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Following Berger's method the large deflection of a heated elliptic plate with 
clamped edges and placed on elastic.foundation has been investigated under stationary 
temperature dirtribution. The deflection is obtained in terms of Mathieu function 
of the first kind and of zero order. 
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In recent years there has been a rapid development of thermoelasticity 
stimulated by various engineering sciences. In the field of machine ctractures, 
mainly with airmaft, steam and gasturbines and in chem~cal and nuclear 
engineering, thermal stresses play an important and frequently even a primary 
role. Determination of thermal deflections of plates, especially of thin 
plates, is of vital importance in the design of machine structures, because 
exczssive deflections may cause heavy undesirable thermal stresses. 

The classical large deflection of thin plate problems usually lead to non- 
linear differential equations which cannot be exactly solved. H. M. 
Berger [I] has shown that if, in deriving the differential equations from the 
expressions for strain cnergy, the strain energy due to second invariant in 
the middle plane of the plate is neglected, a simple fourth order differential 
equation coupled with a non-linear second order equation is obtained. 
Although no complete explanation of the method is set forth, the stresses 
and deflections obtained by Berger himself for rectangular and circular plates 
agree well with those found from more precise analysis. This approximate 
method has been extended to orthotropic plates by Iwinski and Nowinski [2] 
and further boundary value problems associated with rectangular and circular 



plates have been solved by Nowinski [3]. Thein Wah and Robert Schmidt [4] 
and Nash and Modeer [5] obtained satisfactory results following this method 
Basuli [6] has extended this approximate method of Berger lo problems under 
uniform load and heating ullder stationary temperature distribution. 

Berger's technique of neglecting the second invariant of the middle 
surface strains has been applied by Sinha [73 to circular and rectangular 
plates placcd on elastic foundation and under uniform transverse load. 

In this paper the author has applied the method of Berger to investigate 
the large deflection of an elliptic plate placed on elastic foundation and 
heated under stationary temperature distribution. The foundation is assumed 
to be such that its reaction is proportional to the deflection. The deflection 
is obtained in terms of Mathieu function of the first kind and of zero order. 

The following notations have been used in the paper: 

Eh 
D = Flexural r~gidity of the plate = - - 12 (1 -7) 

E, v, a = Young's modulus, Poisson's ratio and Coefficient of thermal 
expansion respectively. 

h = Thickness of plate. 

u, v = Displacement along the x and y axis respectively. 

w = Lateral displacement 

el = First strain invariant; 

e, = Second strain invariant. 

R - Foundation reaction per unit area per unit deflection. 

V = Laplacian operator. 

The shah energy due to bending and stretching of the middle surface 
of the plate is given by: 
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a2w a2 w a2 w (1) 
+ .i)yE - (yxF) ) J dxdy 

combining the potential energy of the foundation reaction and also the 
potential energy due to hcating with Eq. 1 and neglecting e,, the nlodjfied 
energy expression for the total energy becomes : 

x (el - zV2  W) dxdydz (2) 

in which T' is the temperature distribution at any point given by (Basuli [6])  

T ' b ,  Y, 4 = TO (x, Y) + g ( z )  T(x,y) (3) 

and 

Combining Equations 2, 3 and 4 one gets 

According to the principle of minimum potential energy, the displacements 
that satisfy the equilibrium conditions make the potentgal energy, V, minimum. 
In order for the integral of Eq. 5 to be an extremum, the integrand, F, must 
satisfy the following Euler's equations of the calculus of variation: 



Application on the Eqs. 6 a, 6 6, and 6 e to Eq. 5 yields: 

~ q s .  7 a, and 7 b prove that: 

{el - (1 f 4 aTo1 

is independent of x and y and therefore 

p h h a  
el - (1 + v)  aT, = constant = -- 12 

in which p is a normalised constant of integration, and 

Considering Eq. 8 a, Eq. 7e reduces to 

Let us take an elliptic plate of thickness, h. The centre of the plate in 
the middle surface is taken as the origin and the Z-axis downwards. 

If &ere is no source of heat inside the plate the following differential 
@ens must be satisfied for, stationary temperature distribution 
Wwa* 181) 
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in which 8, and 8, denote temperatures at the upper and lower media of 
the plate respectively. 

If 8, = 8,, Eq. (11) becomes 

In which 

Transferring to elliptic co-ordinates (f, 7 )  defined by x + iy = d cosh 
(f + iy), where Zd is the interfocal distance of the ellipse, Eq. 12 reduces to 

+ 5; - !%?? (cO& 25 - cos zl]) T = 0. 
E a  27 2 (14) 

Solution of Eq. 14 can be taken in the following form 

in which Ce,, (f, - q) and c,,, (7, - q) are modified Mathieu function 
and ordinary Mathien function of the first kind and of order 2m respectively, 

and 

- Plzda 
4 (16) 

While solving a problem of bending of a plate with an elliptic hole, by taking 
a single Mathieu function of the second orcer instead of eking Mathieu 
functions of all orders, Naghdi [9] has shown that the results are satisfactory 
for larger elliptic holes. In this paper also similar approximztion is made 
by taking Mathieu function of zero order and on this assumption Eq.15 
reduces to 

T =  C o Ceo (f, - q) ~ c e  of, - 4) (17) 

The following boundary condition is imposed on T 



with the above boundary condition Eq. 17 yields 

KI = CoCeo (Co, - 4)  ~ e o  ( E l  - 4) (18) 

Multiplying Eq. 18 by ceo (71, - q) and integrating with respect to 7 from 
0 to 2~ and using the orthogonality relation and normalisation (Mclach]an 
[lo]) one gets 

in which A, (OJ  is the first Fourier Coefficient in the expansion of c,, (ll,-q) 

Therefore 

is determined. 

Changing Eq. 9 to  elliptic Co-ordinates and substituting the expresion for 
V2T one gets 

(V2 - Pz3 (V2  - Pz2);w = X e o  ( f ,  - 9) ~ e o  (7, - 4) (21) 
in which 

PI2 f Pe2 = --; /3= (22) 

Complimentary function of Eq. 21 is given by 

-ly the particular integral of Eq. 21 is 



h + ---------- (pla - 47 (az - p,z> Ceo (5, - qkeo (?I, - 9) (29) 

If the outer boundary of the plate f = to be clamped, the boundary conditions 
are 

Using Eq. 30 in Eq. 29 one gets the following two conditional equations 

BoCeo (fo, - 41) ceo (?I, - q 3  + DoCeo (to. - qa) Ceo (?I, - qe) 

Multiplying Eqs. 31 a and 31 b by ceo (?I, - q,) and integrating with respect 
to 7 from 0 to 271 and using the orthogonality relation and normalisation 
one gets 

D - 3 ( Ceo ( 6 ,  - qd C e o  ( 5 0 ,  - (1) " #Ah 
- Ceo (40, - 4)  C'eo (50, - 43 1 (33) 

in which 

?!I = (&2 - pz3 ( a 2  - PI? 

4 ,  = *'q) 2) + 5 p o  & 
,=x 

I ,  4, 



A;:, A$) and AE are the Fourier Coefficients in  the expansion of 

c,, (7, qJ, ceo (7, - qJ and GO (7, - (11 respectively. 

To &ternline the constant pZ, Eq. 8 is transformed into elliptic Co-ordinates 
in the form 

in which 

h, =I h, = 
1 

d l /  sinh2 f + sin2 q 

The boundary conditions for ut and u, are 

q = O = u ,  at f = f ,  

Let 

subject to the conditions 

f' ( t o )  = G 6 )  = 0 

Substituting Eqs. 29, 36, and 37 in Eq. 34 and integrating over the surface 
of the plate one gets 

r= C. 
= 6% /y + t (1 + v) a ~ . j  J J (sinb2 f  + S i P  7) d f h  

0 0 

(38) 
After evaluating the integrals the following equation leading to is obtained. 

CII 

@ [(2 {@)W + {4?)3 { 5 4js (~;!p)}* 
-1 r-1 





00 m + + ,Z Z (- 1)' (- 1)' a?: 02) &I] 
,=I a-l 

r f .  

d2 p2h2 = {--< + 2(1 + T J ]  sin112 to (391 

where 
$, - Sh4r& - o - 8r 2 
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Since j3 is determined, w is determined completely. 

To find the deflection at  a given point, one has to start from Eq. 39 
with an assumed value of p leading to the corresponding value of A. With 
this value of X and considering Eqs. 32 and 33 the deflection will be obtained 
from Eq. (29). 

For numerical calculation the following values have been assumed: 

The intelfocal distance 2d being assumed and the values of 82, PI% and p,2 

being known, the values of q, q1 and q, are determined. q, q, and qz being 

20 40 60 

A- 
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known the corresponding values of the Fourier Coefficients as well as those 
of Mathieu functions are determined. The maximum deflection w8 is 
obtained at  the centtc of the plate. These deflections are graphically 
sented in Fig. 1 in which W0/h for K ,  = 0 and KS = 100 are plotted against 
the non-dimensional load fnnction A. By setting P -+ 0 the deflections accord- 
ing to the linear theory is obtained. For comparison Fig. 1 a150 includes 
a straightline which represents sniall deflections for K, = 0. The results 
obtained in this study could not be compared in absence of any known 
results. 

From Fig. 1 it is observed that the error according to the linear theory 
increases progressively with thc increase in load function. Te solution pro- 
posed in this study is rapidly convergent and no computational di€ficulty 
other than computationd effect is involved. The parameter q for the series 
c,, (I, q) may be real or imaginary and the corresponding coefficients can 
be computed with accuracy. The numerical results presented in this study 
are obtained by taking the first two terms of the series and sufficient for 
practical purposes. Since the deflection at  any point is known the corres- 
ponding stresses can bew be easily estimated. 

Thc author wishes to thank Dr. B. Banerjee of the Jalpaiguri Govern- 
ment Engineering College for his help and guidance in prepatation of thin 
paper. 
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