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ABsTRAcar 

In recent years the fast Fourier transform algorithm for . computing discrete 
Fourier transforms has come into prominence. This development is basically due to 
the fact that the computer time is reduced from N 2  to (N/2) log2  N where N is the 
number of discrete samples. This paper gives an exposition of the discrete Fourier 
transform and the fast Fourier transform algorithm program for the calculation of 
FFT for pulses is also given. 
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I. INTRODUCTION 

Ever since the first paper on. fast Fourier transform algorithm (FFT) 
by Cooley and Tu.key [11 momentum is gaining on the acceptance of this 
algorithm as the saving in the number of computations is quite large. FFT 
is basically an efficient method of computing the discrete Fourier transform 
(DFT) coefficients. A number of papers [2 -7] have been motivated by Cooley 
and his group. Bergland [7] gives an exhaustive list of references on FFT 
which have appeared in recent times. 

The number of computations is reduced from N 2  if a direct implemen- 
tation of DFT is used to N/2 log 2N, if FFT is used. The usefulness of DFT 
is in its effectiveness to approximate the continuous Fourier transform (CET). 
The succeeding sections give a tutorial exposition of CFT, DIET and F.FT. 
Workable program is also appended. 

*Based partly on a paper presented at the Conference of the Computer Society of India, 
February, 1973. 
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2. CONTINUOUS AND DISCRETE FOURIER TRANSFORMS 

The continuous Fourier transform (CFI) of any signal x (0 is defined by  

X (w) = 0f0  x (t) e-jait dt 	
(1) 

and the inverse Fourier transform by 
o• 

x = 	f X ( co) Sid deo. 	
(2) 

—00 

The Fourier transform pair (1) and (2) will be denoted by a double arrow 

x (t) e X (a) . 

	

(3) 
in a similar manner the discrete Fourier transform (DFT) of a complex 
sequence x (n) is defined by 

1(k) N 	x 	er-2r5nk111 

n 0 	

(4) 

and the inverse discrete Fourier transform (11) PT) by 
N-1 

X  = r   X (k) evrinkiN 
Leo 

Let 

(5) 

e2ri7%1C17 = wNnk. 	 (6) 

The DFT pair (4) and (5) is then given by 
Nei 

1 X (k) =
n 	

x 01) wN-tik 	 (7) 
 ace 

x (n) = 1(k) WNnk 
t•-• 

or in the symbols of (3) 

x (n) 	x (k). 	 (8) 

The relationship between CFT given by (I) and (2) and DFT given by (7) 
will be derived. X(to) is sampled at intervals of k Aco apart (k = 0, ± 1 / 

2,...). A quantity T = 274 Ltd is defined and substitution of to == 
2irkIT in (1) results in 

Co 
X (k Aw) = f x  (0 e-2riktir 	 (9) 

--oo 
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The above integral can be split as follows: 

:r 	• • . 

The relation can 

X (1 ( 4600 

—ST
p 	

T 	 (1+1)T 
S 	+ . . . f + f + . . . 	f 	+ . . . 

—T 	0 	 IT 

be compactly expressed as 

	

00 	(1+1) T 

	

= z 	x  (I) e,_2,,,jkt d t  
IT 

(10) 

The above relation can be rewritten by a change of variable of integration 
to t — IT and by utilizing the periodicity of 6r-2rjkliT 

T 	00 
X V C JACO = fx (t 	7)] 9-27rfiktn. dt. 	 01) • I I= —co 

or, 

X(kAco)= sr 
 v

(0 4e,e2rikt/T 	 (12) 0  
where, 

00 
xp  (t) = E x (t — IT) 	 (13) i --Oa 

xp (t) is called the aliassed form of the continuous signal x (0. Since xp  (t) 
is a periodic signal with period T it can be expressed as a complex Fourier 
series 

00 
xp  (0 	E  ake273kt1T . 

k —CO 

The Fourier coefficients ak are given by 

ak = r 	Xp ( er 2rikt/T dt. 

(14) 

(15) 

Hence from (12) 

ak = X (k  ca) T 
Substitution of this result in (14) yields 

xi,(0 = 17, 42-1 
 
X (kaw) e2rikrsata. 	 (16) 

b 	'COO 

To consider the effects of sampling in the time domain at points nisi, 
n=0, ±1, ± 2, . . . , (16) is written as 

xl(n  ast) --='s 4.,Li X (k (0) e2rikt/T, 	 (17) 

Ica —91 
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Taking T 1 At (= N) to be an integer and utilizing the fact that e2riknoi is  a  
periodic function of k, (17) can be put in the form 

N [ cc 

xp(nAt) = Ti 
L'

X (k Aco iN aco) e 2rAn a 	0 8)  
kao 	—co 

Let 

xp(kam  = r X Rk -1- IN) Aco] 	 (19) 

00 
where Xp  (to) = S X (co + I co s) is the aliassed version of X (w), co s  being z--00 
NAL° (= 274 as  O. 

Substitution of (19) in (18) and the use of (6) result in 
N-1 

TXp (n A =-- 5 Xp A co) pfiNnk (20) 
k-0 

(20) is exactly the same form as the DFT given by (7) if x (n) and x (k) are 
defined by 

x (n) = T xp  (n) 	 (21) 

1(k) = X, (k) 	 (22) 

where At and Act) have been dropped for convenience. 

From (21) and (22) the sampled aliassed version of a continuous time 
signal x (1) and the sampled aliassed version of its Fourier transform X(0), 

form a DFT pair. 

Or if 

then 

Txp 	X's, (k). 	 (23) 

It is now instructive to compare Xp  (co) with X (co). The relationship is 
shown in Fig. 1. 

X, (co) is a periodic function with the period equal to the sampling 
frequency cos . There are essentially two parameters, cos  (=-- 2771M, and 
N (=T1 Q1=-- co st Lb w) to be chosen in ail optimal manner. The manner 
in which the choice of the parameters can be made is indicated next.. If 
Xp  (co) is to approximate A' (cc) then the error in the approximation is 

oc• 
C = Xp (CO) X (co) 	E X(co + /cos) 	/ O. 	 (24) 

f —ocs 
• 
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This error can be made as small as possible by choosing cos  as 	large as 
possible 	and 	in the limit when co s  is 	infinite 	the 	error 	is 	zero. 	If 	cos  

V re •.1 

Las 	 ups 
2 
	

2 
Xp(ta) 

cos 	Las  
-5- 	 2 

Ewe— Range of DFT -*I 

FIG. 1 

is large then At must be made as small as possible. However, 
At cannot be made too small since computer round off errors 
will become significant. Hence a certain balance must be clearly maintained. 
From Fig. 1, the value of co s  is so chosen that the contribution of X (to) 
for all I co I > w8/2 is very small. However, the actual form of A'((.0) may 
not be known a priori. In such a situation bounds on errors can be set 
beforehand and At is chosen such that the error between successive values 
of At fails within the bounds prescribed. This could be programmed into 
the computer. In any case at is chosen by some suitable method. Choice 
of At fixes the sampling frequency co s . 

Having chosen at, the next step is to choose the interval A co = 2-74 
N pt --= 27r/T at which Xp  (co) is to be sampled. For reasons to be explained 
in the next section it is desirable to make N as 2 raised to some integral power 
m. m should be large enough for a fine spacing of the frequency estimates. 
9ne criterion may be to make T such that it at least covers the non-zero part 
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of x (t). Figure 2 makes this point clear. However in many cases this value 

of NA: will not give a fine enough spacing of the frequency estimates. 	This  

N At = T 	-01 

FIG. 2 

is due to the fact that if the time function x (t) falls rapidly to zero its Fourier 
transform is spread out much more. Hence certain readjustments of Nat 
have to be made in the interests of finer frequency spacings. Once in, and 
hence N, have been chosen the sampled aliassed time function x p  (nat) 
= L' x (n pt + 1 N At) is formed. If the input to the FFT algorithm is 
the sequence Txp(n at) the output is the DFT sequence Xp  (kAto). In 
summary, At is chosen such that cos  is large enough to cover the region 
where X (co) is significantly different from zero. However, N is chosen not 
necessarily to encompass the region of x (0 which is significantly different 
from zero but to the degree of the fineness of the frequency resolution desired. 

There is another matter to be made clear. Ordinarily, if 31(w) is signi- 
ficantly different from zero in the range I to I < ws/2 then 1, (a)) will 
approximate I (w) in this range 

X (00 Xp (C0). 
	

(25) 

However, the DFT is viewed as the N sampled sequences in the range 
[0 	cos] of Xp  (co). As a consequence the negative to half of X(w) is 
reproduced to the right of the positive half of 1(c0). 

X (co) 	Xp ((.0) 	 (.0‘. ws  /2 
X (co cos) — Xp (f.0) cos/2C co< ws . 	 (26) 

In (26) Xp  (co) does not approximate X (co) in the interval 0 < co< ws  but 
only in the interval 0 C., anC., cos/2. This is an important point to remember, 
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3. FAST FOURIER TRANSFORM ALGORITHM (BASE 2) 

Having shown in the previous section the connection between DFT 
and CFT, FFT algorithm for the computation of the 1DFT given by (7) 

nk x (n) =-- E 	ws X(k) 	 (7) 
kmao 

will be derived. From the algorithm for the 1DFT the DFT given by 

N-1 
(k) 	x  (n) wpr nk 

sno 

can be obtained in one of two ways. 

(a) If the input to the algorithm is the complex sequence 
then the output will be X* (k). 

x* (n)IN 

(b) If the input to the algorithm is x(n)IN then in the structure of 
Wpith in the algorithm must be changed to W irk  in which case the output 
will be X (k). 

11 (7) is directly implemented in the computer N2  multiplications and 
(N 1) 2  additions are needed. For large N the number of computations 
needed becomes prohibitive. The FFT algorithm will be shown to reduce 
the number of computations. 

The fundamental principles of the algorithm will be given before going 
into programming considerations. The complex sequence input to the 

	

algorithm, X (lc), is divided into two subsequences X 	and X2 (k), 	(k) 
consisting of even numbered points of X (k) and X 2 (k) containing the odd 
numbered points of 1(k). 

X, (k) = X (2k) 

	

k rrz 0, 1,... N12 — 1. 	 (27) 
X2 (k) = 1(2k + 1) 

Equation (7) can be rewritten by using (27) 

N/2-1 	 N12-1 
X (10 	E 	(k) wnk t f2 	ifyNn E A72  (k) wiy2rtk 	(28) 

key Limo 

n =r; 0, 1, 2,. ..N— 1. 

If the index n in (28) is restricted to 0, 1,... NI2 - 1 then (28) can be 
written as 
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X (n) = x, (n) 	1,V," x2 (n) 	n = 0, 1, . NI2 — 1 
where 

(n) 44 11 (k)  
x2 (n) 	X2 (k) 	

n k = 0
'  1 ' . N72 — 1 . 

(29) 

The values of x (n) for N/2....C_ n< N — 1 are obtained, 	by 	utilizing the 
periodicity of x1  (it) and x2  (n), as follows. 

x (n N/2) = x, (n) 	Wsn-ENI 2  .X2 00. 	 (30) 
By using the fact W1/ 2  = — 1, (30) simplifies to 

x (n NI2) = (n) — Wirt x 2  (n) 	n = 0, I,. . .N/2 — 1 	(31) 
(29) and (31) gives all the samples x (n) in the entire range [0, N It They 
also demonstrate that a one N point analysis is equivalent to two N/2 point 
analyses. This procedure can be continued for the resulting N/2 points. 
If N had been started with 2m samples then m such reductions are possible. 
The number of computations needed for m reductions can be calculated. 
If CN is the number of multiplications for the N point analysis then from 
(29) and (31) there are two C N/2 multiplications required to find x 1  (n) and 
x2  (n) plus another N multiplications for finding the product Witx 2 (n). 
Assuming, as stated before 

N = 213  
then 

CAI  = 2C/v2  N/2 

Cm2 = 2CN E  4 + N/4 

C2 = 2C1 + 1. 	 (32) 

if (32) is solved for CAT 

CN = mNI2 = j N log2N. 	 (33) 

The FFT algorithm reduces the number of multiplications from NI to NI2 
log,N, a considerable amount of saving for large N. The number of addi- 
tions are only a little more than the number of multiplications. 

4. EXAMPLE OF FFT ALGORITHM 

In this example the FFT algorithm is generated for a N = 8, The IDFT 
for this case is 

x (n) = E (k) Wisk. 	 (34) 



• 

x1  (it) 44 11  (k)1 
x8  (it) 4-* 12 (k) (36) 

In (38) and (39) 

xin (n) r-- X m  (0) + We If m  (1) 	1 n = 0 
xrn  (n ± 1) = Ira ()) — W 84n A ' m  (1) i 	m -------- 3, 4, 5, 6 

and 

(40) 
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Splitting x (n) into odd and even sequences equations similar to (29) 
and (30) are written 

x(n) = (n) -I- K ink x2 (n) 

x (n + 4) tr--- xi  (n) 
	

(35) 

In (35), xj, (n) and x2  00 are given by 

where 
Ati (k) = (2k) 
X2 (k) = 1(2k + 1). (37) 

Splitting xi  (n) and x2  (n) into odd and even sequences results in 

xi (n) == x3 (n) + Wen x 4 (n) 
xi  (n + 2) =-- x3  (n) 	w827t ix4(n) 

x2 (n) = x8  (n) + W8 2n x6  (n) 
x2 (n + 2) =-- xo  (n) — W8 271  x6 (n) 

0 C. n< 1 
	

(38) 

OC n< 1. 	 (39) 

Xm (k) = 1(4k + r) k =0,1 
(in, r) =-- (3, 0), (4, 2), (5, 1), (6, 3) (41) 

Substitution of (41) into (40) results in 

xnt(0) = X (r) + W 8° X (4 -1- r) t(m, r) = 
xm(1)  — 1(r) — W 8° X(4 -I- r) 1 

(3, 0), (4, 2), (5, 1), 
(6,3) (42) 

Using (35), (38) and (42) the FFT algorithm as a signal flow graph is con- 
structed. 

From Fig. 3 it is seen that if the outputs x (n) are in their natural order 
the inputs X (k) are in a bit reversed order. If the input sequence X (k) 
is stored in computer memory in the order then the intermediate results 
can be stored in the same memory locations as the original sequence since 
these are no longer required. This is possible because the intermediate 
results depend only upon the sequence immediately prior to it and, not to 
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any other sequences or points. The final result x (n) will be in the natural 
order. If the input sequence X (k) is stored in the computer memory in 
its natural order then a different variation of Fig. 3 results. In this case 
all the nodes at the same horizontal level as 1(4) are interchanged with those 
of X(I) and all the nodes at the same horizontal level as 1(6) are inter- 
changed with those of 1(3). In this interchanging process the arrows also 
go with the nodes. The resulting signal flow graph is given in Fig. 4. 

5. PROGRAMMING CONSIDERATIONS OF FFT 

Another derivation of the FFT algorithm is given in this section which 
deals in greater detail about programming and indexing and how the bit 
reversal comes about. In the IDFT given by 

x(n) = 1 A (k) w Ntzk 
k=0 (43) 

where N=2m, the indices n and k are given as functions of the m bit positions 
in their binary representation 

n = n 4  2m-1  -I- nm_2 274-2  ± ... ni2 ± no  
k = k m_i rr" ± k in_2 2m-2  + ... ka ± ko 

1 	
(44) 

where ni, kl= I or 0. Use of (44) in (43) yields the bit representation of 
x(n) 

1 	1 	 1 	1 
E 	1' 	• - • 	E 	E 	{X (k, n_a, kin_2,...k1,k0) 

ko-so 	ki-o 	km..2.co kiltasto 
X wdri m _i ÷ •••ty (k nri visa + ...  

The exponent of WN  in (45) can be given by the following bilinear form 

(nm_1  2m-' 	. . . no) (km_i  2M-1 	. . . 

n M-2 • • • no] 

221a-222m-3 

22M-3 22M-4 

• 

• 	• 

2m 2m-1  
277z-2  

... 	2mai 	1, km_i  
mm--1  2m-2 , 

• 

222 
21 



• 
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Since (46) is the exponent of W, 7  =-- e2viag ,  and since Wegy = 1 for all r 
(46) effectively reduces to a lower triangular matrix 

0 0 0 	02 
000  . . . 0 2m-1  2m-2  

. • • noo  

• 

02 _I 	22 2 
2 1 

Simplifying (47) and substituting into (45) yields 

mittet I 

km...2 
• 

• (47) 

1 	1 	 1 	 1. 	1 

E E 	• • 	E 	27 	E {X 	km_2, • . • 
kr 0 km0 	 kr. aro 	k our 0 km..eat 0 

X W N" o 2.1-1 k In-1 • W en, ans-1 + visa) k,n_2  

X W s2a-4  711 2.12  ÷710 2/1"11 ) kns_3 • • • 

X WN(11/4.-12n1"+ ni_,22ins2 ÷ • • • no  2,1-1)km_i Viet  + n1  2-f-n) 

(48) 

From (48) the following summations can be defined recursively. 

E X (km_4 , km_2  • • • Icr, ko) 	 (n0, km-2, • • • k0) kmamo 

1 
E 	i(n0, km_2, .k1 , k9) W N (n 1 21"1-4- n 0 2.""km-2= X 2 (no, n I, k m_3, .k 0) km..ezn 0 

1 
E X1_1  (no, n • • . n 	k m„1, . k 0) w m ins  21“-; + ni42Ina 	kirses 

knue- 0 

=i (no, n .. . n1_1, k m  _1_, • . • k 0) 

1 
E Xm_i  (no, n1 , n,._2, k o) ion, 2m-1+ ; 2+ no ) k. 

keno 

= /m  (,i01 ni • • • nmel) 	(49) 
Substitution of (49) into (48) yields 

x (nm_1, nm_.2  • • • th )  no) = 1m (no, nl , • • • n 	nin„) 	(50) 
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The storage indexing convention used is to let the m arguments (n o , 
Th.,. • • 1n•-it km-1-11 • • • k o) of I be the binary representation of the index 
of its storage location. In this way each step of the algorithm given by (49)

• involves fetching two points from two storage locations and putting the 
resultant back into the same two locations. As a consequence of this indexing 
scheme the elements in the final step of (49), Xna, are in the bit reversed order 
represented by (50). In order to obtain the x (n)'s the order of the bits have 
to be reversed in (50). To avoid the bit reversal an array of temporary storage 
locations are used and the successive arrays XI are indexed as given below: 

X (k ra _i, kni-2, • • • kb ko) 

X1  (no, km_2, • • • kJ., 1c0) 

X2  (ni, no, km...3, • . • lc, ko) 
• • • • 

• • • • 

• • • • 

ni_2,. 	ni , no, kni-z-b • • • kb ko) 
• • • • 

• • • • 

• • • • 

A (nnie.45 11ra-27 • • • 111) no). (51) 

At the cost of increasing the storage locations by another N, this method 
has the advantage of giving the results in the natural order. 

The signal flow graph of Fig. 4 can be derived from the FFT algorithm 
given by (49). With N = 8, 2m = 8 and in = 3 there will be 3 stages of 
reduction. These 3 stages are given below. 

1 
E X (k 2 , k1, k o) Wonons = 11  (n 9, k, k o) 

kro 

1 

E 11  (n0, k1 , ko) 144(fl1 22 +  n02) = X2 (no, n1 , k o) 

1  
E 12 (no, n1 , ko) r

uf
8 (fly + 7112+ nd ko  =-. 	(n0 5  ni l  n2) 	 (52) r  

keno 

This signal flow graph is slightly modified from that of Fig. 4 and is 
given in Fig. 5. 	In Fig. 5 it is to be noted that 

gpt 	wo 

w6 = 

W6 	012  

W7  — W3 . 
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In Fig. 5 the number of memory locations need not exceed the number 
of sample points 8. However, unshuffling the input sequence in the case of 
Fig. 3, and unshuffling the output sequence in the case of Figs. 4 and 5 must 
be done to interpret the results. This unshuffling process is accomplished 
by either using bit reversal tables for any N obtained by programming the 
computer or by doing manually. This may be a tedious process and can 
be avoided by using an extra array of memory locations as stated before, 
which will give both the input and the output in their natural order. The 
transition from the signal flow graph of Fig. 5, where the ouput sequence is 
in its natural order, is shown in Figs. 6 and 7. Two transitions are necessary 
so that the multiplying factors We's are also in their natural order. Figure 6 
shows the transition where the Wan's in the second stage are arranged in 
their natural order. In Fig. 7 the We's correspond to x (n) and hence 
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FIG. 7 

x(ny s are permuted to obtain the natural order. If this transition is to be 
effective an extra array of 8 memory locations are needed as stated before. 
In the case where no extra memory locations are needed there is increased 
computational complexity resulting in increased time whereas in the latter 
case where there is an extra array of memory available computational com- 
plexity is reduced. In the examples which follows extra memory locations 
are made use of in the IBM 360/44 system and programs are given to 
implement FFT algorithms. Programs are included in the appendices. 

I.I.Sc.-5 
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6. EXPLANATION OF THE PROGRAMS *  

(a) Main Program. The algorithm corresponding to the signal flow 
graph of Fig. 7 is given compactly as follows. If N = 

X (R ± I NI2") 

	

N \ 	 N 

	

W= Xl(R- - 1) 	IN I 2j  •-• X1 (R + N
" — + --) (53) 241-  2 	241  

X (R 1 2N-j  + 

-) 2er  X 1 (R + —N 
2J-1 	 241 	(54) 

(53) gives the first half of the samples and (54) the next half of the samples. 
In writing this algorithm use has been made of the fact wm cn+N/2) 	wsn.  

This algorithm as mentioned before uses an extra set, N, of memory locations, 
i.e., a total of 2N memory locations. This program is called by the name 
SUBROUTINE FFT. This subroutine is called by the statement 

CALL FFT (N, Al, X, SIGN) 

in the main program where 

N = number of sample points =-- 2m 

X t= Input data (IDFT or DFT) 

SIGN =--- — 1 for DFT 

± I for IDFT. 

The main program is given in Appendix I. The FFT subroutine is 
given in Appendix II. 

(b) Graph Plot. In addition to the FFT subroutine two other sub- 
routines are employed to plot the graph by the computer. These are sub- 
routines Graph C and Graph. The Graph C is to obtain input data to the 
subroutine Graph. These subroutines can be called by the statements 

CALL GRAPH C (X, AR, A, N, DELW, M1) 

CALL GRAPH (RR, N, DELT, MD 

where the symbols are explained below 

t *Acknowledge the help Of Mr. K. A. Narayanan in constructing these programs. 
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X 	Complex function to be plotted 

AR, Al 	Real and imaginary parts of X which are to be dimen- 
sioned in the main program 

Number of samples 

DELT, DELW Spacing along abscissa = TIN = w sIN 
M1 	Integer representing the position of Y-axis 

RR 	Real function to be plotted. 

The program is given in Appendix III. 

7. EXAMPLES 

In the example the Fourier transform of a rectangular pulse is pro- 
grammed. 	The pulse is defined by 

x (t) =---- li t 1< 1 

= 0 otherwise. 

The period of repetition of x p  (t) is chosen to be 4 seconds. To exhibit 
aliassing errors lwo different numbers of samples were taken, viz., N = 32 
and 64. Correspondingly, At = 1/8 and 1/16, ws = 16/r and 32ir and 

= Aco ir/2. 

The sampled aliassed pulse in a period is given in Fig. 8. The figure 
is illustrated for the case N = 32. Two cases were considered for each N. 

(a) xp(+)Itel = I ; 
	xv  (t)lt, 3  =-- 0 

(b) x (t)j 1 _1 	0•5 ; 	xp (Olt,3  =-- 0-5. 

0 	1 	-2 	3 	4 
-04 

T4 Sec 
FIG. 8 



0 

• 

I 
tarsi' 
. 	. 

244 	 V. leattsFiNAN 

Since the original pulse is an even function the sampling sequence chosen 
should be an even sequence. Case (a) above yields only a real sequence 
without its being even and as a result a spurious imaginary part will be 
obtained. On the other hand case (b) yields an even sequence and hence gives 
the imaginary part as zero. In other words the sequence in case (a) being 
real yields complex conjugate sequence as the DFT and the sequence in 
case (b) being real and even yields real and even sequence as the DFT. In 
either case the real part in both cases were the same. The curves plotted 
by the computer are appended. In these curves the actual continuous 
Fourier transform at the discrete values of the DFT are plotted alongside 
to illustrate the amount of aliassing error involved. It can be very clearly 
seen that these errors are much lower when N 3=c 64 (Figs. 9, 10). 
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CONCLUSIONS 

The FFT is a very efficient method of computing the DFT of a complex 
time series. There are drawbacks because of the errors and spurious res- 
ponses, but by careful analyses these can be minimised to the desired degree 
of accuracy. 
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