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ABSTRACT

Following Berger’s method the large deflection of a heated elliptic plate with
clamped edges and placed on elastic foundation has been investigated under stationary
temperature distribution. The deflection is obtained in terms of Mathieu function
of the first kind and of zero order.
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INTRODUCTION

In recent years there has been a rapid development of thermoelasticity
stimulated by various engineering sciences. In the field of machine structures,
mainly with aircraft, steam and gasturbines and in chemical and nuclear
engineering, thermal stresses play an important and frequently even a primary
role. Determination of thermal deflections of plates, especially of thin
plates, is of vital importance in the design of machine structures, because
excessive deflections may cause heavy undesirable thermal stresses.

The classical large deflection of thin plate problems wsually lead to non-
linear differential equations which cannot be exactly solved. H. M.
Berger [1] has shown that if, in deriving the differential equations from the
expressions for strain cnergy, the strain energy due to second invariant in
the middle plane of the plate is neglected, a simple fourth order differential
equation coupled with a non-linear second order equation is obtained.
Although no complete explanation of the method is set forth, the stresses
and deflections obtained by Berger himself for rectangular and circular plates
agree well with those found from more precise analysis. This approximate
method has been extended to orthotropic plates by Iwinski and Nowinski [2]
and further boundary value problems associated with rectangular and circular
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plates have been solved by Nowinski [3]. Thein Wah and Robert Schmidt 14
and Nash and Modeer [5] obtained satisfactory results following this method
Basuli [6] has extended this approximaie method of Berger to problems under
uniform load and heating under stationary temperature distribution.

Berger’s technique of neglecting the second invariant of the middle
surface strains has been applied by Sinha [7] to circular and rectangular
plates placed on elastic foundation and under uniform transverse load.

In this paper the author has applied the method of Berger to investigate
the large deflection of an elliptic plate placed on elastic foundation and
heated under stationary temperature distribution. The foundation is assumed
to be such that its reaction is proportional to the deflection. The deflection
is obtained in terms of Mathieu function of the first kind and of zero order.

NOTATIONS

The following notations have been used in the paper:

3
D = Flexural rigidity of the plate — 1’2(%%—7)
E,v,o = Young’s modulus, Poisson’s ratio and Coefficient of thermal

expansion respectively.

h = Thickness of plate.

u,v = Displacement along the x and y axis respectively.
w = Lateral displacement
e; = First strain invariant;
e; = Second strain invariant. )
K = Foundation reaction per unit area per unit deflection.

V = laplacian operator.

FORMULATION OF PROBLEM

The strain energy due to bending and stretching of the middle surface
of the plate is given by:

h=2 IS [ e 200 R
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Combining the potential energy of the foundation reaction and also the
potential energy due to heating with Eq. 1 and neglecting e,, the modified

energy expression for the fotal energy becomes:

=215 o Bes=20 o [
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X (&3 — zV?2 w) dxdydz
in which 7" is the temperature distribution at any point given by (Basuli [6])

@

T'(xy2)=Txn+g@ Ty (3)
and
T w@e—rm; [ e@d=0 @
Combining Equations 2, 3 and 4 one gets
=Bl
;;‘; } ]dxdy
— [ 12, @B T w) . ®

According to the principle of minimum potential energy, the displacements
that satisfy the cquilibrium conditions make the potential energy, ¥, minimum.
In order for the integral of Eq. 5 to be an extremum, the integrand, F, must
satisfy the following Euler’s equations of the caleulus of variation:

WF d (OF :
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w2 > 2 (F
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Application on the Eqs. 6, 65, and 6 ¢ to Eq. 5 yields:

e —(1+ )l =0

%{el—(l—i—v)aTo}=0.
Vw2 le— 1+ ey PwtFw

Eaf(h) 2
toa—pn VIT=0

Egs. 74, and 7 b prove that:
{er— A+ valy
is independent of x and y and therefore
h2

e, — {1 + ) aT, = constant == EIT

in which B is a normalised constant of integration, and
_ ¥ 1 w2
=St 3(%) +3 (5

Considering Eq. 8a, Eq. 7c reduces to

V(v pyw o+ pw—— Jo O oo r

SOLUTION OF PROBLEM

69
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Let us take an elliptic plate of thickness, A. The centre of the plate in

the middle surface is taken as the origin and the Z-axis downwards.

If there is no source of heat inside the plate the following differential
eguations must be satisfied for, stationary temperature distribution

(Nowacki [8])
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VT, — eTo == 2 (61 + 6)
12

VT 20+ 9T=— 25 6,~ 6) an

in which 6, and 6, denote temperatures at the upper and lower media of
the plate respectively.
If 8, = 6,, Eq. (11) becomes
VT — BT =0
In which

12y

Br=(+ 9 a3

Transferring to elliptic co-ordinates (£, #) defined by x + iy =d cosh
(£ + i), where 2d is the interfocal distance of the ellipse, Eq. 12 reduces to
2 2 2

BT T B osh 26 — cos 2q) T= 0. a4

2827 ot 2

Solution of Eq. 14 can be taken in the following form
T= Eoczm Cezm (€, — @) Ceom (0, — @) (15)

in which Cegm (€, — @) and cepm (9, — ¢) are modified Mathieu function
and ordinary Mathieu function of the first kind and of order 2m respectively,

and
q= ﬁ_f;‘jf (16)

While solving a problem of bending of a plate with an elliptic hole, by taking
a single Mathieu function of the second orcer instead of taking Mathieu
functions of all orders, Naghdi [9] has shown that the results are satisfactory
for larger elliptic holes. In this paper also similar approximation is made
by taking Mathieu function of zero order and on this assumption Eq.15
reduces to

T=Cy Ceo (¢, — q) ceo (6, — )]
The following boundary condition is imposed on 7'

7= Constant = K, on §=§

an
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with the above boundary condition Eq. 17 yields
K, = CoCeo (§9s — 9) Ceo (§,~ q) (18)

Multiplying Eq. 18 by ceo (9, — ¢) and integrating with respect to 5 from
0 to 2= and using the orthogonality relation and normalisation (Mclachlan
[10]) one gets

— 240K
Co= Ceo (50 — @) (19)

in which 4, ®is the first Fourier Coefficient in the expansion of ¢q (3,—g)
Therefore

= A0 K — -
= (Em —-g) Ceo (&~ @) ceo (0. — 9) 0

is determined.

Changing Eq. 9 to elliptic Co-ordinates and substituting the expresion for
V3T one gets

(V2 — P®) (V2 — PAw = ACeo (&, — @) Ceo (2, — q) (21
in which
P2+ Py = — B2 22
pepp=X @)
— Eof(h) 2B24,® K;
A== B0 = %) Ceo G = @) @)
2 2% 22
V? = B (cosh 2 — <58 B [3‘5‘2 +$?2] 5

Complimentary function of Eq. 21 is given by
W = ByCeo (&, — 44) Ceo (1, — q1)

+ DoCeo (6, — ) Ceo (0, — qo) (26)
in which
P 2d2 272
g1 = “‘*‘2 > gy = P24d @)

Clearly the particular integral of Eq. 21 is

A
= FAEE =B oo b= Do = 9) @
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Thus the complete solution of Eq. 21 is
W = ByCeo (£, — 1) Ceo (1, — q1) + DyCoeo (£, — 42) ceo (1, - )

29)

A
T ETEEHET Ay G0 6 Dot —0)

If the outer boundary of the plate £ = £, be clamped, the boundary conditions

are
oW
=z} =0
£(=M§)«)> 3¢/ gato @0
Using Eq. 30 in Eq. 29 one gets the following two conditional equations
BoCeo (§0s — q1) Ceo (0, — q) + DCleo (£0, — gz) Ceo (0, — qo)

P (=P Ceo o~ D0 .= D=0 (la)

RECARY LNAn
BiC'ea (€0, — q1) Ceo (s — g0 + DoCleo (€00 — o) Ceo (0, — g2)
(315

A ’ -
+ BE=PAHBEI— PO Cleo (£0p— @) Ceo (9, — g) =0

Multiplying Eqs. 31 a and 31 b by ceo (3, ~ g,) and integrating with respect
to y from O to 2« and using the orthogonality relation and normalisation

one gets

Bo=— 7%2—;%3 { Ceo (60, — g2) C'eo (€0, — 7) — Ceo (£, — ]

Cleo (£, — g } (32)
Dy = 5‘[,%{ Ceo (05 — 1) C'eo (€0, — @)
— Cao (0, — @) C'eo (£0 — g1 } 33
in which
¥ = (B2 — P (B — PP
¢ = 249 o+ 5 A9 D

r=1

b= 240 59 + 54D 4

‘rumy

s = Ceo (€0, — g0) C'eo (§0. — 90 — Ceol8, — q1) C'e0 (60 — q)
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Av, Azg) and A% are the Fourier Coefficients in the expansion of
Ceo (s @) Ceo (0, — ga) and ceo (9, ~ ¢q) respectively.

To determine the constant % Eq. 8 is transformed into elliptic Co-ordinates
in the form

iy {%(-;’f) + 5 i 2h1hz{( f (%’)2}

5 L+ el 34

in which
AP S
1T g4/ sinh® £ £ sin?y

The boundary conditions for u, and u, are

ug=0=ll,, at f=fn (35)

Let
= E’ P (&) cos Im (36)
=% G(Dsin2m 37

n=1
subject to the conditions

P =G(E)=0

Substituting Eqs. 29, 36, and 37 in Eq. 34 and integrating over the surface
of the plate ome gets

2w 4o
e @

- iEf

27 4o
afof f f (sinh? ¢ +- Sin®n) dédn

. (38)
After evaluating the integrals the following equation leading to B is obtained.

BIQUOR+ 3 (A0 { T 48 {410y,
=1 ™1
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+ E 3 (-0 (= AR A0 )

ks
(5 42 {ADP) (402 &y 4+ 4,0 T A9 (— 1)
r=1 r=1

NI AR 2 2 (— D7 (= 1)° 4,0 4,9 45}

r=1
it

+ DAY + T A9 (T 4 {4y
=1

F 3T 2 (= D (— 1P A A )

r=1 3=)
rofs

(T A AD 1D (M) £+ 4;© .>5° A28 (— 1)
=0

+ T A g 3 z .>: (— D (— 1 459 450 ¢}]
r=1
u;éa

+ 2B,D, [(2A AP + z AQ 49 ¢ 51 4r2 40 4,0 g,

B F 2rs(— 1) (— 1)F A0 A0 g}
r=1 8=1
r#s
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oo - = ” , ” oo -
FOF AR I 49 b+ 49 F (- )T L0y,
Eamd =3

A F (A0 F LD 49y,

+3 X 2 (= 1) (— 15 4,1 A 4u}]

=1 l
r

2-Bo [(ZA(D) f]'(o) + 2 A(o) A(o)){ 2 472 A'(u) a‘°’¢
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+ 2?/,0 [24% 4o - 5 AD g0 { T 4 L0 a©

ya=y, =1

F 3 OF 2ms(— 1P (- DT A a0 ) - (X 42 AD Jo)
r=1 &=} =1
78

X a0 AP £y b T (- O ALy A E (1
bR AOAO Y L T 5 (= D (- 1 a0 A )]

=1 =1 e=1

7748

R+ F gt F e

=1

+ 2rs (— 1) (— 1)° a® al® fs} -+ ( f’z“ 4r® (D))

r

bag
“’IJME

L1

)

R A{dM)*® & + ol 2 a@ (— D s 'l‘ T U(n) Uy

r=1
+3Z ¥ (—y (— 1F @ aly) $5}]
75’}72;—1
= [S‘__hw + 2 4+ »)a To)} sinh 2 &, (3%
where
g = SERAE £,
= gr 2
gy — Simh 2r 3¢ SinhZr — 25 &
z = 2r +2s T2k =28
o = Sinh 2r + 25 &, 4 Sinh 2r — 2r &,
- 2r 4+ 25 2r —2s
de — §° 4 Sin Smh 4r§0
by = _S}Lﬂ?_g[‘fﬂ
and

a), A%, and A4"¢' are the Fourier Coefficients in the expansions of

Ceo 6, — g), Ceo (£, — q)), and Ceqo (€, — qo) tespectively.
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since B is determined, w is determined completely.

NUMERICAL CALCULATION

To find the deflection at a given point, one has to start from Eq. 39
with an assumed value of B leading to the corresponding value of A. With
this value of A and considering Eqs. 32 and 33 the deflection will be obtained

from Eq. (29).
For numerical calculation the following values have been assumed:

E=0,n=3,6 =3 =25 k=1, f(H=h
Ke=L £4=100, e=0-03, v=03, oT, = -3
FT D S0 T , € s V== , aly=2-5x 103

The intetfocal distance 24 being assumed and the values of B2, P,? and P,?
being known, the values of ¢, ¢; and ¢, are determined. ¢, ¢, and g, being
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known the corresponding values of the Fourier Coefficients as well as those
of Mathieu functions are determined. The maximum defleciion W, i
obtained at the centie of the plate. These deflections are graphically pre.
sented in Fig. 1 in which Wy/A for Kr = 0 and K = 100 are plotted against
the non-dimensional load function A. By setting 8 — 0 the deflections accord-
ing to the linear theory is obtained. For comparison Fig. 1 also includes
a straightline which represents small deflections for Kz = 0. The results
obtained in this study could not be compared in absence of any known
results.

CONCLUSIONS

From Fig. 1 it is observed that the error according to the linear theory
increases progressively with the increase in load function. Te solution pro-
posed in this study is rapidly comvergent and mo computational difficulty
other than computational effect is involved. The parameter g for the seties
ceo (£, ¢) may be real or imaginary and the corresponding coefficients can
be compuied with accuracy. The numerical results presented in this study
are obtained by taking the first two terms of the series and suofficient for
practical purposes. Since the deflection at any point is known the corres-
ponding stresses can bew be easily estimated.
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