added and again distilled. About $250 \mathrm{~cm}^{3}$ of the middle fraction is collected and used in this work.

Mercury is first washed with distilled water. It is covered with a layer of 10 per cent nitric acid and air is bubbled through it. The acid is separated by filtration and mercury is washed repeatedly by distilled water to remove traces of acid. Mercury is then dried and used in the experiments.

All the organic liquids are purified by distilling twice in a packed distillation column. The purity is checked by density measurements. Density data is given in Table II.

Table II
Densities of organic liquids at $30^{\circ} \mathrm{C}$

Liquid		This work $\mathrm{gm} / \mathrm{cm}^{3}$	Literature values	Reference
Carbon tetrachloride	.	$1 \cdot 5748$	$\left\{\begin{array}{l} 11 \cdot 57503 \\ 1.57460 \end{array}\right.$	$\frac{1}{3}$
Benzene	.	$0 \cdot 8678$	$\left\{\begin{array}{l} 0 \cdot 86810 \\ 0 \cdot 86845 \end{array}\right.$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
1, 2-dichloroethane	..	$1 \cdot 2383$	$\begin{array}{r} 1 \cdot 23815 \\ \text { at } \quad 30 \cdot 1^{\circ} \mathrm{C} \end{array}$	3

5. Results and Discussion

The density values are fitted by the method of least squares to a third degree polynomial in composition. The curves obtained are:

For benzene-carbon tetrachloride system:

$$
\begin{array}{rl}
d=1 & .57471-0.65344 \times 10^{-2} x-0.46915 \times 10^{-5} x^{2} \\
& -0.68205 \times 10^{-8} x^{3} \tag{2}
\end{array}
$$

For benzene-1, 2-dichloroethane system:

$$
\begin{array}{rl}
d=1 & .23803-0.42966 \times 10^{-2} x-0.67177 \times 10^{-5} x^{2} \\
& -0.77974 \times 10^{-8} x^{3} \tag{3}
\end{array}
$$

with $x=$ mole percentage of benzene
The specific volumes of pure liquids and their mixtures are determined at $30^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ using the dilatometer. The densitics are fitted by the method of least squares to the equation

$$
\begin{equation*}
d=a_{1}+b_{1} t+c_{1} t^{2}+d_{1} t^{3} \tag{4}
\end{equation*}
$$

Table III

Volume change of mixing for benzene-carbon tetrachloride system

Mole Fraction of benzene, X_{1}	$\begin{gathered} V^{m} \\ \mathrm{Cm}^{3} / \text { mole } \end{gathered}$
Temperature $=30^{\circ} \mathrm{C}$	
0.09833	0.01909
$0 \cdot 2008$	0.01889
$0 \cdot 4027$	0.01597
0.4966	0.01474
$0 \cdot 6999$	0.01148
Temperature $=35^{\circ} \mathrm{C}$	
0.2775	0.00421
0.4049	0.02090
0.4988	0.04354
$0 \cdot 5906$	0.06462
0.7022	0.06997
$0 \cdot 8043$	0.07358
$0 \cdot 8974$	0.08530
Temperature $=40^{\circ} \mathrm{C}$	
$0 \cdot 2029$	0.00520
$0 \cdot 2775$	0.01894
0.4049	0.02618
0.4988	0.04331
$0 \cdot 5906$	0.06063
$0 \cdot 7022$	0.06505
$0 \cdot 8043$	0.06196
$0 \cdot 8974$	0.06907
Temperature $=45^{\circ} \mathrm{C}$	
$0 \cdot 2029$	0.00350
$0 \cdot 2775$	0.03021
0.4049	0.04747
0.4988	0.05580
$0 \cdot 5906$	0.07219
$0 \cdot 7022$	0.08301
$0 \cdot 8043$	0.07931
Temperature $=50^{\circ} \mathrm{C}$	
0.2775	0.03325
$0 \cdot 4049$	0.05343
0.4988	0.08402
$0 \cdot 5906$	0.09510
$0 \cdot 7022$	0.09104
$0 \cdot 8043$	$0 \cdot 08240$

The density at $30^{\circ} \mathrm{C}$ is found from equation (4) and used together with the density composition relationship at $30^{\circ} \mathrm{C}$ to calculate the composition of the liquid in the dilatometer. It is estimated that density and volume of mixing are accurate to 0.05% and 2.5% respectively. The volume change of mixing for benzene-carbon tetrachloride and benzene-1, 2-dichloroethane are presented in Tables III and IV and in graphical form as Figs. 3 and 4. The values of V^{M} for benzene-carbon tetrachloride are also determined by

Table IV
Volume change of mixing for benzene-1, 2-dichloroethane system

Fig, 3. Mole Per cent Benzene vs. Volume of Mixing Benzene-Carbon Tetrachloride System
Wood and Brusie [1] and by Scatchard et al. [5]. The curves for 1, 2-dichloroethane system show that there is hardly any change in volume of mixing with temperature.

Fig. 4. Mole Per cent Benzene vs. Volume of Mixing. Benzene-1, 2-Dichlorcethane System.
6. Comparison of Volume Change Predicted by Theories of Solutions with Experimental Data

The systems chosen for comparison are;
(i) benzene-cyclohexane,
(ii) cyclohexane-carbon tetrachloride, and
(iii) benzene-1, 2-dichloroethane.

According to the cell model theory, the excess volume of mixing is given by $[6,7]$ the expression:

$$
\begin{align*}
\frac{\gamma V^{E}}{\left(r_{A A}^{*}\right)^{3}}= & 0.9161\left[4 \cdot 125 \rho^{2}+0.75 \rho \delta+1 \cdot 50 \rho \theta\left(x_{A}-x_{B}\right)\right] x_{A} x_{B} \\
& +2.032 \frac{K T}{\Lambda_{A A}}\left[-2 \theta-0.75 \delta^{2}+\theta \delta\left(1+2 x_{B}\right)+\theta^{2}\right. \\
& \left.-10.44 \rho^{2}-3 \rho \theta-2.55 \rho \theta\left(x_{A}-x_{B}\right)+0.227 \rho \theta\right] x_{A} x_{B} \tag{8}
\end{align*}
$$

where, γ is related to the distance between first neighbours ' a ' by

$$
\begin{equation*}
a^{3}=\gamma V \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
\rho & =\left(r_{B B}{ }^{*}-r_{A A}^{*}\right) / r_{A A}{ }^{*} \tag{10}\\
\Lambda_{i j} & =Z\left|\epsilon_{i j}{ }^{*}\right| \tag{11}\\
\delta & =\frac{1}{\Lambda_{A A}}\left[\Lambda_{B B}-\Lambda_{A A}\right] \tag{12}\\
\theta & =\Lambda_{A A}\left[\Lambda_{A B}-\left(\frac{\Lambda_{B B}}{2}+\Lambda_{A A}\right)\right] \tag{13}
\end{align*}
$$

According to the average potential model theory, the excess volume of mixing is given by the expression [8]

$$
\begin{align*}
\frac{V^{E}}{x_{A} x_{B}}= & \frac{3}{2} V_{A A \rho}\left[\theta\left(x_{A}-x_{B}\right)+\frac{\delta}{2}+\frac{11 \rho}{4}\right]+T V_{A A}{ }^{1} \\
& \times\left[-2 \theta+9 \rho^{2}+\theta^{2}-\frac{3}{4} \delta^{2}+\theta \delta\left(1+2 x_{B}\right)\right. \\
& \left.-3 \rho \theta+\frac{9}{4} \rho \delta+\frac{3}{2} \rho \theta\left(x_{A}-x_{B}\right)\right]+\frac{1}{2} T^{2} V_{A A}{ }^{11} \\
& \times\left[\theta^{2}-{ }_{4}^{3} \delta^{2}+\theta \delta\left(1+2 x_{B}\right)\right] \tag{14}
\end{align*}
$$

where,

$$
\begin{align*}
& V_{A A}=\frac{d V_{A A}}{d T} \tag{15}\\
& V_{A A}{ }^{11}=\frac{d^{2} V_{A A}}{d T^{2}} . \tag{16}
\end{align*}
$$

In deriving the above equations, the following basic assumptions are involved:
(i) the translational partition function can be handled classically,
(ii) the internal partition function is independent of volume per molecule,
(iii) the interaction energy between molecules at a distance γ may be expressed in the form:

$$
\begin{equation*}
\epsilon_{i j}(r)=4 \epsilon_{i j} *\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \tag{17}
\end{equation*}
$$

where,

$$
\begin{equation*}
\sigma=r_{i j} * 2^{-1 / 6}, \tag{18}
\end{equation*}
$$

(iv) random mixing is assumed
(v) $r_{A B}{ }^{*}=\frac{1}{2}\left(r_{A A}{ }^{*}+r_{B B}{ }^{*}\right)$.

In addition to these assumptions, the following assumptions are made for the purpose of calculations.
(i) $\theta=-\frac{\delta^{2}}{8}$.
(ii) Face-centered cubic lattice is assumed (this assumption is used only for the cell model equation). Hence, in this case, $Z=12$ and $r=1.414$. The values of ϵ^{*} and σ used in this work are given in Table V. The values of δ and ρ calculated using the values ϵ^{*} and σ are presented in Table VI. The values of $V_{A A}$, $V_{A A}{ }^{1}$ and $V_{A A}{ }^{11}$ given by Prigogine et al. [10] are used in the present work. These values are given in Table VII.

Table V
Values of (ϵ / K) and σ [9]

Substance	$\epsilon / K^{\circ} K$	$\sigma(\AA)$	
Carbon tetrachloride	327	$5 \cdot 881$	
Cyclohexane	\ldots	324	$6 \cdot 093$
Benzene	\ldots	440	$5 \cdot 270$
1,2 -dichloroethane	\ldots	406	4.759

Table VI
Values of δ and ρ

System

Cyclohexane-carbon tetrachloride :

(i) Cyclohexane as reference		.	0.0
(ii) Carbon tetrachloride as reference	.	.	0.0

Cyclohexane-benzene :

(i) Cyclohexane as reference	.	0.015	-0.085
(ii) Benzene as reference	..	-0.015	0.093

Benzene-1,2-dichloroethane :
(i) Benzene as reference .. $-0.077 \quad-0.097$
(ii) 1, 2-dichloroethane as reference .. 0.084 0.106

Table VII

Values of $V_{A A}, V_{A A}{ }^{1}$ and $V_{A A}{ }^{11}$ [10]

System		$V_{A A} \mathrm{~cm}^{3}$	$V_{A A}{ }^{1} \mathrm{~cm}^{3} / \mathrm{deg}$	$V_{A A^{11} \mathrm{~cm}^{3} / \mathrm{deg}^{2}}$
Carbon tetrachloride	..	97.08	0.119	0.0002
Cyclohexane	..	108.74	0.132	0.0003

Using these values for the parameters, volume changes for different compositions at $30^{\circ} \mathrm{C}$ are calculated from the two equations and are compared with experimental data available in the literature. For benzene cyclohexane system, the values reported by Wood and Austin [11] and for cyclohexanecarbon tetrachloride system, the values reported by Wood and Gray [12] are used for comparison. Values of V^{M} predicted by cell model theory for benzene-1, 2-dichloroethane system are compared with the results of the present work.

The graphs for the systems benzene-cyclohexane, cyclohexane-carbon tetrachloride and benzene-1, 2-dichloroethane are shown as Figs. 5, 6 and 7 respectively. From the curves, it is seen that the predicted values and

MOLE FRACTION BENZENE \longrightarrow
Fig. 5. Mole Fraction Benzene vs. Volume of Mixing at 30° Benzene-Cyclohexane System.

Fig. 6. Mole Fraction Cyclohexane vs. Volume of Mixing at $30^{\circ} \mathrm{C}$ Cyclohexane-Carbon Tetrachloride System.

Fig. 7. Mole Fraction Benzene vs. Volume of Mixing at $30^{\circ} \mathrm{C}$. (Benzene-1-, 2-Dichloroethane System)
actual values have the same sign and order of magnitude. Apparently, the cell model seems to conform more to the experimental values, but this may be due to the inaccuracy of the values of $V_{A A}, V_{A A}{ }^{1}$ and $V_{A A}{ }^{11}$ used in average potential model equation. Theoretically, the cell model is less satisfactory, because, besides the assumption it shares with the average
potential theory, it uses some supplementary assumptions and simplifications (cell field, limits of cell, etc.) which are eliminated in the average potential model. From the results, we can come to the following conclusions:
(i) As far as prediction of volume change is concerned, the average potential model does not give any substantial improvement over the cell model.
(ii) To check the validity of any theory of solutions, it is necessary to compare thermodynamic functions of mixing other than volume change of mixing like excess entropy, excess free energy, etc., with experimental values. Mere comparison of volume change of mixing does not give a true picture.

Nomenclature

d Density gm/cm ${ }^{3}$
$K \quad$ Boltzman's constant
$N \quad$ Avogadro's number
r
$T \quad$ Temperature, ${ }^{\circ} \mathrm{K}$
$V \quad$ Volume, $\mathrm{cm}^{3} /$ mole
$V^{1} \quad$ Volume/molecule
$V_{i}{ }^{0} \quad$ Volume/molecule for pure component i
$V_{\text {iA }} \quad$ Volume, $\mathrm{cm}^{3} /$ mole for pure component A used as the reference substance
Mole fraction
$Z \quad$ Co-ordination number for the lattice assumed
$\gamma \quad$ A geometric factor depending on the lattice assumed [Equation (9)]
$\rho \quad$ As defined in Equation (10)
$\boldsymbol{\epsilon}_{\boldsymbol{i}}{ }^{*} \quad$ Force of interaction between molecules i and j [Equation (17)]
$\epsilon / K \quad$ Parameter in Lennard-Jones Potential, ${ }^{\circ} \mathrm{K}$
I.I.Sc.-4
$\Lambda_{i j} \quad$ As defined in Equation (11)
$\delta \quad$ As defined in Equation (12)
$\theta \quad$ As defined in Equation (13)
$\sigma \quad$ Collision diameter, A [Equation (18)]

Superscripts:

E Excess function
$M \quad$ Describes thermodynamic functions of mixing

Subscripts :

1 Refers to benzene
2 Component other than benzene.

References

[1] Wood, S. E. and Brusic, Journal of American Chemical Society, 1943, 65, 1891. J. P.
[2] Burlew, J. S. .. Journal of American Chemical Society., 1940, 62, 690.
[3] Timmermans, J. .. The Physico-Chemical Constants of Binary Systems in Concentrated Solutions. Interscience Publishers, Inc., New Yolk, 1959.
[4] Perry, J. H. .. Chemical Engineers Handbook. McGraw-Hill, New York, 1963.
[5] Scatchard, G., Wood, Journal of American Chemical Society, 1940, 62, 712. S. E. and Mockel, J. M.
[6] Prigogine, I. and Journal of Chemical Physics, 1952, 20, 49. Mathot, v .
[7] Prigogine, I. and Discussions of Faraday Society, 1953, 15, 80. Bellemans, A.
[8] Prigozine, I., Bellemans, Journal of Chemical Physics. 1956, 24, 518. A. and Englert-Chowles
[9] Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B.
[10] Prigozine, I., Bellemans, A. and Mathot, V.

The Molecular Theory of Solutions, North-Holland Publishing Company, Amsterdam, 1957.
[11] Wood, S. E. and Gray, J. H.
[12] Wood, S. E. and Austin, A. E.

Molecular Theory of Gases and Liquids, John Wiley and Sons, New York, 1954.

Journal of American Chemical Society, 1952, 74, 3729.
Journal of American Chemical Society, 1945, 67, 480.

[^0]: * Present Address: Department of Chemical Engineering, Indian Institute of Technology, Madras 600036.
 I.I.Sc.-3

