# Spectrum of a Schrödinger Operator with a class of damped oscillating potentials

## ANNAPURNA SARKAR

Bethune College, Calcutta

Received on July 12, 1977

#### Abstract

The nature of the spectrum of the operator

$$M \equiv -\frac{d^2}{dx^2} + V_1(x), \ V_1(x) \equiv \frac{A \sin px}{1+x},$$

A, p real positive constants, as well as that of the perturbed operator

$$L \equiv -\frac{d^2}{dx^2} + V(x), V(x) = V_1(x) + l(x),$$

l(x) continuous and  $l(x) \in L(0, \infty)$  under a Sturmian boundary condition is investigated. It is found that L has the same spectrum as M; M having a continuous spectrum over the whole of the positive half of the real axis with points of the point spectrum embedded in it; the negative half of the real axis however does not belong to the spectrum.

Key words : Spectrum, damped oscillating potential, deficiency index, limit point, Prüfer transformation, iteration, Wronskian, perturbed/unperturbed operator.

### 1. Introduction

ŀ

2

Consider the differential equation.

$$\frac{d^2 y}{dx^2} + \{\lambda - q(x)\} y = 0, \qquad (1.1)$$

 $\lambda$  complex:  $\lambda = \mu + iv$ ,  $v \neq 0$  and q(x) real valued and continuous in x in  $0 \le x < \infty$ .

The homogeneous boundary condition at x = 0 is

$$y(0)\cos\alpha + y'(0)\sin\alpha = 0$$

(1 2)

where  $\alpha$  is a real parameter.

If  $\phi(x, \lambda)$  and  $\theta(x, \lambda)$  be two solutions of (1.1) which at x=0 take real initial conditions

$$\phi(0,\lambda) = -\sin\alpha, \qquad \phi'(0,\lambda) = \cos\alpha \\ \theta(0,\lambda) = -\cos\alpha, \qquad \theta'(0,\lambda) = -\sin\alpha$$

$$(1.3)$$

$$(5)$$

then there exists an analytic function  $m(\lambda)$ , regular for  $v = im \lambda \ge 0$  such that for

$$0 \leq x < \infty,$$
  
$$\psi(x, \lambda) = \theta(x, \lambda) + m(\lambda) \phi(x, \lambda)$$
(1.4)

is a solution of (1.1), satisfies (1.2) and belongs to  $L^2[0,\infty)$ ;  $m(\lambda)$  depends on the choice of the real parameter  $\alpha$ . (Titchmarsh,<sup>7</sup> p. 25 or Coddington and Levinson,<sup>2</sup> p. 228).

The spectrum as usual is the set of values of  $\lambda$  which contributes to the expansion formula and the spectrum of the differential operator  $T: -d^2/dx^2 + q(x)$ , represented by  $\sigma(T)$ , may be regarded as the complement of the set  $\rho(T)$  of all points  $\lambda$  for which  $m(\lambda)$  is regular. The spectrum  $\sigma(T)$  is obviously given by

$$\sigma(T) = P\sigma(T) \cup C\sigma(T) \cup PC\sigma(T)$$
(1.5)

where  $P\sigma(T)$  is the point spectrum,  $C\sigma(T)$  the continuous spectrum and  $PC\sigma(T)$  the point continuous spectrum of T, at least one of the set being non-empty. The point  $\lambda$  is an eigenvalue if and only if  $\lambda \in P\sigma(T) \cup PC\sigma(T)$ .

The spectral properties of the operator T are characterised by the properties of  $m(\lambda)$  on the real  $\lambda$ -axis and it is easy to deduce from §4 and the theorem of §5 in Chaudhuri and Everitt<sup>3</sup>, that

(i)  $\mu \in \sigma(T)$ , if and only if  $m(\lambda)$  is regular at  $\mu$ , *i.e.*,  $\lim_{p \to 0} [im m(\lambda)] = 0$ .

(ii)  $\mu \in P\sigma(T)$ , if and only if  $m(\lambda)$  has a pole at  $\mu$ , but  $m(\lambda)$  is regular in any neighbourhood excluding  $\mu$ : or if and only if  $m(\lambda)$  tends to infinity as  $\lambda$  tends to  $\mu$  and  $im\{m(\lambda)\}$ tends to zero as  $\lambda$  tends to any point in a neighbourhood excluding  $\mu$ .

(iii)  $\mu \in C\sigma(T)$ , if and only if  $m(\lambda)$  is not regular in any neighbourhood including  $\mu$  and  $\lim_{\nu \to 0} \{\nu m (\mu + i\nu)\} = 0$ ; *i.e.*,  $\lim_{\nu \to 0} [im m(\lambda)]$  is a continuous and non-vanishing function bounded for all  $\mu \in (\mu_1, \mu_2)$  on the real  $\lambda$ -axis.

(iv)  $\mu \in PC\sigma(T)$ , if and only if  $\lim_{\nu \to 0} i\nu \{m \ (\mu + i\nu)\} = s \neq 0$ , s real and  $\{[m(\lambda) - s]/(\lambda - \mu)\}$  is not regular at  $\mu$ ; *i.e.*,  $m(\lambda)$  tends to infinity as  $\lambda$  tends to  $\mu$  and  $\lim_{\nu \to 0} [im m(\lambda)]$  is a continuous non-vanishing function of  $\mu$  in any neighbourhood excluding  $\mu$ .

(v) The spectrum is a pure point spectrum or a discrete spectrum if and only if  $m(\lambda)$  is meromorphic.

Our object in the present paper is to discuss the nature of the spectrum of (1.1) when q(x) is of the form

$$q(x) = \frac{A \sin px}{x+1},$$

where A and p are real positive constants.

The differential equation (1.1) now takes the form

$$M[y] = \lambda y : M \equiv -\frac{d^2}{dx^2} + V_1(x)$$
(1.6)

with

$$V_1(x) = \frac{A\sin px}{x+1},$$

the damped oscillating potential:  $V_1^{(n)}(x) \notin L[0,\infty)$ , but

$$V_1^{(n)}(x) \in L^2[0,\infty), \quad n=0,1,2,\ldots$$

Since  $V_1 \in L^2[0, \infty)$ , it follows that the deficiency index of the operator M is (1, 1) and we are in the limit point case at infinity (vide Naimark,<sup>4</sup> p. 305 or Putnam<sup>5</sup>).

Since

$$\frac{A\sin px}{1+x} > \frac{-A}{1+x},$$

it is possible to choose a positive constant K such that

$$\frac{A \sin px}{1+x} > -K \text{ for all } x, 0 \leq x < \infty.$$

Hence also by Cor. 1, (p. 231), Coddington and Levinson,<sup>2</sup> M is in the limit point case at infinity.

The paper ends with a discussion on the nature of the spectrum of the differential operator

$$L: L[y] = \lambda y, \quad L \equiv -\frac{d^2}{dx^2} + V(x)$$
 (1.7)

the perturbed form of (1.6), where  $V(x) = V_1(x) + I(x)$ , I(x) being a continuous function of x which belongs to L [0,  $\infty$ ).

## 2. Asymptotic values of a pair of solutions of (1.6)

Let  $y_1(x) = y_1(x, \lambda)$  be a solution of (1.6). Applying the Prüfer transformation (Rosenfeld<sup>6</sup> p. 397)  $y_1(x) = \rho(x, \lambda) \sin [\Theta(x, \lambda)], \quad \lambda \rightarrow y'_1(x) = \rho(x, \lambda) \cos [\Theta(x, \lambda)],$ 

#### ANNAPURNA SARKAR

it follows from (1.6) on slight reduction and necessary subsequent integration that

$$\rho(x, \lambda) = C_1 \exp\left\{\frac{1}{2}A\lambda^{-\frac{1}{2}}\int_{0}^{\pi} (t+1)^{-1}\sin pt\sin\left[2\Theta(t, \lambda)\right]dt$$

$$C_1 = \rho(0, \lambda),$$
(2.1)

and

$$\Theta(x,\lambda) = \Theta_0 + \lambda^{\frac{1}{2}} x - A\lambda^{-\frac{1}{2}} \int_0^t (t+1)^{-1} \sin pt \sin^2 \left[\Theta(t,\lambda)\right] dt \qquad (2.2)$$

$$\Theta_0 = \Theta(0, \lambda).$$

Since  $Si(z) = \int_{0}^{z} t^{-1} \sin t \, dt$ ,  $Ci(z) = \gamma + \log z + \int_{0}^{z} t^{-1} (\cos t - 1) \, dt$ ,  $\gamma$ , Euler's

constant (Abramowitz,<sup>1</sup> p. 231), where

 $Si(z) \sim z^{-1} + K_1$ ,  $Ci(z) \sim z^{-1} + K_2$ , as |z| tends to infinity,  $K_j$ , j = 1, 2, being small constants (Abramowitz<sup>1</sup> pp. 232-33), it follows by iteration from (2.2), substitution of  $\omega = p(t+1)$  and subsequent reduction that, as x tends to infinity,

$$\int_{0}^{1} (t+1)^{-1} \sin pt \, dt = o\left\{(x+1)^{-1}\right\} + o(1) \tag{2.3}$$

and

$$\int_{0}^{t} (t+1)^{-1} \frac{\sin}{\cos} \{ (p \pm 2\lambda^{\frac{1}{2}}) t \} dt = o [(x+1)^{-1}] + o (1).$$
 (2.4)

Hence making use of (2.4) in the iterated result obtained from (2.2), we obtain  $\Theta(x, \lambda) \sim \lambda^{\frac{1}{2}} x + o(1)$ (2.5) leading to

$$\frac{\sin}{\cos} \left[\Theta(x,\lambda)\right] \sim \frac{\sin}{\cos} \lambda^{\frac{1}{2}} x + o(1),$$

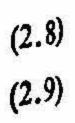
as x tends to infinity.

Thus for sufficiently large x and non-zero 
$$\lambda$$
,  
 $\rho(x, \lambda) = C_1 \exp [f_1(x, \lambda)]$ 

and

$$y_1(x, \lambda) = C_1 \exp \left[ f_1(x, \lambda) \right] \left[ \sin \lambda^{\frac{1}{2}} x + o(1) \right]$$
$$= C_1 \exp \left[ f_1(x, \lambda) \right] \sin \Theta(x, \lambda),$$





(2.7)

(2.6)

## SPECTRUM OF A SCHRÖDINGER OPERATOR

by (2.6), where 
$$f_1(x, \lambda) = \frac{1}{2} A \lambda^{-\frac{1}{2}} \int_{0}^{n} (t+1)^{-1} \sin pt \sin 2\lambda^{\frac{1}{2}} dt$$
.

Similarly, if  $y_2(x, \lambda)$  be the other solution of (1.6), where  $y_2(x, \lambda) = \lambda^{-\frac{1}{2}} [\rho(x, \lambda)]^{-1} \cos [\Theta(x, \lambda)],$  $y'_2(x, \lambda) = - [\rho(x, \lambda)]^{-1} \sin [\Theta(x, \lambda)],$ 

we have

$$y_{2}(x,\lambda) = C_{2}\lambda^{-\frac{1}{2}}\exp\left[-f_{1}(x,\lambda)\right]\left[\cos\lambda^{\frac{1}{2}}x + o(1)\right]$$

$$= C_{2}\lambda^{-\frac{1}{2}}\exp\left[-f_{1}(x,\lambda)\right]\left[\cos\Theta(x,\lambda)\right].$$
(2.10)
(2.11)

by (2.6), for sufficiently large x and  $\lambda \neq 0$ .

Since the Wronskian  $W(y_1, y_2) = -1$ , it follows that  $y_1(x, \lambda)$ ,  $y_2(x, \lambda)$  form a fundamental set of solutions of (1.6). Hence choosing

$$y_1(0, \lambda) = 0, \quad y_2(0, \lambda) = 1, \quad y'_1(0, \lambda) = 1, \quad y'_2(0, \lambda) = 0,$$

it follows that the constants  $C_1$ ,  $C_2$  in (2.9) and (2.11) are given respectively by  $\lambda^{-\frac{1}{2}}$  and  $\lambda^{\frac{1}{2}}$ .

## 3. Nature of the spectrum of (1.6)

We now establish the following theorem giving the nature of the spectrum of (1.6).

Theorem: The self-adjoint differential operator M defined in (1.6) under the boundary condition (1.2) has a spectrum  $\sigma(M)$  which extends over the positive half of the real  $\lambda$ -axis and consists of the two subsets  $C\sigma(M)$  and  $PC\sigma(M)$ , where  $PC\sigma(M)$ consists of the point  $\mu = p^2/4$ ,  $0 < \mu < \infty$  and  $C\sigma(M)$ , the whole of the right half line  $(0, \infty)$  of the real  $\lambda$ -axis with the exclusion of the point  $\mu = p^2/\mu$ .

As already pointed out in the introduction, we are in the limit point case at infinity and therefore [by Coddington and Levinson,<sup>2</sup> formula (2.13)], we have (3.1)

$$m(\lambda) = -\lim_{b \to \infty} y_1(b, \lambda)/y_2(b, \lambda)$$

$$= -\lim_{b \to \infty} \lambda^{-\frac{1}{2}} [\exp(f_1(b, \lambda))] \sin[\Theta(x, \lambda)]$$

$$= -\lim_{b \to \infty} \lambda^{-\frac{1}{2}} [\exp(-f_1(b, \lambda))] \cos[\Theta(x, \lambda)]$$

$$= \lim_{b \to \infty} \left[ -i\lambda^{\frac{1}{2}} \{\exp(2f_1(b, \lambda))\} \exp(-i\lambda^{\frac{1}{2}}b) - \exp(i\lambda^{\frac{1}{2}}b) \right], \text{ by } (2.6)$$

$$= \lim_{b \to \infty} \left[ -i\lambda^{\frac{1}{2}} \{\exp(2f_1(b, \lambda))\} \exp(-i\lambda^{\frac{1}{2}}b) + \exp(i\lambda^{\frac{1}{2}}b) \right], \text{ by } (2.6)$$

$$(3.2)$$

Putting  $\lambda = \sigma + i\tau$  it follows that as b tends to infinity, the second factor on the right side of (3.2) tends to a constant k, where k = +1 or -1 according as  $\tau_1 > 0$  or < 0. Hence finally, (3.3)

$$m(\lambda) = k \lim_{b \to \infty} \left[ -i\lambda^{\frac{1}{2}} \exp\left\{2 f_1(b, \lambda)\right\} \right]$$

## ANNAPURNA SARKAR

Two cases are to be distinguished.

Case I. When  $\lambda$  tends to a positive real value, say  $\lambda \to \sigma^2$ ,  $\sigma \neq 0$ . Then from (3.3)  $\lim_{\lambda \to \sigma^*} im \{m(\lambda)\} = -k \ \sigma^{-1} \exp\left\{A \ \sigma^{-1} \int_{0}^{\infty} \frac{\sin pt}{t+1} \sin 2\sigma t \ dt\right\}$ (3.4)

The integral on the right of (3.4) is convergent when  $p \neq 2\sigma$  and divergent when  $p = 2\sigma$ . Therefore, when  $\sigma^2 \neq p^2/4$ , the left hand side of (3.4) does not tend to zero or infinity but is a continuous function, bounded for all non-zero real values of  $\lambda$ . But the left hand side of (3.4) tends to infinity when  $\sigma^2 = p^2/4$ .

It follows therefore from characterisation of the spectrum in §1 that there exists a point of the point spectrum on the right half line of the real  $\lambda$ -axis at  $\lambda = p^2/4$  which is embedded in the continuous spectrum extending throughout  $(0, \infty)$ , with the exclusion of the point  $\lambda = p^2/4$ .

Case II. When  $\lambda$  tends to a negative real value, say  $\lambda \to -\tau^2, \tau > 0$ . It follows from (3.3) that

$$\lim_{\lambda \to \tau^*} m(\lambda) = -k \cdot \frac{1}{\tau} \exp\left[-\frac{A}{\tau} \int_{0}^{\infty} \frac{\sin pt}{1+t} \sinh 2\tau t \, dt\right].$$
(3.5)

The integral on the right being obviously divergent, it follows that  $m(\lambda)$  tends to zero as  $\lambda \to -\tau^2$ . Thus  $m(\lambda)$  is regular for  $\lambda \in (-\infty, 0)$ . The left hand side of the real

 $\lambda$ -axis therefore does not belong to the spectrum. When  $\tau < 0$ ,  $\lambda^{\frac{1}{2}}$  is replaced by  $-i\tau$  and the same result follows. The theorem is therefore completely proved.

## 4. Spectrum of the perturbed operator L

If  $Y_j(x, \lambda) \equiv Y_j(x)$ , j = 1, 2, be the solutions of the perturbed equation (1.7),  $Y_j(x)$  are derived in terms of the solutions  $y_j(x)$ , j = 1, 2, of the unperturbed equation (1.6) by

$$Y_{1}(x) = y_{1}(x) + \int_{0}^{\infty} G(x, t, \lambda) l(t) Y_{1}(t) dt, \quad 0 \le x \le t < \infty$$
(4.1)

$$Y_{2}(x) = y_{2}(x) + \int_{b}^{a} G(x, t, \lambda) l(t) Y_{2}(t) dt, \quad 0 < b \leq t \leq x < \infty$$
(4.2)

where

$$G(x, y, \lambda) = \frac{1}{W(\lambda)} [y_1(x) y_2(t) - y_1(t) y_2(x)]$$
(4.3)

 $W(\lambda)$  being the Wronskian of  $y_1(x)$  and  $y_2(x)$ .

It is noted that the boundary condition at x = 0, given by (1.2), remains the same for both the perturbed and the unperturbed cases.

On some simple calculations it follows that

$$Y_j(x, \lambda) = y_j(x, \lambda) [1 + o(1)], \quad j = 1, 2,$$

as x tends to infinity, uniformly for all  $\lambda$  belonging to the domain of definition of  $y_i(x, \lambda)$ , j = 1, 2. Thus the operator L has the same spectrum as the unperturbed operator M.

We therefore conclude that the spectrum of the operator

$$L = -\frac{d^2}{dx^2} + \frac{A \sin px}{1+x} + l(x), \quad 0 \le x < \infty,$$

A, p > 0 and  $l(x) \in L[0, \infty)$  and the boundary condition (1.2) shows penetration of a point of the point spectrum into a continuous spectrum extending over the whole of the right half of the real  $\lambda$ -axis, the left half remaining empty.

The author expresses her sincere thanks to Dr. N. K. Chakravarty for his keen interest and helpful criticism during the preparation of the paper.

## References

| 1. | Abramowitz, M. and<br>Stegun, I. A.   | Handbook of Mathematical Functions, 1965, Dover, NY,                                                                                                |
|----|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | GODDINGTON, E. A.<br>AND LEVINSON, N. | Theory of Ordinary Differential Equations, 1955, 228, McGraw-Hill, NY.                                                                              |
| 3. | CHAUDHURI, J. AND<br>Everitt, W. N.   | On the spectrum of ordinary second order differential operators. Proc.<br>Roy. Soc. Edinburg (A) 1968, 68 (II) (7), 95-119.                         |
| 4. | NAIMARK, M. A.                        | Linear differential operator, 1963, Akademie-Verlag, Berlin.                                                                                        |
| 5. | PUTNAM, C. R.                         | Integrable potentials and half line spectra. Proc. Amer. Math. Soc. 1955, 6, 243-246.                                                               |
| 6. | ROSENFELD, N.S.                       | The eigenvalues of singular differential operators. Com. Pure and Appl.<br>Maths, 1960, 13, 395-405.                                                |
| 7. | TITCHMARSH, E. C.                     | Eigenfunction expansions associated with second order differential<br>1967 Part L 25 Oxford University Press (2nd Edn.).                            |
| 8. | TITCHMARSH, E. C.                     | equations, 1902, Furth,<br>Eigenfunction expansions associated with second order differential<br>equations, 1958, Part II, Oxford University Press. |