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ABSTRACT 

In radar tracking using digital Kalman filter, it often becomes necessary to change 
the sampling rate. As the filter gains to be used in computation are dependent on 
the sampling rate, it becomes necessary to employ a large memory in the filter to 
store the time varying filter gains corresponding to each possible value of the sampling 
interval. In this paper, a method of reducing the total memory requirements and 
consequently, the number of computations, is proposed through a transformation which 
makes the filter gains independent of the sampling rate. A block diagram of the 
system for realizing the proposed digital filter using simple digital circuits such as 
adders, multipliers, shift registers, etc., which are well suited for integrated circuit 
(including both MSI and LSI) implementation, is also presented. 

Key words: Digital filters, Digital signal processing, Radar tracking, Kalman filter, 
Reduced memory filter. 

1. INTRODUCTION 

The problem of radar tracking a large number of targets simultaneously 
is usually associated with assigning a suitable sampling rate for each target 
depending on its speed and strength of the return signal [1). Even when 
tracking a single target, the sampling rate can be varied depending on its 
distance to the tracking radar. When a digital Kalman filter [2, 3] is 
employed for trajectory estimation a change in the sampling rate requires 
a corresponding change in the filter gains and these time varying filter gains 
have to be precomputed and stored in the memory of the filter, for each 
possible value of the sampling interval. However, this process can be 
simplified if the filter is modified in such a way that the time varying gains of 
the filter are made independent of the sampling interval. Then it is possible 
to choose any desired sampling interval depending on the targets to be tracked 
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and use the same filter to process the radar signal at all sampling intervals. 
Therefore, in this paper a technique which makes the filter gains to be used 
in the radar signal processing independent of the sampling interval is 
described and the results of the computer simulation of the proposed digital 
filter are presented. 

2. DIGITAL KALMAN FILTER FOR RADAR TRACKING 

Suppose 

xk = x (t = kr) is an n-dimensional state vector of the target, 
where T is the sampling interval 

and 

Yk is a q-dimensional measurement vector, 

with 

uk as a p-dimensional process noise vector, 

and 	• 

vk as a q-dimensional measurement noise vector, then the process 
can be described by the following two equations (2, 3) 

Xki4 --= Fkxk Gkuk 

Thin 	lik+ixk-Fa 	 (2) 

where Fk, G, and Ilk are matrices of appropriate dimensions. 

Then the optimum estimate etk+1) of xic.4-1 is given by 

jik+i = Fkgk 	Kk-ri o'k+i — I k4-1Fkgic) 	 (3) 

A block diagram of the system for the implementation of the above equa- 
tion is shown in Fig. I. 

k- 

FIG. 1. Matrix block diagram for the digital Kalman filter. 
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The time-varying filter gains Kk_ }./  are given by 
Kk+i  = Alk+1.ffk-H. [ 1-4+1Afk+zirk+1. + Rk+i] i 	 (4) 

with 

= FkPkF fk + GkQkGik 	 (5) 
and 

Pk = V — 4 1101 • Mk 	 (6) 

where I is an identity matrix of order n and, Qk and Rk are the covariance 
matrices of the process noise uk and the measurement noise vk respectively 
which are assumed to be two independent normal random variables with 
zero mean. It can be seen from the block diagram that the output fickle 
of the unit Fk is the ' extrapolated ' state of the target before the observation 
yk4.1  is made. Similarly, the output lik_fipkik of the unit Hk is the 
' extrapolated ' observation. 

In deriving a model for the process, it can be observed that a second 
degree curve fitted to the target trajectory would give sufficiently accurate 
estimates of the parameters of the trajectory [1]. With this in view, the 
mathematical model for the trajectory of a target can be described by equa- 
tions (1) and (2) in which 

T2/2 

T (7) 

Gk= G = g = 
[ 00 I 

i 

(8) 

and 

Hk =---H=.---h=[1 0 0 ]. 

	 (9) 

It should be noted that the equations ( 1 ), (2), (7), 	and (9) imply that .(8) 
the three dimensional state vector xk consists of position, velocity and accele- 
ration of the target with respect to the radar at t = kT. 	uk is the scalar 
process noise and vk is 	the 	scalar 	measurement noise. 	yk 	is the scalar 
measurement of the position of the target. 

Equation (7) shows that the matrix Fdepends on the sampling interval 
71. Therefore, whenever the sampling interval T is changed, the time varying 
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filter gains will have to be recomputed. Consequently, if the digital filter 
is to be used for several different sampling intervals, the filter gains have to 
be precomputed for all possible values of the sampling interval and stored 
in the memory of the computer. Naturally such a situation calls for increased 
memory requirements for the digital filter and correspondingly the number 
of mathematical operations to be performed increases. However this situa- 
tion can be overcome by normalizing the filter gains with respect to the 
sampling interval T, as described below. 

3. NORMALIZATION OF THE FILTER GAINS WITH RESPECT TO 
SAMPLING INTERVAL 

Suppose a new variable zk is defined as 

Zk = D 
	

(10) 

where 

1 	0 	0 

D =[0 T 0 

0 	0 	T2/2 

with the transformation of state variables defined in (10), equations (1) and 
(2) with (7), (8) and (9) can now be expressed in terms of zk as follows. 

zk.n = 	zk Dguk} 
= Fzie  Dglik 

and 

	

Yk-}-1 = hDZ Ik+i 	Vk 
= hZk+i Vk 

Simple calculations show that 

1 	1 	1 

P = I 0 1 2 

0 	0 	1 

= h = [1 0 0 

to 
0 l• 

P/2 

(12) 

(13) 

(14) 

(15) 

(16) 

It is to be noted that with the above transformation of state variables, 
has become independent of T, , while retaining the independency of I i with 
• 	• 	• 
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respect to T. However, the matrix ft  is still a function of T. In order to 
seek the advantage of having the filter gains independent of T, it is necessary 
that k also does not depend upon T. Therefore it is suggested that k is 
arbitrarily replaced by 

Under the above assumption Q == Q, and the filter gains are made 
independent of the sampling interval T; This procedure implies that when 
Pp< 1, the process noise is arbitrarily assumed to be larger than what 
it really is and that when T 2/2 > 1, the process noise is arbitrarily assumed 
to be smaller than what it really is. Whether or not the above assumption 
is justifiable can be judged based on the performance of the modified (norma- 
lized) filter equations as compared with that of the conventional one. There- 
fore, the performance of the two filters were studied (by simulating them on 
a digital computer) under different noise conditions and for several different 
values of the sampling interval T. The results of such a study are discussed 
in the next section. 

4. RESULTS OF COMPUTER SIMULATION 

For the purpose of obtaining radar positional measurements, an air- 
craft flying on a straight line trajectory, with a constant offset of 1,000 ft 
from the ground and with a constant velocity of 880 ft/sec was considered 
as a first example. The radar was assumed to be stationed on the ground 
in the vertical plane along the straight line trajectory of the aircraft. 

Measurement noise having mean zero and a variance of (15 ft) 2  and 
(25 ft) 2  were injected into the measurements. A Process noise having mean 
zero and a standard deviation ranging from 1 ft/sec/sec upto 5 ft/sec/sec 
were considered during the simulation of the trajectory in order to get posi- 
tional range measurements. 

The recursive equations of the conventional digital Kalman filter and 
also of the modified digital Kalman filter were programmed on a digital 
computer (IBM 360/44). The experiment was repeated for cases when the 
Positional measurement was range, X-coordinate and elevation angle; the 
Injected noises being appropriately changed. In each of the above cases 
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TABLE 1 

Performance of digital Kalman filter Conventional 

Assumed Initial Covariance Matrix is given below: 

	

100-000 
	

0-0 
	

0•0 

	

0.0 
	

50-000 
	

0.0 
0•0 
	

0.0 
	

50.000 

Assumed Initial State Variables arc: 

	

88015.000 	0.0 
	

0.0 

Variance of Input Noise t= 1.0000; 	Variance of Measurement Noise = 225.0000; Sampling 
Interval in Seconds = 0.500; 	Number of Samples lc 25. 

These are Filter Gains 

GK1K 
	

GK2K 
	

GK3K 

7 0-3349 0.0831 0.0185 

3 0.3363 0-1865 0-0671 

4 0.3989 0.3008 0.1182 

5 0.4699 0.3779 0.1440 

6 0•5122 0-3998 0-1430 

7 0-5243 0•3862 0.1291 

8 0•5187 0-3594 0-1129 

9 0.5055 0.3309 0-0984 

10 0-4901 0-3050 0.0865 

11 0.4749 0.2828 0.0772 

12 0.4609 0-2643 0.0699 
13 0.4484 0-2492 0-0644 
14 0.4377 0-2369 0-0602 
15 0.4286 0-2273 0.0572 
16 0.4211 0-2199 0-0550 
17 0-4151 0-2144 0.0536 
18 0-4105 0.2105 0.0527 
19 0-4071 0-2078 0-0522 
20 0.4047 0-2061 0-0519 
21 0-4030 0-2051 0-0518 
22 0.4020 0.2045 0-0517 
23 0.4014 0.2043 0-0518 
24 0-4010 0.2041 0.0518 
25 0.4009 0.2040 0-0518 
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TABLE f--(Contd.) 

K 	Actual, Range 
Feet X (K) 

2 87565-625 

3 87125.563 

4 86685-438 

5 86245.563 

6 85805.688 

7 85365.750 

8 84925-875 

9 84485.438 

10 84045.813 

11 83606-000 

12 83165.813 

13 82725.875 

14 82285.938 

15 81845-938 

16 81405.938 

17 80966-125 

18 80526.000 

19 80086-188 

20 79646-188 

21 79206.250 

22 78766-313 

23 78326-438 

24 77886.375 

25 77446.250 

Estimated 
Range Feet 

XH1K 

Estimated 
Velocity 

Feet/Second 
XH2K 

Estimated 
Acceleration 
Feet/Second/ 
Second XH3K 

One Step 
Prediction 

Range 
Error Feet 

87861-500 -- 	38.099 -- 	8.467 --458-250 
87594-313 -- 	179.351 -- 	57.785 --734-625 
87168.000 -- 456.616 -155-384 --825-750 
86592.000 -- 798.296 --255-984 -698.500 
85953.875 -.1087.781 --313-738 -403.938 
85360-813 --1251-891 -316.158 -- 	18.750 
84810-250 --1330.251 -291.123 221.813 
84282-000 --1362.339 -257.387 342.938 
83795-688 -1349.682 --217-286 463-438 
83325-625 --1320-128 --179.574 488.625 
82875.313 --1276.694 -144-332 504.000 
82440-063 --1225.964 -112.578 493-250 
82022.688 --1168.704 -- 83.719 479-250 
81605-375 --1116.383 -- 60-025 414.375 
81194.375 --1065.579 -- 39.795 367.563 

. 80775.188 --1024.207 -- 24.478 285.813 
80361.500 -- 984.398 -- 	11.449 247-313 

79945.000 -- 950.705 -- 	1-557 189.688 

79531.313 -- 919.924 6.387 153.125 

79124.625 -- 889-964 13-143 130.500 

78722.000 -- 862.657 18-388 101.375 

78302-813 -- 848.382 19.676 24.875 

77887.688 -- 835.150 20.536 61.625 

77462.563 -- 829.995 19.239 25.063 

different noise conditions and several different sampling intervals were con- 
sidered. The results of computer simulation showed that the performance 
of the modified digital filter was never inferior to that of the conventional 
digital filter; the basis for comparison was the accuracy of estimating the 
positional, velocity and acceleration measures of the target and also the 
accuracy of predicting the positional measurement one sampling interval 
ahead. Typical computer results obtained for both the conventional digital 
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TABLE II 

Performance of digital Kalman filter -Normalised with respect to 
sampling interval 

Assumed Initial Covariance Matrix is given below: 
100-000 	0-0 0.0 

0-0 	 50-000 0•0 
0-0 	 0-0 50.000 

Assumed Initial State Variables are: 
88015-000 	0-0 0.0 

Variance of Input Noise = 1-000; 	Variance of Measurement Noise = 225-0000; 
Interval in Seconds r--- 0-500; 	Number of Samples =--- 25. 	These are Filter Gains. 

Sampling 

GK1K 
	

GK2K 
	

GK3K 

2 0-4194 0.1935 0.0645 

3 0-6010 0-4184 0.1496 

4 0.7105 0-4657 0-1438 

5 0.7157 0•4169 0-1120 

6 0.6884 0-3615 0-0869 

7 0-6570 0.3171 0.0701 

8 0-6289 0-2839 0-0590 

9 0.6055 0-2598 0-0520 

10 0-5872 0.2433 0-0479 

11 0.5740 0.2328 0.0457 

12 0•5653 0-2270 0.0447 

13 0.5602 0.2242 0.0444 

14 0-5602 0-2242 0.0444 

15 0.5568 0.2230 0.0445 

16 0.5565 0.2230 0.0446 

17 0-5563 0-2229 0-0446 

18 0-5562 0.2227 0-0445 

19 0.5560 0.2226 0.0445 

20 0-5559 0-2224 0.0445 

21 0-5557 0-2223 0-0444 

22 0.5556 0-2223 0.0444 

23 0-5556 0-2223 0-0444 

24 0-5556 0.2222 0.0444 

25 0-5556 0.2222 0.0444 
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TABLE II-(Contd.) 

K Actual Range 	Estimated 	Estimated 	Estimated One Step Range 
Range 	Velocity 	Acceleration 	Prediction 

Feet X (K) 	Feet XH1K 	Feet/Second Feet/Second/ Error Feet 
XH2K 	Second XH3K 

2 87565-625 87822.813 -- 	177-387 --118-258 -458-250 
3 87125•563 87351-063 -- 749-106 -484.789 612.500 
4 86685-438 86742-313 -1218-999 -625.292 244.250 
5 86245•563 86174-188 -1392.282 --550-421 167.125 
6 85805.688 85648-500 -1416.142 -429.552 347-688 
7 85365-750 85192.313 -1335.818 -299.163 465-313 
8 84925-875 84757-375 -1241.212 --197-595 430-125 
9 84485-438 84317-625 -1163-543 -126.898 339-625 

10 84045-813 83903.188 --1075.130 -- 67-125 312.125 
11 83606-000 83486-313 -1003-895 - 26.019 225•063 
12 83165.813 83074-875 -- 941.552 3.657 166-000 
13 82725.875 82664-750 891-462 22-778 107-625 
14 82285-938 82261-063 848.653 35.287 70-375 
15 81845-938 81841.688 -- 830.507 35.487 1-125 
16 81405•938 81417.625 823•299 31.277 - 23-625 
17 80966.125 80972-250 -- 837.725 19-258 - 67.438 
18 80526-000 80528-813 -- 849.674 10.633 48-438 
19 80086-188 80078.688 -- 865.612 2•137 -- 47.750 
20 79646.188 79632.938 875.052 -- 	2-064 23•625 
21 79206.250 79199-188 -- 872-749 - 	0.731 7.500 
22 78766.313 78773.750 -- 864-251 2.814 19.928 
23 78326-438 78328.500 - 873•595 - 	1.487 -- 24•188 
24 77886.375 77894-938 871-587 - 	0-386 6•188 
25 77446.250 77452-625 - 876.892 -- 	2.431 -- 	11.500 

Kalman filter and for the modified digital Kalman filter are given in Tables 
I and II. Figures 2 and 3 show graphically the range estimation error and 
one step range prediction error of the two filters. It can be clearly seen that 
the modified filter is better than the conventional filter, 

The effect of changing the sampling interval on the performance of 
.• 	• 

Dom the conventional and modified digital filters was also studied. 	It was 
found that for sampling intervals less than 0.05 sec the performance of 



• 

•• 
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Flo. 2. Comparison of the performances of the conventional and normalised digital Kalman 
filters—PLOTS OF RANGE ESTIMATION ERROR. 

• 

both the filters were very poor. This poor performance can probably be 
attributed to the small value of signal to noise ratio that would result at low 
values of sampling intervals. A theoretical justification for such a behaviour 
is under study. 

In the above experiments a straight line target with a constant velocity 
was considered only as a first example. However, the filter equations and 
the transformation suggested do not require that the acceleration be zero. 
As a second example, therefore, the target was assumed to take a constant 
2-g turn after moving a certain distance along the straight line course. It 
i s to be noted that in this case the velocity is no longer constant. The 
performances of the two filters were once again studied (by simulating them 
on a digital computer) under different noise conditions and for several 
different values of the sampling interval T. The results revealed that the modi- 
fied digital filter behaved in the same manner as in the previous case. 
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FIG. 3. Comparison of the performances of the conventional and normalised digital Kalman 
filters—PLOTS OF ONE-STEP RANGE PREDICTION ERROR. 

Based on these studies, one can arrive at the conclusion that the modifi- 
cations and assumptions suggested in the previous section would indeed 
help one to realize a more economical digital filter for radar tracking appli- 
cations. 

5. THE PROPOSED SYSTEM 

The block diagram of the proposed digital Kalman filter, which can be 
easily constructed using Ws, is indicated in Fig. 4. yk is the input to the 
system and represents the radar measurement obtained at the k-th sampling 
instant. 21k, 22k and 13k are the outputs of the system which are scaled down 
by a factor of I, T and T2/2 respectively, and correspond to the range 
(kik = ilk), velocity (22k = 22k/T), and acceleration (2 3k = 223k/P) of the 
target at that instant. The time varying filter gains, Kik, K2k and K3k, which 
are independent of the sampling interval, are precornputed and stored in 
the memory of the filter. 
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Hu. 4. Block diagram for realization of the modified digital Kalman filter. 

The proposed system is designed for the serial arithmetic operation 
which reduces both complexity of the circuitry involved and the hardware 
requirements considerably. Keeping in view both the capacity of the avail- 
able ICs (including both MS's and LS1s) and the required accuracy in the 
computation, a word length of 16 bits (the most significant bit being reserved 
for the sign) has been chosen for the arithmetic operation. This gives an 
accuracy of about 16 feet in computation for a range of 100 miles. The 
subtraction is carried out by the two's complement addition which also auto- 
matically takes account of the sign of the numbers being added [4]. The 
counter and the control gates select the appropriate numbers from the 
memory depending on the sampling instant kT, and feed to the multiplier. 
The multiplication is performed using accumulators by the shifting and 
adding process [5]. The shift registers provide the required unit bit delays. 

6. CONCLUSION 

It has been shown in this paper that the proposed transformation 
simplifies the conventional digital Kalman filter through a smaller memory, 
and less number of computations. Thus, it is possible to realise a more 
economical digital filter for radar tracking with provision for changing the 
sampling intervals as desired. 
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