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ABSTRACT

The siress and displacement fields are determined in a semi-infinite elastic
media bonded to a rigid foundation, containing & crack at the interface. The elastic
medium is assumed to be under shear. The problem has been solved in closed form
within the linear theory of elasticity, assuming plain strain conditions to hold good.
The well-known  Fourier Transform method has been applied to reduce the mixed
boundary value problem fo a simultaneous set of dual integral equations involving
wrigomatric kzrnels. The set of dual equations have been solved by the usual
technigue ¢ f solving such equations and the displacement and stress field have been
calcuaited from the present solution of these dual equations. It is observed, as
usual, that the selution yeilds an oscillatory phenomenon near the ends of the crack
and thus the present method of solution of the simultancous set of dual equations
gives a right answer fo the question of vilidity of the Transform method of
solving such erack problems, first asked by Erdogin [11. The rechnique of
solving the set of simultaneous dual equations is general and can be applied even
1 the set that arises while solving the same ciack preblem when the creck is
opened by an equal and opposite pressure.

Key words: Transform Method, Griffith Crack, Simultaneous set of dual integral equa
tions; Abel infegral Equations; Riemann Hilbert Problem.

1. INTRODUCTION

In 1968 Erdogan [1] tackled the problem of an even number of cracks
at the interface of two bonded dissimilar half-planes by the method of
Fourier transforms. The physical problem at hand was reduced by Erde-
gan to 4 set of simultaneous dual integral equations involving trigonometric
kernels. The equations of Frdogan are of the form:
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where L' = L' -~ Ly + ... + Lx’, L' s being the cracks occupying por-
tions of the half-line 0 < y < coand Lis the complement of L on 0 < y < oo,
The infinite integrals in (1) and (2) are understood as:
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and the constants ay;, 4y, gy, o are the bielastic constants depending on
the materials of the two half-planes.

Erdogan next reduced the simultancons equations (1) and (2) for the

functions P (Y and @ () to a simultaneous singular integral equations with
Cauchy type kernel for two other functions p (z) and ¢ (¢} defined by:

P = [ p(t)cos (@) dr,

o) = :fq(r) sin ({0) dt. )

The systern of singular integral equations was finally solved by the welk
known technique of Mushkhelishvilli [2] and the solution of these equations
gave directly the behaviour of the functions p () 2nd ¢ (), which, in Erdo-
gan’s mofation represcnt the components of the stress on the interface of

the two media. 1t was shown ultimately that the stresses at the tips of the
cracks behave as:

o3 ~ Ayj (2) s12 sclor*; (cu log g) s @

where oyi (i, f = 1, 2) are the stress components, s, o are polar coordinate
referred fo 2 tip as origin and a is a characteristic length. As the method



Transform Method of Solution of Crack Problem 243

of solution outlined by Erdogan does not need calculating the inverse
Fourier transforms under consideration to compute the quantities of physical
interest, he had rightly raised a question about the legitimacy of the use of
integral transforms in such problems.

Recently Lowengrub [3] has sclved the problem, same as the one that
has been considered in this paper by the application of Fourier transforms
and has claimed that transform methods do werk well in such problems
and the question raised by Erdogan [1] may be ignored. But, it may be
worth pointing out here that, the method of solving the set of simultaneous
dual integral equations ofthe problem as formulated by Lowengrub is
once again the same method as the one which was outlined by Erdogan [1]
and thus Frdogan’s question has not been answered by Lowengrub [3).
Moreover, it may again be worth noting that there are several major and
minor errors in Lowengrub’s [3] method of solution of the problem which
has been retackled in the prepent paper cf. formulae (3.15) [3], (3.16) [3],
(3.19) [3], (3.21) [3] and so on. The Hilbert problem (3.16) in 3 is not
the actual one for the physical problem under consideration and this has
to be discarded. In this paper, we have handled the same problem of
Lowengrub [3] in a different manner and tried to answer Erdogan’s ques-
ion in the right direction.

Here we consider the same problem of Lowengrub, viz., the problem
of a crack at the interface of an elastic half-plane bonded to a rigid foun-
dation, when the elastic half plane is under constant shear at oo, and reduce
the problem to the same set of dual integral equations vie Fourier trans-
forms as in [3]. This set of dual integral equations has been reduced to
simultaneous Abel integral equations (cf. Gakhov [4]) by a technique
that is usually used for solving dual integral equations (cf. [5], [6], [7]).
Finally, the simultaneous Abel equations have been reduced to simul-
tansous Riemann Hilbert problems for sectionally analytic functions and
have been solved by the technique of Mushkhelishvilli [2].

It is observed that the displacement and stress near the ends of the
crack behave in the same oscillatory fashion as was shown by Erdogan [1]
for 2 more general problem and by Lowengrub [3] for the present problem
by the method of integral transforms. It is emphasized that the present
method of solution of the simultaneous dual integral equations in question
is not the same as that of Erdogan [1] or Lowengrub [3], even though the
calculation of the quantities of physical interest does not meed obtaining
the inversions of various integral transforms under consideration directly.
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The method is general in character and 2 similar method is applicable for
similar kind of three-dimensional axi-symmetric problems also. The corres-
ponding axi-symmetric problems will be investigated shortly. Thus, it is
hoped that the question of Erdogan [1] has been answered here in the
right direction as he felt and hinted at the end of the conclusion of his
paper [1]. The answer to Erdogan’s question can mow be given in the
following words:

“Yes, the transform methods of solving the problems of cracks at
the interface of iwo dissimilar elastic media are fully legilimate and the
methods do give the same physically inadmissible solutions if the problems
are treated under the theory of linear elasticity as has been pointed out by
England [81.”

2. STATEMENT OF THE PROBLEM AND FORMULATION OF THE SYSTEM OF
SIMULTANEOUS DUAL INTREGRAL EQUATIONS

The problem under consideration is that of determining the stress field
when the elastic half-plane is under constant shear P at infinity.

The boundary conditions on the boundary y = 0 of the elastic half-
plane y > 0, with the crack — 1 < x <1, can be expressed as: (cf. Lowen-
grub [3]) {see figure 1 for coordinate system].

oyy(x, 00 =0, |x|[<1
ozy (5, 0)=—P, lx|<1
Up(6,0) =uy(x,0)=0, |x|>1 2.1
with the components of stress all vanishing at infinity.
Then following Lowengrub [3] and Sneddon [9), the displacements
and stresses on y = 0 are expresed, in terms of Fourier Transforms, as:

He (60) = (U +7) 3= 4 FFe [4(8); ) @2
wy (50) = (1 +7) G~ 4) L F B2 »], @3
oy (60 =~ PLFl0 — 2 A +20 ) B@; 5] Q.4

oy (6, 0) = P v — Fs (= 1) A (§) + (1 — 2) B(&); -
2.5
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Here ¢ is the Poisson’s ratio and E is the Young’s modulus of the elastic
half-plane.
The definition of the Fourier transforms have been taken as:

Fo [4(®); x]1 = o‘f A () cos (£) dE

Fy[4(8); x) = T A (@sin (8 de. 2.6

It is easily verified that the expressions (2.2)-(2.5) will satisfy the

boundary conditions (2.1) if 4 (&) and B (§) are solutions of the followmg
simultaneous system of dual integral equations:

Fsla A+ aB(8); x]=1x O0<x<]1 2.7
Felapd (&) + B (); x) =

0, D<x<1 2.8
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Feld(§; x]=0, x>1 2.9
Fo[B(9; x]=0, x>1 2.10)
where @ =2(1 —7) and @ =1-— 2y
A similar set of dual integral equations arise in the case when oyy, (x, 0)
= — g{x), in which case the right hand side of (2.7) is replaced by 0 ()
where Q' (x) = q (x).
One may see the formulation of similar set of dual integral equations
in the case when the crack is opened by euqal and opposite pressure, in [3],

In the next section, we shall deal with the solution of the set of equa-
tions (2.7)+(2.10) in detail whilst a similar technique is applicable to the
case when the crack is opened by pressure.

3. SOLUTION OF THE SET OF DUAL INTEGRAL EQUATIONS

To solve the set of equations (2.7)-(2-10), we assume, as is usually
done (cf. [5], [6), [7]), that 4 (¢) and B (¢) arc given in terms of two other
unknown continuous functions gy (f) and g (¢), as:

4@ = fa®l @t
and
1 ¢
B = af &0( of To (ur) du) dt, @.)

where J (x) is Bessel’s function of the first kind of order n.

The assumptions of A4 (£) and B (£) in these forms are the results of
suggestions from a paper of Jones {10].

Then, substituting (3.1) in (2.7)-(2.10), and interchanging the orders
of integration, we see that the equetions (2.9) and (2.10) are automatically
satisfied and the equations (2.7) and (2.8) give rise to the following simu-
taneous system of Abel’s integral equations:

AL s®d
w [ Setmt AT oy

and O<x<1)

: g. () dt : 2 (8) dt
ax f T [ AR G-3)
9
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In the above manipulations, the following results have been used, which will
be necessary in the sequel:
for0<x<1,

1

FelA(9); x] = fé_gf)_ d;g)

FS [A (f)a x] = \/g(;gtld;g)

Fo[B(6); x] = x \/g& (zt)__dtt )

Fe [B(&); x] =+ \/g(gt, _2(_1‘151; ; o
And for x> 1,

RUA®: A= [ B0
and °

FC [-B (f)’ x] = — = \/(g;z(tldtl‘z) (3.5)

We shall now present the method of solving the system of equations (3.2)
and (3.3) for the functions g, (¢) and g, (¢) (0 <z<<1). To this end, we
introduce two sectionally analytical function ¢ (z) and & (z) of the complex
vatiable z = x + iy, analytic in the entire z-plane cut along the segment
= 1<x<1 of the real axis and vanishing as |z |—>co. These functions
are defined by:

s0- [ 500

v@ = f \/22(0 < (3.6)
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We observe that the limiting values ¢ - (x) and # =4 (%) of the funtions
(3.6) on the line y =0, as y— -+ 0, are given by (cf. Green and England
[1mn

For 0 <x < 1:

; d , . (2 dt
sxe = [0S 5 [l K
g (di - Y g (1) dt

(X)) = \/(x“‘ = 1 *ﬁ—_\/ ey

and [’or—1<x<0,

St ()= — f MW =y f adt

VXE—1 V(i — x7)
__ [ mmad g (Ddi _
$E£(x)= f\/(r 7 f\/(ztz = (3.9

We again sec that the following functions :

¢+ () + ¢ ()] =2 f ‘ﬁlﬁ)jt,

V=19
and
[ () -+ = ()] = 2 fvg.&gflﬂ%) 6.9

are odd functions of x, Wh]lst the functions

f) ) = — 2 [ B0 dr
[# (0 — ¢ ()] = 21‘!\/(’_*\’2)

ad

1

W () — ¢ (0] = — 2 [8t

VIGEES)

3-10)

are even functions of x for x<(—1, 1).
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We may now express the system of equations (3.2) and (3. 3) in the
following forms of simultaneous Riemann-Hilbert problems for the section-
ally analytic functions ¢ () and ¥ ()

ay [4 () + ¢ (] + "2 [ () — g (9] = 20 @.11)
and
a4 () — 6 (] + DL () + ¥ (] = 0. @.12)

Subtracting (3.12) from (3.11) and adding the two equations, respectively
we reduce the problem to that of solving two independent Riemann-Hilbert

problems for the functions:

ND=4E@—1u0)

and

p@=4@+ 140 319
as given by:

MXA+FE—MDr@=2x(—1<x<1) 3.19
and

G—dpt@ +p =2x(—1<x<) (3.15)

The solutions of the two Hilbert problems (3.14) and (3.15) are obtained
by the technique of Mushkhelishvilli [2] in the forms:

A@ = + on(z)f“(t;‘(’t’_z) (.16
and
po(s) [ tdt 3.17)

HE =+ W) W O
where A (z) and p, () arethe solutions of the homogeneous problems

(3.14) and (3.15) which are taken in the forms:

A () = (22— )”(Z+i (3.18)
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and

k@) =t — e () @.v)

where

1
=5-In(3—4n), (3.20)
and those branches of Aq and p, are taken which tare such that

lim AO (2)7 Ho (Z) = 1.

|2]-poo

We observe that the limiting values of the functions A, and g, on the line
y=0(— 1< x< 1) are given by:

Ao (X) = 4 deE™ (/T X2 {COS [n ln|x+ 3 ]

x4 1
——1san In ———‘}} (3.21)
and

oE (X) = 4 fet™ 4/ T X2 {cos [nln%ii il]
+ isin [nln yx+1\ }

The knowledge of the functions A (z} and u (z) are sufficient for our purpose,
as is seen from (3.13) and (3.9), of the determination of the unknown func-
tions g, (t) and g, (¢), as the latter functions can then be determined by the
vsual formula for the inversion of Abel’s integral equation. But, for the
determination of the quantities of physical interest, the displacementand
stess, we shall see in the next section that we do not need to obtain the
function g (¢) and g, (¢) in their explicit forms at all.

Thus, as far as the solution of the mathematical problem is concerned,
complete solution of the problem at hand has been obtained here.

4. DEBTERMINATION OF THE STRESS AND DISPLACEMENT

From (2.2), (2.3), (3.4), (3.10) and (3.13) we observe that the dis-
placement components on the crack surface are given by

[for 0<x < 1]:
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g (3, 0) = — &‘i‘_ﬂ)_‘%l:_ﬂﬂf [AF () — X ()}

A {wt (%) — (0} .1
and

uy (x, 0) = — L’h’ﬁ%‘.ﬁﬂf I () — X (%)}

— {pt (x) — = (D]]. . (4.2
Now, by the method of Mushkhelishvilli [12], p. 445-447, we find that
ffrom (3.16) and (3. 17)

Az = ( =T LA A (2)] : “.3)
and

;L(Z) + 2 (1 . ,,)) [Z o (Z)] (4'4)
Finally, using (4.3), (4.4) and (3.21) we obtain from (4 1) -and- (4 2),

Uy (x, O) + (1 “:.-Z‘)(§3 4"]) P(em + e—wn) ,\/1 U

xoos{nln!x+1
_;_El,j:)%}’\/l—-x”cos{nln‘ +}] @.5)
and
uy (%, 0) = +E\/3——47)P\/1~—xzsm{nln‘x+ﬂ} 4.6)

The equations (4.7) and (4.8) give the correct forms of the displacements
on the crack surface. (cf. Lowengrub [3], England [8]).

The stress, on the line y = 0, for | x| > 1, can be calculated by means
of the results (2.4), (2.5), (3.5), (3.13), (4.3) and (4.4). The components
of the stress are given by:

’X

1)~ sm(ﬂ =

ayy(x,O)Jm =P {\/xz—lsm(v)ln'

- 7;7%7[2" cos (1 lnl m(4 7
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and

awy(x,O)illll>1—P [\/xz—lcos nln‘ D

=\_/?Z%T[X cos(nlnlf—“!”—l{)“{' 2nsm(nln’ DJ(H

Equations (4.7) and (4.8) give the correct expressions of the components
of stress, as compared with those obtained by Lowengrub [3]. Infact, the
expressions for the components of displacement and stress as calculated in
[3] are in crror, as there are errors in the, expressions X (z) given by eqn
(3.19) [3] and hence X (x) given by (3.21) [3] and these errors are propa-
gated to the latter discussions in the paper [3].

CONCLUSION

The method of solving the set of dual integral equations presented
here is straightforward and the technique is more useful. But the caleu-
lations here are a little involved as compared to those of Lowengrub [3] or
Erdogan [1]. The main aim of the present paper has been to answer Erdo-
gan’s question about the lcgitimacy of the usc of integral transforms.

The present techngiue of handling the set of simultaneous dual integral
equations has left no doubt now about the use of integral transforms to
such problems.
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