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Abstract
The nature of the spectrum of the operator
E—£+V(I) V, (x) = 230 px
dxz 1 ’ 1 — 1 + x »
A, p real positive constants,as well as that of the perturbed operator
d?
= e “‘,——r—i + V(.l'), V(x) . Vl (x) + I(x)i

I (x) continuous and / (x) € L (0, oo) undera Sturmian boundary condition is investigated. It is found
that L has the same spectrum as M ; M having a contintvous spectrum over the wtole of the positive
half of the real axis with points of the point spectium embedded in it ; thke negative half of the real
axis however does not belong to the spectrum.

Key words : Spectrum, damped oscillating potential, deficiency index, limit point, Priifer transforma-
tion, iteration, Wronskian, perturbed/vnperturbed operztor.
1. Introduction

Consider the differential equatior.

"y 1.1
-3;.,+{l—q(x)}y=0, (1.1)
Acomplex: A = u + iv, v# 0 and g (x) real valued and continuous in x in 0 < x < oo.
The homogeneous boundary condition at x = 0 is
(1.2)

y(0)cosa + y' (0)sina =0 ‘

where « is a real parameter.

If ¢ (x,2) and 0 (x, A) be two solutions of (1.1
conditions

$(0,i)= —sina, ¢’ (0,4) =cosa } (1.3)
6(0,4) = —cosa, 6’ (0,4) = —sm#& N

) which at x=0 take real initial
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‘hen there exists an analytic function 22 (2), regular for v=1imA20 such thy o

0 €£x < o0,
(x, ) =0(x,4) +m (A) ¢ (x, 4) (L4
-4)

fies (1.2) and belongs to L? [0, 00); m (4) depends on the cp;
O10e

is a solution of (1.1), satis ,
('l'itchmarsh, p. 25 or Coddington and i
g n chmson,’ P. 223).

of the real parameter &.

the set of values of A which contributes to the expanc

formula and the spectrum of the differential operator T : — d?/dx* + q(x), re Pansion
by ¢ (T), may be regarded as the complement of the set p(T) of all POint; h t%resen!ed
m () is regular. The spectrum @ (T) is obviously given by T which

¢ (T) = Pa(T) U Co(T)U PCo(T) (1.9

wh.ere Po (_T ) is the point spectrum, Co (T) the continuous spectrum and PCo (T
point continuous spectrum of T, at least one of the set being non-empty. The gothe
: int

1 is an eigenvalue if and only if A€ Pa (T)U PCo(T).

The spectrum as usual is

The spectral properties of the operator T are characterised b
L - - y the ro e tl
on the real A-axis and it is easy to deduce from § 4 and the theorem olt:'} §§ i::lzshzzdn;ﬁ

and Everitt®, that

(l)_ﬂ & o(7), if and only if m(4) is regular at yu, i.e., lim [imm (1)} =0
aw s | | r
" O(:g gxi III.: Z EEIT), ff an? only if m (A) has a pole at u, but m (A) is regular in any neighbour-
. ag i;_ : or if and only 1f m (A) tends to infinity as A tends to g and im {m(})}
s 4 tends to any point in a neighbourhood excluding u.

(i) p € Co (T), if and only if m (1) is not regular in any neighbourhood including

Pandlim{vm(p.l.fv =0 oy _
¥->0 )} > 1.€., l{?‘; [im m (A)] is a continuous and non-vanishing

function bounded for all pe(u,, u,) on the real A-axis

(iv) p € PCo(T), if
’ d L L [ -
and only if l:_rilo iv {m (u+ iv)} =s5%#0, s real and

m (1) —s1/(A — p)}i
i s (y) (] 9 ;‘)3: :)iili‘?t regular at u; I'_.e., m (A)tendsto infinity as Atends to K and
y0 nuous non-vanishing function of g in any neighbourhood

excluding p.

(v) The spect :
: rum is a pu i
1s meromorphic. pure point spectrum or a discrete spectrum if and only if (@

Our object in the

: present : :
q(x) is of the form Ot paper is to discuss the nature of the spectrum of (1. 1) when

q(x)=zjsinpx
x+1°
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where A and p are real positive constants. 67
The differential equation (1.1) now takes the form
MDl=dy:M=—% + V() (1.6)
with
G AxSi-:-”;{ ’

the damped oscillating potential: V,™ (x) & L[0, o), but
M (x)el*[0,00), n=0,1,2,....

Since ¥, € L*[0, c0), it follows that the deficiency index of the operator M is (1,1) and
we are in the limit point case at infinity (vide Naimark,* p. 305 or Putnam?).

Since

A sin px — A
- > o
l +x 1 + x

it is possible to choose a positive constant K such that

A sin px
1 + x

> —Kforallx, 0 < x < o,

Hence also by Cor. 1, (p. 231), Coddington and Levinson,? M is in the limit point case
at infinity,

The paper ends with a discussion on the nature of the spectrum of the differential
operator

2
L: L] =iy, L_=_—-gx—2+ V(x) | (1.7)

the perturbed form of (1.6), where V¥ (x)= Vi (®) + /() /(x) being a continuous
function of x which belongs to L [0, c0).

2. Asymptotic values of a pair of solutions of (1.6)

' ifz formation
Let y, (x) = y, (x, A1) be a solution of (1.6). Applying the Priifer trans

(Rosenfeld® p. 397)

y; (x) = p (x, 2) sin [© (x, D], Aty (x) = p (x, 4)cOS [@ (x, V],
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:;Sfouows from (1.6) on slight reduction and necessary subsequent integration that
o (x, 1) = C, exp (3 AA-t ;f (t + 1)~tsin ptsin [2© (¢, 4)] dr 2.1
C, = p (0, 4),

and
O (x, ) : O, + tx — AA? J' (t + 1)~1sin ptsin® [O (1, A)] dt 2.2
O, = 0(0, 4).

Since Si(z) == al" t-lsintdt, Ci(z)=1y +logz + j1D_l' t71(cost —1) dt, vy, Euler's

constant (Abramowitz,! p. 231), where

Si(z) ~z-1 + Ky, Ci (2) ~z71 + K,, as | z| tends to infinity, K|, j=1, 2, bein
small constants (Abramowitz! pp. 232-33), it follows by iteration from (2.2), substity
tion of @ = p (¢t + 1) and subsequent reduction that, as x tends to infinity,

f(t+ D) sinptdr=o{(x + 1)7} + o (1) (2.3)
and
f (r + 1)1 ;(i_; {(p 2 ¢} dt - ol(x+ 1)1 + o (1). (2.4)

Hence making use of (2.4) in the iterated result obtained from (2.2), we obtain

O(x, ) ~itx + 0 (1) (2.5)
leading to

sin Sin

. [Ox,)] ~ cos x4+ 0(1), - o (2.6)

as x tends to infinity.

P (-X, l) == C] CXp [fl (x, ;{)] ] . (2.7)

N66 20 = Crexp [, (x, )] [sin 2t x + o0 (1)] @9
= Crexp [f; (x, D] sin © (x, ), 29
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69
by (2.6), where [fi(x,4) =144 oj (t + 1)~1sin ptsin 242 4t
Similarly, if ys(x, A) be the other solution of (1.6), where
y2 (x: )") = Ahi [p ('x’ A)] - COs [O (x:r ’1)]:
Yo (X, ) = — [p(x, )] sin [O (x, )],
we have
ya(x, ) = Cad~texp [~ f, (x, )] [cos At x + o (1)] (2.10)
— Cy A~texp [— £y (x, 3)] [cos © (x, A), 2.11)
by (2.6), for sufficiently large x and 4 #0.
Since the Wronskian W (y;,y,) = — 1, it follows that y,(x, 1), y,(x,4) form a

fundamental set of solutions of (1.6). Hence choosing

»nO0,4)=0,  »@OH=1, y,0,H=1  y:0,4)=0,

it 201!§WS that the constants C;, C, in (2.9) and (2.11) are given respectively by i-3
and As.

3. Nature of the spectrum of (1.6)
We now establish the following theorem giving the nature of the spectrum of (1.6).

Theorem: The seif-adjoint differential operator M defined in (1.6) under the boun-
dary condition (1.2) has a spectrum o (M) which extends over the positive half of the
real 2-axis and consists of the two subsets Co (M) and PCo (M), where PCo (M)
consists of the point u =p?/4, 0 < p <o and Co (M), the whole of the right half

line (0, co) of the real J-axis with the exclusion of the point p = p*/ K.

As already pointed out in the introduction, we are in the limit point case at infinity

and therefore [by Coddington and Levinson,? formula (2.13)], we have
m ()') = _bhm V1 (b: )*)/y2 (b: A‘)
> 00
1 exp (1 (B )] sin [© (6 D
= —lim A o (—F3 (b, )] cos [0 (x M) )
. . exp (—idth) —exp(A0) | by (2.6)
= lim [ — i} {exp (2 /1 (b, 1)} exp (— iAtb) + €xp (it b). y (3.2)

| e

3.1)

the second factor on the right

tends to infinity, ‘ 1
y 1 according as,. T3~ 0 or <O.

Putting 1 = ¢ + it it follows thatas
k= +1o0or —

side of (3.2) tends to a constant k, where
Hence finally, .
m (1) = k lim [ — iAtexp {2 f1 (M-

>0
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Two cases are to be distinguished.

Case I. When A tends to a positive real value, say A= 0% 67 0. Then from (3.3)

0o

| _ _sinpr .

2
A->d b

The integral on the right of (3 .4) is convergent when p# 20 and divergent when p = 9,
Therefore, when 62 p/4, the left hand side of (3.4) does not tend to zero or infinity
but is a continuous function, bounded for all non-zero real values of A. But the left

hand side of (3.4) tends to infinity when ¢* = p°/4.

It follows therefore from characterisation of the spectrum in §1 that there exists 5
point of the point spectrum on the right half line of the real Z-axis at 4 = p?/4 whjch
is embedded in the continuous spectrum extending throughout (0, o), with the exclusioq

of the point 2 = p?/4.

Case II. When 2 tends to a negative real value, say A — — 12,7 > 0. It follows
from (3.3) that

O

- __ .1 _4 [ snpt .
lim m(2) = —k Texp[ S [ 52 sinh 2:::1:]. 3.9
L)

The 1ntegral on the right being obviously divergent, it follows that m (1) tends to zero
as . — — 1% Thus m(4) is regular for 1 €(— oo, 0). The left hand side of the real
/-axis therefore does not belong to the spectrum. When 7 < 0, # is replaced by —1it
and the same result follows. The theorem is therefore completely proved.

4. Spectrum of the perturbed operator L

If Y,(x,2) = Y;(x), j=1, 2, be the solutions of the perturbed equation (1.7), Y;(x)

abre dertved in terms of the solutions ys(x), j=1, 2, of the unperturbed equation (1.6}
y

| Y, (x) = p, (x) + Tc(x, LAI Y, (Ddt, 0<x<t < o0 (1) :
Yo (x) =y, (x) + ,f G, 6, )I() Yy()dt, 0<b<t<x <0 (42
where
1
Gx,y,4) = Wy D1 &)y () — 3, (1) y, (1) | . @
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() being the Wronskian of y, (x) and y, (x).

It is noted that the boundary cendition at x = 0, given by(1.2)

both the perturbed and the unperturbed cases, remainsthe same for

On some simple calculations it follows that
Yi(x, )=y;(x, D1 + oD} j=1,2,
as x tends to infinity, uniformly for all 4 belonging to the domain of definition of s (x, 2)
F AN L)y

j=1, 2. Thus the operator L has the same spectrum as the unperturbed operator M

We therefore conclude that the spectrum of the operator

_d* Asinpx D i
L= d¥2+ l-:x +’(-t), ng<mi

A p > 0 and / (x? € L [0, co) and the boundary condition (1.2) shows penetration of
a point of the point spectrum into 8 continuous spectrum extending over the whole of
the right half of the real 2-axis, the left half remaining empty.

The author expresses her sincere thanks to Dr. N. K. Chakravarty for his keen
interest and helpful criticism during the preparation of the paper.
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