
Spectrum of a Schriidinger Operator with a class of damped oscillating 
potentials 

ANNAPURNA SARKAR 
Bethune College, Calcutta 

Received on July 12, 1977 

Abstract 

The nature of the spectrum of the operator 

	

d 2 	 A sin px m 	 (x), Vi (x) - 
+ x ' 

A, p real positive constants,as well as that of the perturbed operator 
d2  

	

dx2 	
(x), 11 (x) = 111  (x) 	/ (x), 

1 (x) continuous and / (x) e L (0, 00) under a Sturmian boundary condition is investigated. It is found 
that L has the same spectrum as M ; M having a continuous spectrum over the whole of the positive 
half of the real axis with points of the point spectium embedded in it ; the negative half of the real 
axis however does not belong to the spectrum. 

Key words : Spectrum, damped oscillating potential, deficiency index, limit point, Priifer transforma- 
tion, iteration, Wronskian, perturbed/unperturbed operator. 

1. Introduction 

Consider the differential equatior. 

d2  y 
dx2 	 (x)} 	°, 

A complex: A. = p ± iv, v 0 and q (x) real valued and 

The homogeneous boundary condition at x = 0 is 

y (0) cos a + y' (0) sin = 0 

continuous in x in 0 < x < 00. 

(1.2) 

where a is a real parameter. 

If 4) (x, A) and 0 (x, A) be two solutions of (1 . 1) 

conditions 

0 (0, 2) = — sin a, 
0 (0, A) = cos a, 

(1)' (0, 2) 	cos a 1 
— sin a) 

which at x=--0 take real initial 

(1.3) 
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then there exists an analytic function in (A), regular for v = imA 4>c. 0 such that f 

o x <00, 	
+ m (A) it (x, A) 
	

(1.4) 

is a solution of (1.1), satisfies (1.2) and belongs to L 2  [0, oo); in (A) depends on the choice' 
of the real parameter a. (Titchmarsh, 7  p. 25 or Coddington and Levinson,2  p, 228), 

The spectrum as usual is the set of values of A which contributes to the expansion  
formula and the spectrum of the differential operator T: 	d2/dx2 q ft.\ 

v.%) represented  

by a (T), may be regarded as the complement of the set p (T) of all points A for Which 

m (A) is regular. The spectrum a (T) is obviously given by 

a (T) Pa(T) Ca(T)U PCa(T) 	 (1.5) 

where Pa (T) is the point spectrum, Ccr (T) the continuous spectrum and PCa (7') the 
point continuous spectrum of T, at least one of the set being non -empty. The point 
A is an eigenvalue if and only if A e Pa (T) U Par(T). 

The spectral properties of the operator T are characterised by the properties of in (A) 
on the real 2-axis and it is easy to deduce from § 4 and the theorem of § 5 in Chaudhuri 
and Everitt 3, that 

(i) P  e a (T), if and only if m (A) is regular at p, i.e., Jim [im m (2)1 = 0. 
pato 	 It 

(ii) p E Pa (T), if and only if in (A) has a pole at A, but m (A) is regular in any neighbour- 
hood excluding p: or if and only if In (A) tends to infinity as A tends to p and im (In (A)} 
tends to zero as A tends to any point in a neighbourhood excluding p. 

(iii) p e Ca (T), if and only if in (A) is not regular in any neighbourhood including 
p and lim v m (p + iv)} = 0; i.e., Jim [im m (A)) is a continuous and non-vanishing 

P-4.0 

function bounded for all p e (p 1 , p 2) on the real A-axis. 
(iv) p e PCa (T), if and only if Jim 

Um (A) — sJKA p)) is not regular at p; i.e., m 
Jim [im in (A)] is a continuous non-vanishing u-)0 
excluding p. 

iv {in (it ± iv)} = s 0, s real and 

(A) tends to infinity as A tends to p and 
function of p in any neighbourhood 

(v) The spectrum is a pure point spectrum or a discrete spectrum if and only if in 
is meromorphic. 

Our object in the present paper is to discuss the nature of the spectrum of (1.1) when q (x) is of the form 

in x q (x) A s  
x + 
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where A and p are real positive constants. 

The differential equation (1.1) now takes the form 

d2  
M [Y]  = AY dx2 vs (x)  (1.6) 

with 

, A sin x 
(x) = 	

p 
 x ± 1 

the damped oscillating potential: V1 ( " )  (x) EE L [0, cc), but 

V1 0)  (x) e L2  [0, co), n 	0, 1, 2, ... 

Since V1  eL2  [0, co), it follows that the deficiency index of the operator M is (1, 1) and 
we are in the limit point case at infinity (vide Naimark,4  p. 305 or Putnam5). 

Since 

A sin px > — A 
1 + x 	1 + x 

it is possible to choose a positive constant K such that 

A sin px > K for all x, 0 x < co. 
1 + x 

Hence also by Cor. 1, (p. 231), Coddington and Levinson, 2  M is in the limit point case 
at infinity. 

The paper ends with a discussion on the nature of the spectrum of the differential 
Operator 

d2  
L : L = 	L ---• 	V (x) 

dx2  
(1.7) 

the perturbed form of (1.6), where V (x) 	+ I (x), 1 (x) being a continuous 

function of x which belongs to L [0, co). 

2.. Asymptotic values of a pair of solutions of (1 . 6) 

Let yi 	(x, 	be a solution of (1.6). Applying the Priifer transformation 

(Rosenfeld')  p. 397) 

(x) = p (x, 2) sin [0 (x, 2)], A-4 	(x) = p (x, 2) cos [0 (x, 



-M- 

a 
• 

■ • • 

4.  

(2.6) 

(2.7) 
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it follows from (1.6) on slight reduction and necessary subsequent integration that  

p (x, 2) = C; exp {1 AA-1  gf 0 4- 1) -' sin pt sin [2 0 (1, A)] di 
0 (2.1) 

C, = p (0, A), 

and 

0 (x, 2) = 0 0  + 21x —A2 1  JO ± 1) -4  sin pt sin2  [0 (t, 2)] dt 
0 (2.2) 

e 0 =-- 0 (0, 2). 

C 
	 a Since Si(z) n-- f t -4  sin t dt, Ci (z) = y + log z + f I -4  (cos t — 1) di, y, Euler's  

0 	 0 

constant (Abramowitz,' p. 231), where 

Si (z) er4d z -1  + K t , Ci (z) i----* z -1  + K2, as I z I tends to infinity, 	Kb  j = 1, 2, being 
small constants (Abramowitz' pp. 232-33), 	it follows by iteration from (2.2), substitue 
tion of co --- p (t + 1) and subsequent reduction that, as x tends to infinity, 

I (1 + 1) -4  sin pt dt = o {(x + 1) -4} + o (1) 
0 

(2.3) 

and 

8 	 . 

f (t + 1) -1  :oins f(p ± 2.1.i) 0 dt = a ((x is 

0 

1) -1) + o (I). (2.4) 

(2.5) 

sin 
[0 (x, A)] ea-) sin 21 x + o a), cos 	 cos 

as x tends to infinity. 

Thus for sufficiently large x and non-zero 2, 

p (x, 2) = ci, exp (f 1  (x, A)] 
and 

Hence making use of (2.4) in the iterated result obtained from (2.2), we obtain 

0 (x, .1.) eNd Ai x + 0 (1) 

leading to 

o (1)] 
	 (2.10 

== q exp [1; (x, 2)] sin 0 (x, 2), 
	 PM 
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n  by (2.6), where f (x, A) = AA -I i (I + 1) -1  sin pt sin 22.4 di. 

Similarly, if y2  (x, A) be the other solution of (1.6), where 

Y2 ct, A) =-- 2 -4 [p (x, A)] -1  cos [0 (x, 

2(x, = 	fp (x, 2)1 -1  sin [0 (x, 10], 

we have 

Y2(x, A) = C 2  2 -1  exP [— f (x, 11.)] [cos Ai x 0 OA 	 (2.10) 
= C2 	exp [— f (x, A)] [cos 0 (x, 	 (2.11) 

by (2.6), for sufficiently large x and A 	0. 

Since the Wronskian W (h, y2) — — 1, it follows that yl  (x, A), 
fundamental set of solutions of (1.6). 	Hence choosing 

y 2  (x, A) form a 

(0, = 0) 	Y2(0, = 1 1 	(02 = 1,  

it follows that the constants C 1 , C2 in (2.9) and (2.11) are given respectively by 2. -4 
and Ai. 

3. Nature of the spectrum of (1.6) 

We now establish the following theorem giving the nature of the spectrum of (1.6). 

Theorem: The self-adjoint differential operator M defined in (1.6) under the boun- 

dary condition (1.2) has a spectrum a(M) which extends over the positive half of the 

real 2.-axis and consists of the two subsets Ca (M .) and PCa (M), where PCcr (M) 

consists of the point p p 2/4, 0 < p < oo and Co (M), the whole of the right half 

line (0, co) of the real 1-axis with the exclusion of the point P = 

As already pointed out in the introduction, we are in the limit point case at infinity 

and therefore [by Coddington and Levinson, 2  formula (2.13)], we have 

lim 	(1), MY2(b, A) 	
n 

b +co 

I 1 	[exp (f (b, A))] sin [0 (x, A)] 	
a• • • 

b400 	[exp (—f I (b, AM cos ie (x, A)] lim 2 -1 

' 	exp (— iA,i b) 	exp (1.1.1 bx 

b4-00 	
e

Ai b), 
= Jim [ — {exp (2f (b, A)n xp 	b) + exp (i  

Putting A = ± it it follows that as b 
tends to infinity, the second factor on the right 

side of (3.2) tends to a constant k, where k =-- + 1 or — 1 according asat;> 0 or < 0. 

Hence finally,  

m (4 = k lim [ 	exp {2 f (b, 	. 	
(3.3) 

b->00 

'Jell 

by (2.6) 
(3.2) 
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Two cases are to be distinguished. 

Case I. When A tends to a positive real value, say A --, 0 2, as* 0. Then from (3 .3)  

urn fin {In ())} = — k 0 -1  exp { A 47 -4  
A-->e )  

co r  sin pt 
1 

sin 2crt dt} 
j t + 	 (3.4) 

0 

The integral on the right of (3. -4) is convergent when p 0 2cr and divergent when p 

Therefore, when (72 .0p2/4, the left hand side of (3.4) does not tend to zero or infinity.  
but is a continuous function, bounded for all non-zero real values of A. But the left 
hand side of (3.4) tends to infinity when 0.2  -= 

It follows therefore from characterisation of the spectrum in § 1 that there exists a 
point of the point spectrum on the right half line of the real 2-axis at A = /flit' which 
is embedded in the continuous spectrum extending throughout (0, co), with the exclusion 
of the point A = 

Case II. When A tends to a negative real value, say A --0 — T2, c> O. It follows 
from (3.3) that 

00 
7 _ 

A  f sin-I5  sinh 2r t dt] . 	 (3 . 5) lim m (A) = — lc '1 ; exP [.-- r%%. 	1 + t X-3P-71  
0 

The integral on the right being obviously divergent, it follows that in (A) tends to zero 
as A -o — /2. Thus in (A) is regular for A E (— 00, 0). The left hand side of the real 
2-axis therefore does not belong to the spectrum. When r < 0, 21 is replaced by - it 
and the same result follows. The theorem is therefore completely proved. 

4. Spectrum of the perturbed operator L 

If 171 (x, 2) --a Yi  (x), j --:.--- 1, 2, be the solutions of the perturbed equation (1.7), Yi(x) .  
are derived in terms of the solutions yi  (x), j --r-- 1, 2, of the unperturbed equation (1.6) 
by 

where 

Yi (x) = Yi (x) + GT G (x, t, 2) / (t) Y, (t) dt, • 	. 

Y2 (X) = Y2 (x) + i r  G (x, t, )) I (t) Y2 (t) dt, 
b 

0 Cx<t <00 	 (4.1)  

0 <b <t C...x <00 	(4.2) 

1 
G Cry Y9 A) = mi -J [Y] (x) Y 2 ( 1 ) — Yi. (t) Y 2 (x)) (4.3) 
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WO.) being the Wronskian of y (x) and y 2  (x). 

It is noted that the boundary condition at x 0, given by (1.2), remains the same for 
both the perturbed and the unperturbed cases. 

On some simple calculations it follows that 

Y.;  (x, A) = yi  (x, A) [1 ± o Oil 	j = 1, 2, 

as x tends to infinity, uniformly for all A belonging to the domain of definition of y i  (x, A), j = 1, /. Thus the operator L has the same spectrum as the unperturbed operator M. 

We therefore conclude that the spectrum of the operator 
d 2 	A sin px L — 	+ 	+ 1(x), 0 < x < oo, 

A, p > 0 and 1 (x) € L [0, oo) and the boundary condition (1.2) shows penetration of 
a point of the point spectrum into a continuous spectrum extending over the whole of 
the right half of the real 1-axis. the left half remaining empty. 

The author expresses her sincere thanks to Dr. N. K. Chakravarty for his keen 
interest and helpful criticism during the preparation of the paper. 
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