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ABSTRACT 

The effect of end restraint on elastic parameters, particularly Young's modulus 
and Poisson's ratio, determined from triaxial tests, is investigated. These elastic 
constants are not the same as those appearing in the Hooke's law. However, 
for a test specimen of height to diameter ratio more than or equal to 2, the expression 
for lateral deformation at the exterior of the middle of the lest specimen without 
considering end restraint, is shown to be almost exact. Hence knowing one of the 
two elastic parameters the other one can be determined accurately using this expres- 
sion. When both the parameters are to be determined they can be obtained from 
a single test with the help of the graphs presented herein, provided the radial defor- 
mations at the top edge and at the exterior of the middle of the test specimen are 
measured. For cases where the ends can be assumed to be fully restrained, as in 
tests using porous stones at both ends of the sample, the true Young's modulus can 
be obtained directly from the results presented in this paper. 
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INTRODUCTION 

The elastic parameters, namely, Young's modulus and Poisson's ratio, 
bulk and shear moduli and the coefficient of earth pressure at rest, are 
usually determined from triaxial tests. The usual assumption made is 
that during testing the sample deforms uniformly in both the vertical and 
lateral directions. But actually deformation is not fully uniform as shear 
stress is introduced due to friction at the ends of the sample [2] The effect 
of end friction on shear strength and pore pressure has been studied 
by several investigators [3, 4 1  11]. Here an attempt has been made to 
study the influence of end friction on the values of elastic narameters 
obtained from triaxial tests. 
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The problem of fully end-restrained cylinder was first solved by [8] 
and later on by [101 and [6] [1] gave a solution for a more general case, by 
introducing a friction factor, 0, ranging from 0 to 1 which corresponds 
to no restraint and full restraint, respectively. More exact solutions have 
been obtained by [5] and [9] Both of them use radial deformation at top 
of the sample as one of the boundary conditions and hence use of their 
solution requires exact knowledge of radial deformation at top surface. _ 

The difference between apparent Young's modulus as obtained from 
laboratory tests, and the true Young's modulus, has been pointed out by 
some investigators. [7] reported that a cylinder with height to a 
diameter ratio equal to 1 and a Poisson's ratio of 1/3 would have a 
measured modulus approximately 5% larger than true modulus. For a 
Poisson's ratio of 1/4, [6] noted an error of approximately the same 
magnitude. 

The present analysis is based on BaHa's solution. A thorough investi- 
gation on the elastic constants, and in particular, Young's modulus obtained 
from triaxial tests, has been made. This has been accomplished by intro- 
ducing two non-dimensional parameters, which directly indicate the magni- 
tude of the error associated with the conventional method of finding the 
elastic parameters. From the graphs presented, it is possible to determine 
the true values of the elastic parameters, E and p, from a single test, provided 
lateral deformations at the top edge and the exterior of the middle of the 
test specimen are known. For the cases where slippage at the ends is 
negligible, the true values of Young's modulus can be obtained directly by 
assuming the lateral strain at the top edge to be zero. 

THEORY 

For a homogeneous isotropic elastic material the stress-strain relation- 
ships, 	in 	cylindrical 	co-ordinates, 	for axi-symmetric condition 	are 
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where ay , as  and az  are normal stresses in radial, tangential and vertical 
directions, Er, Ee  and Ez  are the corresponding strain components; Trz is the 
shear stress along rz plane and yrz  is the coresponding shear strain. E, p, 
and G are the elastic constants, namely, Young's modulus, Poisson's ratio 
and shear modulus, respectively. 

For taking the end friction into account Balla introduced a friction 
factor 94 defined as 

= 
 [

1 	
UH, R 	 (2) 

U(H , R) wax 

where uti , R is the radial displacement at point B (Fig. 1) in the presence 
of friction and um , R) max  is the corresponding value in the complete absence 
of friction. Taking origin at the centre of the sample ,and denoting the 
height and diameter as 2H and 21?, Balla's expressions for vertical defor- 
mation, w* at top and radial deformation u at point A become 
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* In the expression given in Balla (1960) the second term in brackets on the R.H.S. of 
Eq. (3) read.; as — 4 izy, whereas this should be as given hem. 
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where, al  and ya, (= as) are applied vertical and radial stresses, n is a posi- 
tive integer and / 0  and 4 are Bessel functions of imaginary arguments:" The 
other constants appearing in equations (3) and (4) are as follows:. 
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It can be seen from equations (3) through (7) that u and w are independent 
of the absolute values of H and R and depend on a only. 

In the absence of end friction the sample deforms uniformly retaining 
its perfect cylindrical shape and everywhere within the sample a. = c o  = 
a3, the applied radial stress and o z  = o .1 , the applied vertical stress. For 
this condition, al  and a3  also become the principal stresses. Using equa- 
tion (1) the vertical deformation, w at the top surface, and radial defor- 
mation, u at point, A, are obtained as 

E . 	— a —; 2ito 	al  (1 — 	 (9) 214y) 	. 
H 

E. R 	(cri ± as) 	[Y 	( 1  +4)1)] 	 (10) 

In the presence of end friction, equations (9) and (10) are not exact and the 
estimation of the error in the use of these equations can be obtained by 
comparing equations (3) and (4) with equations (9) and (10). Here two 
non-dimensional parameters /3 and n  are introduced, which are defined as 
follows: 

P = E (ul nfas 	(al + as)] = f2AY 	+ 	 , ( 1 1  ) 
•
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It can be seen from the above equations that the deviations of the 	non- 
dimensional parameters, g and 77 from unity give a direct indication of the 
errors involved in the use of equations (9) and (10). 	Also it can be noted 
from equations (3), (4), (11) and (12) that /3 and 7) are independent of the 
absolute values 	of cri  and a3  and depend on the ratio y only. 	The other 
factors influencing # and n  are 0, ,a and a. 

FIG. I. The triaxial test specimen. 

RESULTS AND DISCUSSIONS 
P. 

For the computations of the values of p and n , a value of a = 2, which 
is usually the case with triaxial tests, is taken. The values of Poisson's 
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ratio, p., have been taken as 0.3, 0.4 and 0.5. The applied stress ratio, 
y, has been varied from 0 to 2 in increments of 0.2, and values used are 
from 0 to 1.0 in increments of 0.25. The values of p and n  obtained using 
equations (11) and (12) for various p., 7 and c6  values, have been presented in 
Table I and these results are discussed below. 

Variation of p 

Following Saint-Venant's principle, it can be expected that the effect 
of end restraiht should be minimum at the farthest cross section from ends, 
i.e., at the centre of the specimen. This implies that in the central zone 
stresses and strains should be independent of friction factor, 0. This can 
be verified from Table I which shows further that the parameter fl is almost 
independent of any of the parameters p, y and 0, the deviation of /3 from 
unity lying within 1%. This implies that equation (10) is correct for all 
practical purposes, irrespective of 0, as long as a 	2 and can be used 
for determining elastic parameters when it is possible to measure radial 
deformation at the point A. Therefore if Poison's ratio is known, an exact 
value of Young's modulus can be determined in terms of u, the radial 
deformation at A, from the equation 

E = (R1u) . [0. 3 - p.(0.1 + cr3)]. 	 (13) 

The coefficient of earth pressure at rest, 
for no lateral strain at the point A [2] 
gives 

12. = askai ± as) 

Ko, is obtained from triaxial tests 
For this 	condition equation (10) 

(14) 

and 

Ko  = /4(1 —p.) 
	

(15) 

Equation (10) being almost exact these values will be very accurate. 

Variation of n: 

It can be seen from Table I that n varies significantly with p, y and 56. 
For all the values of p and # considered herein, the variation of n  with y 
has been shown in Fig. 2, for the case of triaxial compression (i.e., y C 1). 
It can be seen that n  is always less than 1 and the deviation of 7) from unity 
increases with p., y as well as with 0. 	For any particular set of values of 
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and pi, the error is minimum for y = 0 and this error increases as y in- 
creases. For all the values of F, deviation of n from unity increases with 
the friction factor, O. Also it is seen that higher values of IL result in larger 
errors. 

TABLE I 

7 0 
0.5 	. 

13  n 13 n 13  n 

1.0 • 1.01 0.90 1.01 0.86 1.01 0-80 
0-0 

0.25 1.00 0.98 1-00 0.96 1-00 0•95 

1.0 1.01 0.90 1-01 0-84 1•01 0.77 
0.2 

0.25 1.00 0.98 1-00 0.96 1.00 0.94 	. 
1.6 1.01 0.90 1.01 0.83 1.01 0.72 

0-4 
0.25 1.00 0.98 1.00 0.96 1-00 0•93 

1.0 1.01 '0-90 1-01 0•80 1.01 0.62 
0.6 

0.25 1.00 0.98 1.00 0.95 1-00 0.91 

0.1 1.01 0.90 1.01 0.75 1.01 0.32 
0.8 

0.25 1.00 0.98 1.00 0.94 1.00 0-83 

1.0 1.01 0.90 1.01 0.63 
1.0 * * 

0.25 1•00 0.97 1.00 0.91 

1•0 1.01 0.89 1•01 1.39 1.01 1•22 
1.4 

0-25 1.00 0.97 1•00 1.10 1.00 1.05 

1.0 1.01 0.95 1•01 1-04 1.01 1.07 
1.8 

0-25 1•00 0-99 1.00 1.01 1.00 1.02 

* Cannot be computed as the denominators of the right hand side of equations (11) and 
(12) become zero. 

The values of Young's modulus and Poisson's ratio are required for the 
calculation of elastic settlement. The Young's modulus has much greater 
influence on elastic settlement compared to the Poisson's ratio and hence 



502 	 M. NAYAK 

an exact value of the Young's modulus is necessary. Since Young's modu- 
lus is generally determined from triaxial compression tests by using equa- 
tion (9), this equation needs special attention. On the other hand the exact 
value of Poisson's ratio can be found from equation (14), as shown earlier. 

Equations (3), (9) and (12) reveal that the parameter .)j is nothing but 
the ratio of the true Young's modulus, E, to the apparent Young's modu- 
lus, Eth„ • , as obtained from equation (9), i.e., 

(16) 

Since for compression tests 	is always less than unity (Fig. 2), Eobs. is 
always more than the actual value. Since the elastic settlement is in- 
versely proportional to Young's modulus, the predicted elastic settlement 
obtained using Eths.  will always be less than the actual value. For example, 
for very rough ends (0 =- 1-0), p. = 0.5, and y = 0 1  Eobs.  will be 1/0.8 times 
the actual value and hence the predicted settlement will be 0-8 times the 
actual settlement. i.e., 20 per cent less than the actual settlement. 
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FIG. 2. Variation of n  with y for various it and 96 values. 

The error in the modulus value so determined increases with end fric- 
tion and for reasonably smooth ends (c6 = 0.25), this error is not more than 
5 and 9 per cent for y = 0 and 0•6 respectively, for the range of Poisson's 
ratios studied. If the radial deformations at the points A and B can be 
measured during the test, the exact values of Young's modulus as well as 
Poisson's ratio can be calculated from a single test, using Fig. 2 and equa- 
tions (2), (9) and (10) as follows; 
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• 	1. Obtain E and ft from equations (9) and (10). This value of E 
is Eths. 

2. Calculate 0 from equation (2), since 	R has been measured, and 
equation (10) being almost exact u(H, R) mar. becomes radial deformation 
at the point A, which is also measured. 

3. Using the values of y, p, and 0, get 71 from Fig. 2 and hence E from 
equation (16). With this value of E obtain a more exact value of ea from 
equation (10). This completes the first cycle. 

. 	0.3 	 0.4 	 0-5 

FIG. 3. Variation of Ti with p. for the case of full restraint, for various y values. 

4. Better accuracy in the values of E and t may be achieved by calcu- 
lating a more exact value of Ece be.  from equation (9) with the new value of 
/.4 and repeating step 3. 

Measuring lateral deformation at the point B (Fig. 1) is quite difficult 
for ordinary triaxial tests and some approximations regarding the friction 
factor, 0, is necessary. The use of porous stones for the measurement of 
the pore pressure in standard triaxial tests, however, restricts the slippage 
at the ends to a very low value and hence the friction factor, 0, can be 
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approximated to 1 in such cases. For this condition, the parameter n is 
plotted in Fig. 3, for various applied stress ratios. The figure shows that 
the deviation of the observed Young's modulus, Eths•  from true Young's 
modulus, F, increases with eu as well as with y. For the cases where porous 
stones are introduced for measuring pore pressure, the Young's modulus 
can be obtained from Fig. 3, with reasonable accuracy. 

CONCLUSIONS 

For determining the true Young's modulus from triaxial tests, end 
friction should be minimised as otherwise it can introduce a significant error 
in the modulus value and hence in the elastic settlement obtained from it. 
The expression for lateral deformation at the exteri or of the centre of the 
specimen 	equation (10), which does not consider end friction] is almost 
exact for a...>„ 2•0 and the elastic parameters determined from lateral strain 
measurement using this equation, i.e., Poisson's ratio, t , and coefficient of 
earth pressure at rest, ICO3  are exact. It is possible to determine the true 
values of the elastic parameters E and tk from a single test, provided lateral 
deformations at the top edge and the exterior of the middle of the sample 
and vertical deformation at top are measured. In cases of triaxial tests 
using porous stones at either ends of the sample, the Young's modulus can 
be obtain.ed directly from Fig. 3. 

NOTATION 

Young's modulus; 

Eon, 	Young's modulus obtained from triaxial tests; 

A 12 	= functions of pt, #, a and y, defined by equations (3) and (4): 

G 	=a. shear modulus; 

a 4= half height of the test specimen; 

Jo) 1 	= Bessel functions of imaginary arguments of zero and first 
order; 

K = constant, defined by equation (7); 

K0  = coefficient of earth pressure at rest; 

= positive integer; 

nr, 0, z 	= cylindrical co-ordinate system; 
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= radius of the specimen ; 

ii 	 7= radial displacement at the point A (Fig. 1) ; 

UH, R 	= radial displacement at the point B (Fig. 1); 

U(fl, R) max. = radial displacement at the point B (Fig. 1), in the com- 
plete absence of friction; 

U,, Vn 	= constants, defined by equations (5) and (6); 

iv 	= vertical displacement at the top surface; 

a 	=-- height to diameter ratio of the test specimen ; 

fi 	= a non-dimensional parameter, defined by equation (11); 

= ratio of radial to vertical stress in a triaxial test; 

Yrz 	=a.- shear strain along rz plane; 

En Ea/ Ez = normal strains along radial tangential and vertical direc- 
tions; 

a non-dimensional parameter, defined by equation (12); 

an Go az = normal stresses along radial, tangential and vertical direc- 
tions; 

all '73 	= applied vertical and radial stresses in a triaxial test; 

Trz 	= shear stress along rz plane ; 

= friction factor, defined by equation (2). 
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